1
|
Eggermann T, Monk D, de Nanclares GP, Kagami M, Giabicani E, Riccio A, Tümer Z, Kalish JM, Tauber M, Duis J, Weksberg R, Maher ER, Begemann M, Elbracht M. Imprinting disorders. Nat Rev Dis Primers 2023; 9:33. [PMID: 37386011 DOI: 10.1038/s41572-023-00443-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/19/2023] [Indexed: 07/01/2023]
Abstract
Imprinting disorders (ImpDis) are congenital conditions that are characterized by disturbances of genomic imprinting. The most common individual ImpDis are Prader-Willi syndrome, Angelman syndrome and Beckwith-Wiedemann syndrome. Individual ImpDis have similar clinical features, such as growth disturbances and developmental delay, but the disorders are heterogeneous and the key clinical manifestations are often non-specific, rendering diagnosis difficult. Four types of genomic and imprinting defect (ImpDef) affecting differentially methylated regions (DMRs) can cause ImpDis. These defects affect the monoallelic and parent-of-origin-specific expression of imprinted genes. The regulation within DMRs as well as their functional consequences are mainly unknown, but functional cross-talk between imprinted genes and functional pathways has been identified, giving insight into the pathophysiology of ImpDefs. Treatment of ImpDis is symptomatic. Targeted therapies are lacking owing to the rarity of these disorders; however, personalized treatments are in development. Understanding the underlying mechanisms of ImpDis, and improving diagnosis and treatment of these disorders, requires a multidisciplinary approach with input from patient representatives.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - David Monk
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Guiomar Perez de Nanclares
- Rare Diseases Research Group, Molecular (Epi)Genetics Laboratory, Bioaraba Research Health Institute, Araba University Hospital-Txagorritxu, Vitoria-Gasteiz, Spain
| | - Masayo Kagami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Eloïse Giabicani
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, APHP, Hôpital Armand Trousseau, Endocrinologie Moléculaire et Pathologies d'Empreinte, Paris, France
| | - Andrea Riccio
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Università della Campania Luigi Vanvitelli, Caserta, Italy
- Institute of Genetics and Biophysics A. Buzzati-Traverso, CNR, Naples, Italy
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jennifer M Kalish
- Division of Human Genetics and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and the Departments of Pediatrics and Genetics at the Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maithé Tauber
- Centre de Référence Maladies Rares PRADORT (syndrome de PRADer-Willi et autres Obésités Rares avec Troubles du comportement alimentaire), Hôpital des Enfants, CHU Toulouse, Toulouse, France
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (Infinity) INSERM UMR1291 - CNRS UMR5051 - Université Toulouse III, Toulouse, France
| | - Jessica Duis
- Department of Pediatrics, Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, Department of Paediatrics and Genetics and Genome Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences and Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Eamonn R Maher
- Department of Medical Genetics, University of Cambridge, Cambridge, UK
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Miriam Elbracht
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
2
|
Scaravelli G, Pisaturo V, Levi Setti PE, Ubaldi FM, Livi C, Borini A, Greco E, Villani MT, Coccia ME, Revelli A, Ricci G, Fusi F, Costa M, Migliorati E, De Luca R, Vigiliano V, Bolli S, Reschini M. Monozygotic twin rate among ART centers: a multicenter analysis of data from 18 Italian units. J Assist Reprod Genet 2022; 39:2349-2354. [PMID: 36053372 PMCID: PMC9596663 DOI: 10.1007/s10815-022-02603-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/19/2022] [Indexed: 10/14/2022] Open
Abstract
PURPOSE The risk of monozygotic twins (MZTs) is increased in couples undergoing assisted reproductive technology (ART) treatments. Several systematic reviews have investigated the possible determinants linked to ART, but results obtained have not been conclusive. The study aims to investigate whether the incidence of MZT differed among ART centers. METHODS This is a multicenter retrospective cohort study using the Italian ART National Registry database and involving the centers reporting data from individual ART cycles from 2015 to 2019. To investigate the incidence of MZT, only single embryo transfer cycles were considered. Women who had sex-discordant deliveries were excluded. MZT rate was calculated as the number of multiple pregnancies (more than one gestational sac at first ultrasound) out of the total number of clinical pregnancies. A binomial distribution model was used to determine the 95% CI of the frequency of MZT. RESULTS Eighteen centers were included, and they provided data on 10,433 pregnancies. The total number of MZT was 162, corresponding to an incidence of 1.5% (95% CI: 1.3-1.8%). The rate of MZT among centers varied between 0% (95% CI: 0.0-25.9%) and 3.2% (95% CI: 1.3-8.1%). All the 95% CIs included 1.5%, rejecting the hypothesis that the MZT rate may significantly differ among centers. CONCLUSIONS The rate of MZT did not significantly vary among ART centers. Local factors are unlikely to explain the increased rate of MZT in ART pregnancies.
