1
|
Latorre-Pellicer A, Gil-Salvador M, Parenti I, Lucia-Campos C, Trujillano L, Marcos-Alcalde I, Arnedo M, Ascaso Á, Ayerza-Casas A, Antoñanzas-Pérez R, Gervasini C, Piccione M, Mariani M, Weber A, Kanber D, Kuechler A, Munteanu M, Khuller K, Bueno-Lozano G, Puisac B, Gómez-Puertas P, Selicorni A, Kaiser FJ, Ramos FJ, Pié J. Clinical relevance of postzygotic mosaicism in Cornelia de Lange syndrome and purifying selection of NIPBL variants in blood. Sci Rep 2021; 11:15459. [PMID: 34326454 PMCID: PMC8322329 DOI: 10.1038/s41598-021-94958-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
Postzygotic mosaicism (PZM) in NIPBL is a strong source of causality for Cornelia de Lange syndrome (CdLS) that can have major clinical implications. Here, we further delineate the role of somatic mosaicism in CdLS by describing a series of 11 unreported patients with mosaic disease-causing variants in NIPBL and performing a retrospective cohort study from a Spanish CdLS diagnostic center. By reviewing the literature and combining our findings with previously published data, we demonstrate a negative selection against somatic deleterious NIPBL variants in blood. Furthermore, the analysis of all reported cases indicates an unusual high prevalence of mosaicism in CdLS, occurring in 13.1% of patients with a positive molecular diagnosis. It is worth noting that most of the affected individuals with mosaicism have a clinical phenotype at least as severe as those with constitutive pathogenic variants. However, the type of genetic change does not vary between germline and somatic events and, even in the presence of mosaicism, missense substitutions are located preferentially within the HEAT repeat domain of NIPBL. In conclusion, the high prevalence of mosaicism in CdLS as well as the disparity in tissue distribution provide a novel orientation for the clinical management and genetic counselling of families.
Collapse
Affiliation(s)
- Ana Latorre-Pellicer
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Marta Gil-Salvador
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Ilaria Parenti
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Cristina Lucia-Campos
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Laura Trujillano
- Unit of Clinical Genetics, Service of Paediatrics, Hospital Clínico Universitario Lozano Blesa, Department of Paediatrics, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Iñigo Marcos-Alcalde
- Molecular Modelling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), 28049, Madrid, Spain
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - María Arnedo
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Ángela Ascaso
- Unit of Clinical Genetics, Service of Paediatrics, Hospital Clínico Universitario Lozano Blesa, Department of Paediatrics, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Ariadna Ayerza-Casas
- Unit of Paediatric Cardiology, Service of Paediatrics, Hospital Universitario Miguel Servet, 50009, Zaragoza, Spain
| | - Rebeca Antoñanzas-Pérez
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Cristina Gervasini
- Genetica Medica, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| | - Maria Piccione
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Milena Mariani
- Centro Fondazione Mariani per il Bambino Fragile, Department of Pediatrics, ASST-Lariana Sant'Anna Hospital, San Fermo della Battaglia (Como), Italy
| | - Axel Weber
- Institute of Human Genetics, Justus-Liebig-University, Giessen, Germany
| | - Deniz Kanber
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Martin Munteanu
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Katharina Khuller
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Gloria Bueno-Lozano
- Unit of Clinical Genetics, Service of Paediatrics, Hospital Clínico Universitario Lozano Blesa, Department of Paediatrics, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Beatriz Puisac
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Paulino Gómez-Puertas
- Molecular Modelling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), 28049, Madrid, Spain
| | - Angelo Selicorni
- Centro Fondazione Mariani per il Bambino Fragile, Department of Pediatrics, ASST-Lariana Sant'Anna Hospital, San Fermo della Battaglia (Como), Italy
| | - Frank J Kaiser
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- Essener Zentrum für Seltene Erkrankungen (EZSE), Universitätsmedizin Essen, Universitätsklinikum Essen, Essen, Germany
| | - Feliciano J Ramos
- Unit of Clinical Genetics, Service of Paediatrics, Hospital Clínico Universitario Lozano Blesa, Department of Paediatrics, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain.
| | - Juan Pié
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain.
| |
Collapse
|
2
|
Fallah MS, Szarics D, Robson CM, Eubanks JH. Impaired Regulation of Histone Methylation and Acetylation Underlies Specific Neurodevelopmental Disorders. Front Genet 2021; 11:613098. [PMID: 33488679 PMCID: PMC7820808 DOI: 10.3389/fgene.2020.613098] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Epigenetic processes are critical for governing the complex spatiotemporal patterns of gene expression in neurodevelopment. One such mechanism is the dynamic network of post-translational histone modifications that facilitate recruitment of transcription factors or even directly alter chromatin structure to modulate gene expression. This is a tightly regulated system, and mutations affecting the function of a single histone-modifying enzyme can shift the normal epigenetic balance and cause detrimental developmental consequences. In this review, we will examine select neurodevelopmental conditions that arise from mutations in genes encoding enzymes that regulate histone methylation and acetylation. The methylation-related conditions discussed include Wiedemann-Steiner, Kabuki, and Sotos syndromes, and the acetylation-related conditions include Rubinstein-Taybi, KAT6A, genitopatellar/Say-Barber-Biesecker-Young-Simpson, and brachydactyly mental retardation syndromes. In particular, we will discuss the clinical/phenotypic and genetic basis of these conditions and the model systems that have been developed to better elucidate cellular and systemic pathological mechanisms.