Collapse
Affiliation(s)
- Giulia Scaravelli
- ART Italian National Register, National Center for Diseases Prevention and Health Promotion, National Health Institute, Rome, Italy
| | - Valerio Pisaturo
- Infertility Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via M. Fanti 6, 20122, Milan, Italy.
| | - Paolo Emanuele Levi Setti
- Department of Gynecology, Division of Gynecology and Reproductive Medicine, Fertility Center, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | - Claudia Livi
- Demetra GeneraLife Assisted Procreation Center, Florence, Italy
| | | | - Ermanno Greco
- Villa Mafalda, Rome, Italy
- UniCamillus, International Medical University, Rome, Italy
| | - Maria Teresa Villani
- Department of Obstetrics and Gynaecology, Fertility Centre, Arcispedale Santa Maria Nuova, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Alberto Revelli
- Gynecology and Obstetrics 1U/2U, Physiopathology of Reproduction and IVF Unit, Sant'Anna Hospital, University of Torino, Turin, Italy
| | - Giuseppe Ricci
- Department of Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Francesco Fusi
- Department of Maternal Fetal and Pediatric Medicine, ASST, Papa Giovanni XXIII, Bergamo, Italy
| | - Mauro Costa
- Department of Reproductive Medicine, Ospedale Evangelico Internazionale, Genoa, Italy
| | - Emanuela Migliorati
- Surgery for Gynecology and Obstetrics, Genera Umbria S.R.L, Umbertide, Perugia, Italy
| | - Roberto De Luca
- ART Italian National Register, National Center for Diseases Prevention and Health Promotion, National Health Institute, Rome, Italy
| | - Vincenzo Vigiliano
- ART Italian National Register, National Center for Diseases Prevention and Health Promotion, National Health Institute, Rome, Italy
| | - Simone Bolli
- ART Italian National Register, National Center for Diseases Prevention and Health Promotion, National Health Institute, Rome, Italy
| | - Marco Reschini
- Infertility Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via M. Fanti 6, 20122, Milan, Italy
| |
Collapse
|
3
|
Singh A, Pajni K, Panigrahi I, Dhoat N, Senapati S, Khetarpal P. Components of IGF-axis in growth disorders: a systematic review and patent landscape report. Endocrine 2022; 76:509-525. [PMID: 35523998 DOI: 10.1007/s12020-022-03063-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE In this review, epi/genetic mutations of IGF-axis components associated with growth disorders have been summarized alongwith assessment of relevant diagnostic and therapeutic technology through patent literature. METHODOLOGY PROSPERO protocol registration CRD42021279468. For scientific literature search Literature databases (PubMed, EMBASE, ScienceDirect, and Google Scholar) were queried using the appropriate syntax. Various filters were applied based on inclusion and exclusion criteria. Search results were further refined by two authors for finalizing studies to be included in this synthesis. For patent documents search Patent databases (Patentscope and Espacenet) were queried using keywords: IGF or IGFBP. Filters were applied according to International Patent Classification (IPC) and Cooperative Patent Classification (CPC). Search results were reviewed by two authors for inclusion in the patent landscape report. RESULTS For scientific literature analysis, out of 545 search results, 196 were selected for review based on the inclusion criteria. For Patent literature search, out of 485 results, 37 were selected for this synthesis. CONCLUSION Dysregulation of IGF-axis components leads to various abnormalities and their key role in growth and development suggests epi/mutations or structural defects among IGF-axis genes can be associated with growth disorders and may explain some of the idiopathic short stature cases. Trend of patent filings indicate advent of recombinant technology for therapeutics.