Collapse
Affiliation(s)
- Merrick S Fallah
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Dora Szarics
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Clara M Robson
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - James H Eubanks
- Division of Experimental and Translational Neuroscience, Krembil Research Institute, University Health Network, Toronto, ON, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.,Department of Surgery (Neurosurgery), University of Toronto, Toronto, ON, Canada.,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
3
|
Jourdon A, Fasching L, Scuderi S, Abyzov A, Vaccarino FM. The role of somatic mosaicism in brain disease. Curr Opin Genet Dev 2020; 65:84-90. [PMID: 32622340 DOI: 10.1016/j.gde.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/26/2020] [Accepted: 05/03/2020] [Indexed: 12/25/2022]
Abstract
In this review we discuss the importance of genetic somatic mosaicism and its impact on brain diseases. We start from introducing the different types of somatic mutations, their frequencies and abundances across development and lifespan. We then describe how weakness in DNA repair mechanisms influences their prevalence. Finally, we address their functional consequences in the brain and review recent research showing their unsuspected importance in several neurodevelopmental, psychiatric, and neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Liana Fasching
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Soraya Scuderi
- Child Study Center, Yale University, New Haven, CT 06520, USA
| | - Alexej Abyzov
- Department of Health Sciences Research, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Flora M Vaccarino
- Child Study Center, Yale University, New Haven, CT 06520, USA; Department of Neuroscience, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
4
|
Gonzalez Garcia A, Malone J, Li H. A novel mosaic variant on SMC1A reported in buccal mucosa cells, albeit not in blood, of a patient with Cornelia de Lange-like presentation. Cold Spring Harb Mol Case Stud 2020; 6:mcs.a005322. [PMID: 32532882 PMCID: PMC7304356 DOI: 10.1101/mcs.a005322] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/14/2020] [Indexed: 12/31/2022] Open
Abstract
Mosaicism in Cornelia de Lange syndrome (CdLS) has been reported in clinically diagnosed CdLS patients with negative molecular testing using blood as the specimen, particularly in the NIPBL gene. Here we report a novel mosaic variant in SMC1A identified in the buccal swab DNA of a patient with a mild CdLS phenotype. Our patient presented with global developmental delay, dysmorphic features, microcephaly, and short stature, with no limb defect. Face2Gene, a digital tool that analyzes facial morphology, demonstrated a 97% match between our patient and the CdLS gestalt. An initial next-generation sequencing (NGS)-based CdLS panel test, including NIPBL, HDAC8, RAD21, SMC1A, and SMC3, completed using DNA isolated from leukocytes, was negative, and subsequent trio exome sequencing was nondiagnostic. The exome identified biallelic variants of uncertain significance in a candidate gene, NSMCE2. In the pursuit of a molecular diagnosis, a second NGS-based CdLS panel test was ordered on a buccal swab specimen and a novel variant, c.793_795delGAG (p.Glu265del) in SMC1A, was detected at 60% mosaicism. Retrospective analysis of the former panel and exome data revealed the SMC1A variant at 4% and 2%, respectively, both far below standard reporting thresholds. Given that mosaicism has been frequently reported in CdLS, we suggest selecting a different tissue for testing in clinically suspected CdLS cases, even after negative molecular results via blood specimen.
Collapse
Affiliation(s)
- Aixa Gonzalez Garcia
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Julia Malone
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Hong Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322, USA.,Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| |
Collapse
|
5
|
Genetic Variation in Long-Range Enhancers. Curr Top Behav Neurosci 2019; 42:35-50. [PMID: 31396896 DOI: 10.1007/7854_2019_110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Cis-regulatory elements (CREs), including insulators, promoters, and enhancers, play critical roles in the establishment and maintenance of normal cellular function. Within each cell, the 3D structure of chromatin is arranged in specific patterns to expose the CREs required for optimal spatiotemporal regulation of gene expression. CREs can act over large distances along the linear genome, facilitated by looping of the intervening chromatin to allow direct interaction between distal regulatory elements and their target genes. A number of pathologies are associated with dysregulation of CRE function, including developmental disorders, cancers, and neuropsychiatric disease. A majority of known neuropsychiatric disease risk loci are noncoding, and increasing evidence suggests that they contribute to disease through disruption of CREs. As such, rather than directly altering the amino acid content of proteins, these variants are instead thought to affect where, when, and to what extent a given gene is expressed. The distances over which CREs can operate often render their target genes difficult to identify. Furthermore, as many risk loci contain multiple variants in high linkage disequilibrium, identification of the causative single nucleotide polymorphism(s) therein is not straightforward. Thus, deciphering the genetic etiology of complex neuropsychiatric disorders presents a significant challenge.
Collapse
|
6
|
Somatic mosaicism and neurodevelopmental disease. Nat Neurosci 2018; 21:1504-1514. [PMID: 30349109 DOI: 10.1038/s41593-018-0257-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 09/21/2018] [Indexed: 12/19/2022]
Abstract
Traditionally, we have considered genetic mutations that cause neurodevelopmental diseases to be inherited or de novo germline mutations. Recently, we have come to appreciate the importance of de novo somatic mutations, which occur postzygotically and are thus present in only a subset of the cells of an affected individual. The advent of next-generation sequencing and single-cell sequencing technologies has shown that somatic mutations contribute to normal and abnormal human brain development. Somatic mutations are one important cause of neuronal migration and brain overgrowth disorders, as suggested by visible focal lesions. In addition, somatic mutations contribute to neurodevelopmental diseases without visible lesions, including epileptic encephalopathies, intellectual disability, and autism spectrum disorder, and may contribute to a broad range of neuropsychiatric diseases. Studying somatic mutations provides insight into the mechanisms underlying human brain development and neurodevelopmental diseases and has important implications for diagnosis and treatment.
Collapse
|
7
|
Decimi V, Parma B, Panceri R, Fossati C, Mariani M, Russo S, Gervasini CC, Cheli M, Cereda A, Selicorni A. Use of nutritional devices in Cornelia de Lange syndrome: Data from a large Italian cohort. Am J Med Genet A 2018; 176:1865-1871. [DOI: 10.1002/ajmg.a.40372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 05/22/2018] [Accepted: 05/28/2018] [Indexed: 01/21/2023]
Affiliation(s)
| | - Barbara Parma
- Department of Pediatrics. ASST‐Lariana. Sant'Anna Hospital San Fermo della Battaglia (Como) Italy
| | - Roberto Panceri
- Department of PediatricsUniversità Milano Bicocca Monza Italy
| | - Chiara Fossati
- Department of PediatricsUniversità Milano Bicocca Monza Italy
| | - Milena Mariani
- School of Specialization in Medical GeneticsUniversity of Milan Milan Italy
| | - Silvia Russo
- Laboratory of Molecular GeneticsIstituto Auxologico Italiano Milano Italy
| | - Cristina C. Gervasini
- Medical Genetics, Department of Health SciencesUniversità degli Studi di Milano Milano Italy
| | - Maurizio Cheli
- Department of Pediatric SurgeryASST Papa Giovanni XXIII Bergamo Italy
| | - Anna Cereda
- Department of PediatricsASST Papa Giovanni XXIII Bergamo Italy
| | - Angelo Selicorni
- Department of Pediatrics. ASST‐Lariana. Sant'Anna Hospital San Fermo della Battaglia (Como) Italy
| |
Collapse
|
8
|
Nakayama T, Ishii A, Yoshida T, Nasu H, Shimojima K, Yamamoto T, Kure S, Hirose S. Somatic mosaic deletions involving SCN1A
cause Dravet syndrome. Am J Med Genet A 2018; 176:657-662. [DOI: 10.1002/ajmg.a.38596] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 10/09/2017] [Accepted: 12/07/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Tojo Nakayama
- Department of Pediatrics; Tohoku University School of Medicine; Sendai Japan
| | - Atsushi Ishii
- Department of Pediatrics; School of Medicine; Fukuoka University; Fukuoka Japan
- Central Research Institute for the Molecular Pathomechanisms of Epilepsy; Fukuoka University; Fukuoka Japan
| | - Takeshi Yoshida
- Department of Pediatrics; Kyoto University Graduate School of Medicine; Kyoto Japan
| | - Hirosato Nasu
- National Epilepsy Center; Shizuoka Institute of Epilepsy and Neurological Disorders; Shizuoka Japan
| | - Keiko Shimojima
- Tokyo Women's Medical University Institute for Integrated Medical Sciences; Tokyo Japan
| | - Toshiyuki Yamamoto
- Tokyo Women's Medical University Institute for Integrated Medical Sciences; Tokyo Japan
| | - Shigeo Kure
- Department of Pediatrics; Tohoku University School of Medicine; Sendai Japan
| | - Shinichi Hirose
- Department of Pediatrics; School of Medicine; Fukuoka University; Fukuoka Japan
- Central Research Institute for the Molecular Pathomechanisms of Epilepsy; Fukuoka University; Fukuoka Japan
| |
Collapse
|
9
|
Zuin J, Casa V, Pozojevic J, Kolovos P, van den Hout MCGN, van Ijcken WFJ, Parenti I, Braunholz D, Baron Y, Watrin E, Kaiser FJ, Wendt KS. Regulation of the cohesin-loading factor NIPBL: Role of the lncRNA NIPBL-AS1 and identification of a distal enhancer element. PLoS Genet 2017; 13:e1007137. [PMID: 29261648 PMCID: PMC5754091 DOI: 10.1371/journal.pgen.1007137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/04/2018] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
Cohesin is crucial for genome stability, cell division, transcription and chromatin organization. Its functions critically depend on NIPBL, the cohesin-loader protein that is found to be mutated in >60% of the cases of Cornelia de Lange syndrome (CdLS). Other mutations are described in the cohesin subunits SMC1A, RAD21, SMC3 and the HDAC8 protein. In 25-30% of CdLS cases no mutation in the known CdLS genes is detected. Until now, functional elements in the noncoding genome were not characterized in the molecular etiology of CdLS and therefore are excluded from mutation screening, although the impact of such mutations has now been recognized for a wide range of diseases. We have identified different elements of the noncoding genome involved in regulation of the NIPBL gene. NIPBL-AS1 is a long non-coding RNA transcribed upstream and antisense to NIPBL. By knockdown and transcription blocking experiments, we could show that not the NIPBL-AS1 gene product, but its actual transcription is important to regulate NIPBL expression levels. This reveals a possibility to boost the transcriptional activity of the NIPBL gene by interfering with the NIPBL-AS1 lncRNA. Further, we have identified a novel distal enhancer regulating both NIPBL and NIPBL-AS1. Deletion of the enhancer using CRISPR genome editing in HEK293T cells reduces expression of NIPBL, NIPBL-AS1 as well as genes found to be dysregulated in CdLS.