Collapse
Affiliation(s)
- Amit Singh
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Ketan Pajni
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Inusha Panigrahi
- Department of Paediatric Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Navdeep Dhoat
- Department of Paediatric Surgery, All India Institute of Medical Sciences, Bathinda, 151001, India
| | - Sabyasachi Senapati
- Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Preeti Khetarpal
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
4
|
Keidai Y, Iwasaki Y, Iwasaki K, Honjo S, Bastepe M, Hamasaki A. Sporadic Pseudohypoparathyroidism Type 1B in Monozygotic Twins: Insights Into the Pathogenesis of Methylation Defects. J Clin Endocrinol Metab 2022; 107:e947-e954. [PMID: 34741517 PMCID: PMC8851915 DOI: 10.1210/clinem/dgab801] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT Sporadic pseudohypoparathyroidism type 1B (sporPHP1B) is an imprinting disease without a defined genetic cause, characterized by broad methylation changes in differentially methylated regions (DMRs) of the GNAS gene. OBJECTIVE This work aims to provide insights into the causative event leading to the GNAS methylation defects through comprehensive molecular genetic analyses of a pair of female monozygotic twins concordant for sporPHP1B who were conceived naturally, that is, without assisted reproductive techniques. METHODS Using the leukocyte genome of the twins and family members, we performed targeted bisulfite sequencing, methylation-sensitive restriction enzyme (MSRE)-quantitative polymerase chain reaction (qPCR), whole-genome sequencing (WGS), high-density single-nucleotide polymorphism (SNP) array, and Sanger sequencing. RESULTS Methylation analyses by targeted bisulfite sequencing and MSRE-qPCR revealed almost complete losses of methylation at the GNAS AS, XL, and A/B DMRs and a gain of methylation at the NESP55 DMR in the twins, but not in other family members. Except for the GNAS locus, we did not find apparent methylation defects at other imprinted genome loci of the twins. WGS, SNP array, and Sanger sequencing did not detect the previously described genetic defects associated with familial PHP1B. Sanger sequencing also ruled out any novel genetic alterations in the entire NESP55/AS region. However, the analysis of 28 consecutive SNPs could not exclude the possibility of paternal heterodisomy in a span of 22 kb comprising exon NESP55 and AS exon 5. CONCLUSION Our comprehensive analysis of a pair of monozygotic twins with sporPHP1B ruled out all previously described genetic causes. Twin concordance indicates that the causative event was an imprinting error earlier than the timing of monozygotic twinning.
Collapse
Affiliation(s)
- Yamato Keidai
- Department of Diabetes and Endocrinology, Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
| | - Yorihiro Iwasaki
- Department of Diabetes and Endocrinology, Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Kanako Iwasaki
- Department of Diabetes and Endocrinology, Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
| | - Sachiko Honjo
- Department of Diabetes and Endocrinology, Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
| | - Murat Bastepe
- Endocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Akihiro Hamasaki
- Department of Diabetes and Endocrinology, Tazuke Kofukai Medical Research Institute Kitano Hospital, Osaka, Japan
| |
Collapse
|
5
|
Abstract
Twin registries have developed as a valuable resource for the study of many aspects of disease and society over the years in many different countries. A number of these registries include large numbers of twins with data collected at varying information levels for twin cohorts over the past several decades. More recent expansion of twin datasets has allowed for the collection of genetic data, together with many other levels of 'omic' information along with multiple demographic, physiological, health outcomes and other measures typically used in epidemiologic research. Other twin data sources outside these registries reflect research interests in particular aspects of disease or specific phenotypic assessment. Twin registries have the potential to play a key role in many aspects of the artificial intelligence/machine learning-driven projects of the future and will continue to keep adapting to the changing research landscape.