Collapse
MESH Headings
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosome Segregation
- De Lange Syndrome/genetics
- Enhancer Elements, Genetic
- Gene Expression Regulation
- Genome, Human
- HEK293 Cells
- Humans
- Mutation
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/metabolism
- Phenotype
- Promoter Regions, Genetic
- Proteins/genetics
- Proteins/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- Sequence Analysis, DNA
- Cohesins
Collapse
Affiliation(s)
- Jessica Zuin
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Valentina Casa
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Jelena Pozojevic
- Section for Functional Genetics at the Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Petros Kolovos
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Ilaria Parenti
- Section for Functional Genetics at the Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | | | - Yorann Baron
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, Rennes, France
| | - Erwan Watrin
- Centre National de la Recherche Scientifique, UMR 6290, Rennes, France
- Institut de Génétique et Développement de Rennes, Faculté de Médecine, Rennes, France
| | - Frank J. Kaiser
- Section for Functional Genetics at the Institute of Human Genetics, University of Lübeck, Lübeck, Germany
| | - Kerstin S. Wendt
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
10
|
Pozojevic J, Parenti I, Graul-Neumann L, Ruiz Gil S, Watrin E, Wendt KS, Werner R, Strom TM, Gillessen-Kaesbach G, Kaiser FJ. Novel mosaic variants in two patients with Cornelia de Lange syndrome. Eur J Med Genet 2017; 61:680-684. [PMID: 29155047 DOI: 10.1016/j.ejmg.2017.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/11/2017] [Accepted: 11/12/2017] [Indexed: 02/05/2023]
Abstract
Cornelia de Lange syndrome (CdLS) is a dominantly inherited developmental disorder caused by mutations in genes that encode for either structural (SMC1A, SMC3, RAD21) or regulatory (NIPBL, HDAC8) subunits of the cohesin complex. NIPBL represents the major gene of the syndrome and heterozygous mutations can be identified in more than 65% of patients. Interestingly, large portions of these variants were described as somatic mosaicism and often escape standard molecular diagnostics using lymphocyte DNA. Here we discuss the role of somatic mosaicism in CdLS and describe two additional patients with NIPBL mosaicism detected by targeted gene panel or exome sequencing. In order to verify the next generation sequencing data, Sanger sequencing or pyrosequencing on DNA extracted from different tissues were applied. None of the pathogenic variants was originally detected by Sanger sequencing on blood DNA. Patient 1 displays an unusual combination of clinical features: he is cognitively only mildly affected, but shows severe limb reduction defects. Patient 2 presents with a moderate phenotype. Interestingly, Sanger sequencing analysis on fibroblast DNA of this patient did not detect the disease-causing variant previously observed on the same DNA sample by exome sequencing. Subsequent analyses could confirm the variants by Sanger sequencing on buccal mucosa DNA. Notably, this is the first report of a higher mutational load in buccal mucosa than in fibroblast cells of a CdLS patient. Detection of low-level mosaicism is of utmost importance for an accurate molecular diagnosis and a proper genetic counseling of patients with a clinical diagnosis of CdLS. Next-generation sequencing technologies greatly facilitate the detection of low-level mosaicism, which might otherwise remain undetected by conventional sequencing approaches.
Collapse
Affiliation(s)
- Jelena Pozojevic
- Section for Functional Genetics, Institute of Human Genetics, Lübeck, Germany
| | - Ilaria Parenti
- Section for Functional Genetics, Institute of Human Genetics, Lübeck, Germany
| | - Luitgard Graul-Neumann
- Ambulantes Gesundheitszentrum Humangenetik, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sara Ruiz Gil
- Section for Functional Genetics, Institute of Human Genetics, Lübeck, Germany
| | - Erwan Watrin
- Faculté de Médecine, Institut de Génétique et Développement de Rennes, Rennes, France
| | - Kerstin S Wendt
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Ralf Werner
- Division of Experimental Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University of Lübeck, Lübeck, Germany
| | - Tim M Strom
- Institute of Human Genetics, Technische Universität München, Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Munich, Germany
| | | | - Frank J Kaiser
- Section for Functional Genetics, Institute of Human Genetics, Lübeck, Germany.
| |
Collapse
|
11
|
Kaur Y, de Souza RJ, Gibson WT, Meyre D. A systematic review of genetic syndromes with obesity. Obes Rev 2017; 18:603-634. [PMID: 28346723 DOI: 10.1111/obr.12531] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 11/29/2022]
Abstract
Syndromic monogenic obesity typically follows Mendelian patterns of inheritance and involves the co-presentation of other characteristics, such as mental retardation, dysmorphic features and organ-specific abnormalities. Previous reviews on obesity have reported 20 to 30 syndromes but no systematic review has yet been conducted on syndromic obesity. We searched seven databases using terms such as 'obesity', 'syndrome' and 'gene' to conduct a systematic review of literature on syndromic obesity. Our literature search identified 13,719 references. After abstract and full-text review, 119 relevant papers were eligible, and 42 papers were identified through additional searches. Our analysis of these 161 papers found that 79 obesity syndromes have been reported in literature. Of the 79 syndromes, 19 have been fully genetically elucidated, 11 have been partially elucidated, 27 have been mapped to a chromosomal region and for the remaining 22, neither the gene(s) nor the chromosomal location(s) have yet been identified. Interestingly, 54.4% of the syndromes have not been assigned a name, whereas 13.9% have more than one name. We report on organizational inconsistencies (e.g. naming discrepancies and syndrome classification) and provide suggestions for improvements. Overall, this review illustrates the need for increased clinical and genetic research on syndromes with obesity.
Collapse
Affiliation(s)
- Y Kaur
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - R J de Souza
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada
| | - W T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,British Columbia Children's Hospital Research Institute, Vancouver, Canada
| | - D Meyre
- Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, Canada.,Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Canada
| |
Collapse
|
12
|
Fullard JF, Halene TB, Giambartolomei C, Haroutunian V, Akbarian S, Roussos P. Understanding the genetic liability to schizophrenia through the neuroepigenome. Schizophr Res 2016; 177:115-124. [PMID: 26827128 PMCID: PMC4963306 DOI: 10.1016/j.schres.2016.01.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 01/14/2016] [Accepted: 01/18/2016] [Indexed: 12/17/2022]
Abstract
The Psychiatric Genomics Consortium-Schizophrenia Workgroup (PGC-SCZ) recently identified 108 loci associated with increased risk for schizophrenia (SCZ). The vast majority of these variants reside within non-coding sequences of the genome and are predicted to exert their effects by affecting the mechanism of action of cis regulatory elements (CREs), such as promoters and enhancers. Although a number of large-scale collaborative efforts (e.g. ENCODE) have achieved a comprehensive mapping of CREs in human cell lines or tissue homogenates, it is becoming increasingly evident that many risk-associated variants are enriched for expression Quantitative Trait Loci (eQTLs) and CREs in specific tissues or cells. As such, data derived from previous research endeavors may not capture fully cell-type and/or region specific changes associated with brain diseases. Coupling recent technological advances in genomics with cell-type specific methodologies, we are presented with an unprecedented opportunity to better understand the genetics of normal brain development and function and, in turn, the molecular basis of neuropsychiatric disorders. In this review, we will outline ongoing efforts towards this goal and will discuss approaches with the potential to shed light on the mechanism(s) of action of cell-type specific cis regulatory elements and their putative roles in disease, with particular emphasis on understanding the manner in which the epigenome and CREs influence the etiology of SCZ.
Collapse
Affiliation(s)
- John F. Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tobias B. Halene
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, NY, USA
| | | | - Vahram Haroutunian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education, and Clinical Center (VISN 3), James J. Peters VA Medical Center, Bronx, NY, USA.
| |
Collapse
|
13
|
Nizon M, Henry M, Michot C, Baumann C, Bazin A, Bessières B, Blesson S, Cordier-Alex MP, David A, Delahaye-Duriez A, Delezoïde AL, Dieux-Coeslier A, Doco-Fenzy M, Faivre L, Goldenberg A, Layet V, Loget P, Marlin S, Martinovic J, Odent S, Pasquier L, Plessis G, Prieur F, Putoux A, Rio M, Testard H, Bonnefont JP, Cormier-Daire V. A series of 38 novel germline and somatic mutations of NIPBL in Cornelia de Lange syndrome. Clin Genet 2016; 89:584-9. [PMID: 26701315 DOI: 10.1111/cge.12720] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 01/15/2023]
Abstract
Cornelia de Lange syndrome is a multisystemic developmental disorder mainly related to de novo heterozygous NIPBL mutation. Recently, NIPBL somatic mosaicism has been highlighted through buccal cell DNA study in some patients with a negative molecular analysis on leukocyte DNA. Here, we present a series of 38 patients with a Cornelia de Lange syndrome related to a heterozygous NIPBL mutation identified by Sanger sequencing. The diagnosis was based on the following criteria: (i) intrauterine growth retardation and postnatal short stature, (ii) feeding difficulties and/or gastro-oesophageal reflux, (iii) microcephaly, (iv) intellectual disability, and (v) characteristic facial features. We identified 37 novel NIPBL mutations including 34 in leukocytes and 3 in buccal cells only. All mutations shown to have arisen de novo when parent blood samples were available. The present series confirms the difficulty in predicting the phenotype according to the NIPBL mutation. Until now, somatic mosaicism has been observed for 20 cases which do not seem to be consistently associated with a milder phenotype. Besides, several reports support a postzygotic event for those cases. Considering these elements, we recommend a first-line buccal cell DNA analysis in order to improve gene testing sensitivity in Cornelia de Lange syndrome and genetic counselling.