Collapse
|
6
|
Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet 2019; 20:235-248. [PMID: 30647469 DOI: 10.1038/s41576-018-0092-0] [Citation(s) in RCA: 249] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Genomic imprinting, the monoallelic and parent-of-origin-dependent expression of a subset of genes, is required for normal development, and its disruption leads to human disease. Imprinting defects can involve isolated or multilocus epigenetic changes that may have no evident genetic cause, or imprinting disruption can be traced back to alterations of cis-acting elements or trans-acting factors that control the establishment, maintenance and erasure of germline epigenetic imprints. Recent insights into the dynamics of the epigenome, including the effect of environmental factors, suggest that the developmental outcomes and heritability of imprinting disorders are influenced by interactions between the genome, the epigenome and the environment in germ cells and early embryos.
Collapse
|
7
|
Cohen JL, Duffy KA, Sajorda BJ, Hathaway ER, Gonzalez-Gandolfi CX, Richards-Yutz J, Gunter AT, Ganguly A, Kaplan J, Deardorff MA, Kalish JM. Diagnosis and management of the phenotypic spectrum of twins with Beckwith-Wiedemann syndrome. Am J Med Genet A 2019; 179:1139-1147. [PMID: 31067005 DOI: 10.1002/ajmg.a.61164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/27/2019] [Accepted: 03/11/2019] [Indexed: 11/09/2022]
Abstract
Beckwith-Wiedemann syndrome (BWS) is an overgrowth disorder with a heterogeneous phenotypic spectrum. There is an increased prevalence of monozygotic twinning in BWS. Given the epigenetic nature and phenotypic spectrum that defines BWS, twins are often discordant for clinical features, and clinicians are faced with the challenge of diagnosing and managing these twins. We present a cohort of multiple pregnancies in which one or more child from each pregnancy was diagnosed with BWS. We conducted a chart review of monochorionic and dichorionic gestations. Clinical scores for monochorionic twins demonstrated phenotypic discordance between the proband and twin. Based on linear regression analysis, a higher clinical score in the proband correlated with larger phenotypic discordance between twin siblings. Despite phenotypic discordance, however, we observed a consistent additive clinical score for a pregnancy (proband's plus twin's scores from a pregnancy). This idea of a finite degree of affectedness for a pregnancy implies a finite number of epigenetically affected cells. This further corroborates the idea that timing of monozygotic monochorionic twinning correlates with the disruption of establishment and/or maintenance of imprinting. The difference in clinical score between a proband and their twin may be due to diffused mosaicism, whereby there is an asymmetric distribution of affected cells among the multiple fetuses in a monozygotic monochorionic pregnancy, leading to a spectrum of variably affected phenotypes. Based on these findings, we recommend an algorithm for a conservative approach to clinically evaluate all children in a monozygotic multiple gestation affected by BWS.
Collapse
Affiliation(s)
- Jennifer L Cohen
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kelly A Duffy
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Brian J Sajorda
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Evan R Hathaway
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | | | - Jennifer Richards-Yutz
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew T Gunter
- Department of Pediatrics, Division of Genetics, University of Mississippi Medical Center, Jackson, Mississippi.,Humana, University of Mississippi Medical Center
| | - Arupa Ganguly
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julie Kaplan
- Department of Pediatrics, Division of Genetics, University of Mississippi Medical Center, Jackson, Mississippi.,Division of Genetics, Department of Pediatrics, Nemours/Alfred I. DuPont Hospital for Children
| | - Matthew A Deardorff
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Souren NY, Gerdes LA, Lutsik P, Gasparoni G, Beltrán E, Salhab A, Kümpfel T, Weichenhan D, Plass C, Hohlfeld R, Walter J. DNA methylation signatures of monozygotic twins clinically discordant for multiple sclerosis. Nat Commun 2019; 10:2094. [PMID: 31064978 PMCID: PMC6504952 DOI: 10.1038/s41467-019-09984-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 04/03/2019] [Indexed: 12/25/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory, demyelinating disease of the central nervous system with a modest concordance rate in monozygotic twins, which strongly argues for involvement of epigenetic factors. We observe highly similar peripheral blood mononuclear cell-based methylomes in 45 MS-discordant monozygotic twins. Nevertheless, we identify seven MS-associated differentially methylated positions (DMPs) of which we validate two, including a region in the TMEM232 promoter and ZBTB16 enhancer. In CD4 + T cells we find an MS-associated differentially methylated region in FIRRE. Additionally, 45 regions show large methylation differences in individual pairs, but they do not clearly associate with MS. Furthermore, we present epigenetic biomarkers for current interferon-beta treatment, and extensive validation shows that the ZBTB16 DMP is a signature for prior glucocorticoid treatment. Taken together, this study represents an important reference for epigenomic MS studies, identifies new candidate epigenetic markers, and highlights treatment effects and genetic background as major confounders. Monozygotic (MZ) twins are ideal to study the influence of non-genetic factors on complex phenotypes. Here, Souren et al. perform an EWAS in peripheral blood mononuclear cells from 45 MZ twins discordant for multiple sclerosis and identify disease and treatment-associated epigenetic markers.