Collapse
Affiliation(s)
- M Nizon
- Département de Génétique, Université Paris Descartes-Sorbonne Paris Cité, INSERM UMR1163, Institut IMAGINE, Hôpital Necker-Enfants Malades, Paris, France
| | - M Henry
- Département de Génétique, Université Paris Descartes-Sorbonne Paris Cité, INSERM UMR1163, Institut IMAGINE, Hôpital Necker-Enfants Malades, Paris, France
| | - C Michot
- Département de Génétique, Université Paris Descartes-Sorbonne Paris Cité, INSERM UMR1163, Institut IMAGINE, Hôpital Necker-Enfants Malades, Paris, France
| | - C Baumann
- Département de Génétique, CHU Robert Debré, Paris, France
| | - A Bazin
- Département de Génétique, CH René Dubos, Pontoise, France
| | - B Bessières
- Département de Génétique, Université Paris Descartes-Sorbonne Paris Cité, INSERM UMR1163, Institut IMAGINE, Hôpital Necker-Enfants Malades, Paris, France
| | - S Blesson
- Service de Génétique, CHRU Tours, Hôpital Bretonneau, Tours, France
| | - M-P Cordier-Alex
- Service de Génétique Clinique, Hospices Civils de Lyon, Bron, France
| | - A David
- Service de Génétique Médicale, CHU, Nantes, France
| | - A Delahaye-Duriez
- Service de Génétique, CHU Paris Seine-Saint-Denis, Hôpital Jean Verdier, Bondy, France
| | - A-L Delezoïde
- Département de Génétique, CHU Robert Debré, Paris, France
| | - A Dieux-Coeslier
- Service de Génétique Clinique, CHRU de Lille, Hôpital Jeanne de Flandre, Lille, France
| | - M Doco-Fenzy
- Service de Génétique, CHU de Reims, Hôpital Maison Blanche, Reims, France
| | - L Faivre
- Centre de Génétique, CHU de Dijon, Dijon, France
| | | | - V Layet
- Service de Génétique Médicale, GH du Havre, Hôpital Jacques Monod, Le Havre, France
| | - P Loget
- Service d'anatomie et cytologie pathologiques, Hôpital Pontchaillou, Université de Rennes 1, CHU, Rennes, France
| | - S Marlin
- Département de Génétique, Université Paris Descartes-Sorbonne Paris Cité, INSERM UMR1163, Institut IMAGINE, Hôpital Necker-Enfants Malades, Paris, France
| | - J Martinovic
- Département de Génétique, Université Paris Descartes-Sorbonne Paris Cité, INSERM UMR1163, Institut IMAGINE, Hôpital Necker-Enfants Malades, Paris, France
| | - S Odent
- Service de Génétique Clinique, CHU Rennes, Hôpital Sud, Rennes, France
| | - L Pasquier
- Service de Génétique Clinique, CHU Rennes, Hôpital Sud, Rennes, France
| | - G Plessis
- Service de Génétique Médicale, CHU Clémenceau, Caen, France
| | - F Prieur
- Service de Génétique Clinique, CHU de Saint-Etienne, Hôpital Nord, Saint-Priest-en-Jarez, France
| | - A Putoux
- Service de Génétique Clinique, Hospices Civils de Lyon, Bron, France
| | - M Rio
- Département de Génétique, Université Paris Descartes-Sorbonne Paris Cité, INSERM UMR1163, Institut IMAGINE, Hôpital Necker-Enfants Malades, Paris, France
| | - H Testard
- Département de Pédiatrie, CHU Grenoble, Grenoble, France
| | - J-P Bonnefont
- Département de Génétique, Université Paris Descartes-Sorbonne Paris Cité, INSERM UMR1163, Institut IMAGINE, Hôpital Necker-Enfants Malades, Paris, France
| | - V Cormier-Daire
- Département de Génétique, Université Paris Descartes-Sorbonne Paris Cité, INSERM UMR1163, Institut IMAGINE, Hôpital Necker-Enfants Malades, Paris, France
| |
Collapse
|
14
|
Pavlidis E, Cantalupo G, Bianchi S, Piccolo B, Pisani F. Epileptic features in Cornelia de Lange syndrome: case report and literature review. Brain Dev 2014; 36:837-43. [PMID: 24461912 DOI: 10.1016/j.braindev.2013.12.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 12/20/2013] [Accepted: 12/22/2013] [Indexed: 10/25/2022]
Abstract
INTRODUCTION Cornelia de Lange syndrome is a rare genetic disease, caused by mutations in three known different genes: NIBPL (crom 5p), SMC1A (crom X) and SMC3 (crom 10q), that account for about 65% of cases. This syndrome is characterized by distinctive facial features, psychomotor delay, growth retardation since the prenatal period (second trimester of pregnancy), hands and feet abnormalities, and involvement of other organs/systems. SMC1A and SMC3 mutations are responsible for a mild phenotype of the syndrome. METHODS We report the electroclinical features of epilepsy in a child with a mild Cornelia de Lange syndrome and furthermore we reviewed the descriptions of the epileptic findings available in the literature in patients with such syndrome. RESULTS A large heterogeneity of the epileptic findings in the literature is reported. CONCLUSION The presence of epilepsy could be related to pathophysiological factors independent of those implicated in the characterization of main classical phenotypic features. A more detailed description of the epileptic findings could help clinicians in the diagnosis of this syndrome in those cases lacking of the typical features.