Collapse
Affiliation(s)
- Nicole Y Souren
- Department of Genetics/Epigenetics, Saarland University, 66123, Saarbrücken, Germany.
| | - Lisa A Gerdes
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377, Munich, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Gilles Gasparoni
- Department of Genetics/Epigenetics, Saarland University, 66123, Saarbrücken, Germany
| | - Eduardo Beltrán
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377, Munich, Germany
| | - Abdulrahman Salhab
- Department of Genetics/Epigenetics, Saarland University, 66123, Saarbrücken, Germany
| | - Tania Kümpfel
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377, Munich, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, University Hospital and Biomedical Center, Ludwig-Maximilians University Munich, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 80336, Munich, Germany
| | - Jörn Walter
- Department of Genetics/Epigenetics, Saarland University, 66123, Saarbrücken, Germany.
| |
Collapse
|
9
|
Oelkrug R, Herrmann B, Geissler C, Harder L, Koch C, Lehnert H, Oster H, Kirchner H, Mittag J. Dwarfism and insulin resistance in male offspring caused by α1-adrenergic antagonism during pregnancy. Mol Metab 2017; 6:1126-1136. [PMID: 29031714 PMCID: PMC5641602 DOI: 10.1016/j.molmet.2017.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/28/2017] [Accepted: 06/28/2017] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE Maternal and environmental factors control the epigenetic fetal programming of the embryo, thereby defining the susceptibility for metabolic or endocrine disorders in the offspring. Pharmacological interventions required as a consequence of gestational problems, e.g. hypertension, can potentially interfere with correct fetal programming. As epigenetic alterations are usually only revealed later in life and not detected in studies focusing on early perinatal outcomes, little is known about the long-term epigenetic effects of gestational drug treatments. We sought to test the consequences of maternal α1-adrenergic antagonism during pregnancy, which can occur e.g. during hypertension treatment, for the endocrine and metabolic phenotype of the offspring. METHODS We treated C57BL/6NCrl female mice with the α1-adrenergic antagonist prazosin during pregnancy and analyzed the male and female offspring for endocrine and metabolic abnormalities. RESULTS Our data revealed that maternal α1-adrenergic blockade caused dwarfism, elevated body temperature, and insulin resistance in male offspring, accompanied by reduced IGF-1 serum concentrations as the result of reduced hepatic growth hormone receptor (Ghr) expression. We subsequently identified increased CpG DNA methylation at the transcriptional start site of the alternative Ghr promotor caused by the maternal treatment, which showed a strong inverse correlation to hepatic Ghr expression. CONCLUSIONS Our results demonstrate that maternal α1-adrenergic blockade can constitute an epigenetic cause for dwarfism and insulin resistance. The findings are of immediate clinical relevance as combined α/β-adrenergic blockers are first-line treatment of maternal hypertension.
Collapse
Affiliation(s)
- Rebecca Oelkrug
- Department of Molecular Endocrinology/CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Beate Herrmann
- Department of Molecular Endocrinology/CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Cathleen Geissler
- Department of Epigenetics & Metabolism/CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Lisbeth Harder
- Department of Molecular Endocrinology/CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Christiane Koch
- Department of Chronophysiology/CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Hendrik Lehnert
- Department of Experimental Neuroendocrinology/CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Henrik Oster
- Department of Chronophysiology/CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Henriette Kirchner
- Department of Epigenetics & Metabolism/CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Jens Mittag
- Department of Molecular Endocrinology/CBBM, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.
| |
Collapse
|