Collapse
Affiliation(s)
- Elena Pavlidis
- Child Neuropsychiatry Unit, Department of Neuroscience, University of Parma, Parma, Italy.
| | - Gaetano Cantalupo
- Department of Life and Reproduction Sciences, University of Verona, Verona, Italy
| | - Sara Bianchi
- Child Neuropsychiatry Unit, Department of Neuroscience, University of Parma, Parma, Italy
| | - Benedetta Piccolo
- Child Neuropsychiatry Unit, Department of Neuroscience, University of Parma, Parma, Italy
| | - Francesco Pisani
- Child Neuropsychiatry Unit, Department of Neuroscience, University of Parma, Parma, Italy
| |
Collapse
|
15
|
Mitchell AC, Bharadwaj R, Whittle C, Krueger W, Mirnics K, Hurd Y, Rasmussen T, Akbarian S. The genome in three dimensions: a new frontier in human brain research. Biol Psychiatry 2014; 75:961-9. [PMID: 23958183 PMCID: PMC3925763 DOI: 10.1016/j.biopsych.2013.07.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 06/16/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022]
Abstract
Less than 1.5% of the human genome encodes protein. However, vast portions of the human genome are subject to transcriptional and epigenetic regulation, and many noncoding regulatory DNA elements are thought to regulate the spatial organization of interphase chromosomes. For example, chromosomal "loopings" are pivotal for the orderly process of gene expression, by enabling distal regulatory enhancer or silencer elements to directly interact with proximal promoter and transcription start sites, potentially bypassing hundreds of kilobases of interspersed sequence on the linear genome. To date, however, epigenetic studies in the human brain are mostly limited to the exploration of DNA methylation and posttranslational modifications of the nucleosome core histones. In contrast, very little is known about the regulation of supranucleosomal structures. Here, we show that chromosome conformation capture, a widely used approach to study higher-order chromatin, is applicable to tissue collected postmortem, thereby informing about genome organization in the human brain. We introduce chromosome conformation capture protocols for brain and compare higher-order chromatin structures at the chromosome 6p22.2-22.1 schizophrenia and bipolar disorder susceptibility locus, and additional neurodevelopmental risk genes, (DPP10, MCPH1) in adult prefrontal cortex and various cell culture systems, including neurons derived from reprogrammed skin cells. We predict that the exploration of three-dimensional genome architectures and function will open up new frontiers in human brain research and psychiatric genetics and provide novel insights into the epigenetic risk architectures of regulatory noncoding DNA.
Collapse
Affiliation(s)
- Amanda C. Mitchell
- Departments of Psychiatry and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Rahul Bharadwaj
- Departments of Psychiatry and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY,Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester MA
| | - Catheryne Whittle
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester MA
| | - Winfried Krueger
- Center for Regenerative Biology and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT
| | - Karoly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, TN
| | - Yasmin Hurd
- Departments of Psychiatry and Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Theodore Rasmussen
- Center for Regenerative Biology and Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT
| | - Schahram Akbarian
- Departments of Psychiatry and Neuroscience , Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Brudnick Neuropsychiatric Research Institute , University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
16
|
|
17
|
Baquero-Montoya C, Gil-Rodríguez MC, Braunholz D, Teresa-Rodrigo ME, Obieglo C, Gener B, Schwarzmayr T, Strom TM, Gómez-Puertas P, Puisac B, Gillessen-Kaesbach G, Musio A, Ramos FJ, Kaiser FJ, Pié J. Somatic mosaicism in a Cornelia de Lange syndrome patient with NIPBL mutation identified by different next generation sequencing approaches. Clin Genet 2014; 86:595-7. [PMID: 24635725 DOI: 10.1111/cge.12333] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 11/29/2013] [Accepted: 12/16/2013] [Indexed: 01/24/2023]
Affiliation(s)
- C Baquero-Montoya
- Unit of Clinical Genetics and Functional Genomics, Departments of Pharmacology, Physiology and Pediatrics, Medical School, University of Zaragoza, Zaragoza, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Mitchell A, Roussos P, Peter C, Tsankova N, Akbarian S. The future of neuroepigenetics in the human brain. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 128:199-228. [PMID: 25410546 DOI: 10.1016/b978-0-12-800977-2.00008-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Complex mechanisms shape the genome of brain cells into transcriptional units, clusters of condensed chromatin, and many other features that distinguish between various cell types and developmental stages sharing the same genetic material. Only a few years ago, the field's focus was almost entirely on a single mark, CpG methylation; the emerging complexity of neuronal and glial epigenomes now includes multiple types of DNA cytosine methylation, more than 100 residue-specific posttranslational histone modifications and histone variants, all of which superimposed by a dynamic and highly regulated three-dimensional organization of the chromosomal material inside the cell nucleus. Here, we provide an update on the most innovative approaches in neuroepigenetics and their potential contributions to approach cognitive functions and disorders unique to human. We propose that comprehensive, cell type-specific mappings of DNA and histone modifications, chromatin-associated RNAs, and chromosomal "loopings" and other determinants of three-dimensional genome organization will critically advance insight into the pathophysiology of the disease. For example, superimposing the epigenetic landscapes of neuronal and glial genomes onto genetic maps for complex disorders, ranging from Alzheimer's disease to schizophrenia, could provide important clues about neurological function for some of the risk-associated noncoding sequences in the human genome.
Collapse
Affiliation(s)
- Amanda Mitchell
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Cyril Peter
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Nadejda Tsankova
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Schahram Akbarian
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA; Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
19
|
Cheng YW, Tan CA, Minor A, Arndt K, Wysinger L, Grange DK, Kozel BA, Robin NH, Waggoner D, Fitzpatrick C, Das S, Del Gaudio D. Copy number analysis of NIPBL in a cohort of 510 patients reveals rare copy number variants and a mosaic deletion. Mol Genet Genomic Med 2013; 2:115-23. [PMID: 24689074 PMCID: PMC3960053 DOI: 10.1002/mgg3.48] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/11/2013] [Indexed: 12/24/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a genetically heterogeneous disorder characterized by growth retardation, intellectual disability, upper limb abnormalities, hirsutism, and characteristic facial features. In this study we explored the occurrence of intragenic NIPBL copy number variations (CNVs) in a cohort of 510 NIPBL sequence-negative patients with suspected CdLS. Copy number analysis was performed by custom exon-targeted oligonucleotide array-comparative genomic hybridization and/or MLPA. Whole-genome SNP array was used to further characterize rearrangements extending beyond the NIPBL gene. We identified NIPBL CNVs in 13 patients (2.5%) including one intragenic duplication and a deletion in mosaic state. Breakpoint sequences in two patients provided further evidence of a microhomology-mediated replicative mechanism as a potential predominant contributor to CNVs in NIPBL. Patients for whom clinical information was available share classical CdLS features including craniofacial and limb defects. Our experience in studying the frequency of NIBPL CNVs in the largest series of patients to date widens the mutational spectrum of NIPBL and emphasizes the clinical utility of performing NIPBL deletion/duplication analysis in patients with CdLS.
Collapse
Affiliation(s)
- Yu-Wei Cheng
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | - Christopher A Tan
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | - Agata Minor
- Department of Pathology, University of Chicago Chicago, Illinois
| | - Kelly Arndt
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | - Latrice Wysinger
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | - Dorothy K Grange
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine St. Louis, Missouri
| | - Beth A Kozel
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine St. Louis, Missouri
| | - Nathaniel H Robin
- Department of Genetics, University of Alabama at Birmingham Birmingham, Alabama
| | - Darrel Waggoner
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | | | - Soma Das
- Department of Human Genetics, University of Chicago Chicago, Illinois
| | | |
Collapse
|
20
|
Mariani M, Bettini LR, Cereda A, Maitz S, Gervasini C, Russo S, Masciadri M, Biondi A, Larizza L, Selicorni A. Germline mosaicism in cornelia de lange syndrome: Dilemmas and risk figures. Am J Med Genet A 2013; 161A:1825-6. [DOI: 10.1002/ajmg.a.35988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 03/10/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Milena Mariani
- Paediatric Department; S.Gerardo Hospital, Fondazione MBBM, University of Milano-Bicocca; Monza; Italy
| | - Laura R. Bettini
- Paediatric Department; S.Gerardo Hospital, Fondazione MBBM, University of Milano-Bicocca; Monza; Italy
| | - Anna Cereda
- Paediatric Department; S.Gerardo Hospital, Fondazione MBBM, University of Milano-Bicocca; Monza; Italy
| | - Silvia Maitz
- Paediatric Department; S.Gerardo Hospital, Fondazione MBBM, University of Milano-Bicocca; Monza; Italy
| | | | - Silvia Russo
- Laboratory of Medical Cytogenetics and Molecular Genetics; Istituto Auxologico Italiano; Milan; Italy
| | - Maura Masciadri
- Laboratory of Medical Cytogenetics and Molecular Genetics; Istituto Auxologico Italiano; Milan; Italy
| | - Andrea Biondi
- Paediatric Department; S.Gerardo Hospital, Fondazione MBBM, University of Milano-Bicocca; Monza; Italy
| | | | - Angelo Selicorni
- Paediatric Department; S.Gerardo Hospital, Fondazione MBBM, University of Milano-Bicocca; Monza; Italy
| |
Collapse
|