1
|
Rattanapornsompong K, Rinkrathok M, Sriwattanapong K, Shotelersuk V, Porntaveetus T. Functional and pathogenic insights into CNNM4 variants in Jalili syndrome. Sci Rep 2024; 14:29091. [PMID: 39580587 PMCID: PMC11585565 DOI: 10.1038/s41598-024-80720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024] Open
Abstract
Jalili syndrome, an autosomal recessive disorder causing cone-rod dystrophy and amelogenesis imperfecta, is a rare genetic disorder impacting visual and dental development. Missense variants (c.1474G > T and c.1475G > A) previously identified in patients with Jalili syndrome have been linked to functional impairment of CNNM4, however, the biological consequences of these pathogenic variants remain largely unexplored. In this study, we investigated the functional implications of these CNNM4 missense variants, which correspond to p.(Gly492Cys) and p.(Gly492Asp) substitutions within the CBS domain of the CNNM4 protein. Our findings demonstrated that these variants exhibit significantly reduced protein stability and increased mRNA decay rates compared with wild type. Despite exhibiting normal Mg2+ localization, the mutant proteins demonstrated significantly reduced Mg²⁺ extrusion activity. This suggests that the pathogenic mechanism underlying Jalili syndrome associated with these variants likely involves decreased mRNA and/or protein stability, rather than mislocalization. Our study provides valuable insights into the interplay between genetic variations, molecular stability, and functional consequences in the context of CNNM4-related disorders, highlighting the importance of CNNM4-mediated Mg²⁺ transport in Jalili syndrome. Further investigation into the mechanisms regulating CNNM4 expression and protein stability may reveal potential therapeutic avenues.
Collapse
Affiliation(s)
- Khanti Rattanapornsompong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mawika Rinkrathok
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Kanokwan Sriwattanapong
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Genomics and Precision Dentistry, Division of Academic Affairs, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
- International Program in Geriatric Dentistry and Special Patients Care, Clinical Research Center, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
2
|
Li H, Huang Y, Li J, Xie M. Novel homozygous nonsynonymous variant of CNNM4 gene in a Chinese family with Jalili syndrome. Mol Genet Genomic Med 2022; 10:e1860. [PMID: 35150469 PMCID: PMC8922947 DOI: 10.1002/mgg3.1860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background Jalili syndrome (JS) is a rare autosomal‐recessive inherited disorder characterized by cone‐rod dystrophy and amelogenesis imperfecta. It is often misdiagnosed in clinical practice due to its heterogeneity and rarity. Methods Two JS patients from a consanguineous family were included in this study. Detailed ophthalmic examinations were performed. Oral photography was taken. The DNA sample of the proband was sequenced using the customized capture panel, which includes 338 retinal disease genes. Sanger sequencing was performed for validation and segregation. Results The patients had poor vision, photophobia, and nystagmus from childhood. Fundus examination revealed diffused chorioretinal atrophy with a prominent macular coloboma. OCT showed a deep staphyloma, severely reduced retinal thickness, retinoschisis, loss of photoreceptor layer, and retinal pigment epithelium in the macular region. Amelogenesis imperfecta, dental decay, staining, irregular shapes, and loss of teeth were present. Next‐generation sequencing combined with Sanger validation identified a novel homozygous nonsynonymous variant c.598T>C (p.S200P) in CNNM4 gene (NM_020184.3). Conclusions We described the clinical features of a Chinese family with JS and identified a novel disease‐causing mutation. Our findings broadened the phenotypes and mutation spectrums of JS in Chinese population, as well as are helpful in the diagnosis of this rare disease.
Collapse
Affiliation(s)
- Huajin Li
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yanfeng Huang
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jing Li
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Maosong Xie
- Department of Ophthalmology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
3
|
Giménez-Mascarell P, Oyenarte I, González-Recio I, Fernández-Rodríguez C, Corral-Rodríguez MÁ, Campos-Zarraga I, Simón J, Kostantin E, Hardy S, Díaz Quintana A, Zubillaga Lizeaga M, Merino N, Diercks T, Blanco FJ, Díaz Moreno I, Martínez-Chantar ML, Tremblay ML, Müller D, Siliqi D, Martínez-Cruz LA. Structural Insights into the Intracellular Region of the Human Magnesium Transport Mediator CNNM4. Int J Mol Sci 2019; 20:E6279. [PMID: 31842432 PMCID: PMC6940986 DOI: 10.3390/ijms20246279] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/17/2022] Open
Abstract
The four member family of "Cyclin and Cystathionine β-synthase (CBS) domain divalent metal cation transport mediators", CNNMs, are the least-studied mammalian magnesium transport mediators. CNNM4 is abundant in the brain and the intestinal tract, and its abnormal activity causes Jalili Syndrome. Recent findings show that suppression of CNNM4 in mice promotes malignant progression of intestinal polyps and is linked to infertility. The association of CNNM4 with phosphatases of the regenerating liver, PRLs, abrogates its Mg2+-efflux capacity, thus resulting in an increased intracellular Mg2+ concentration that favors tumor growth. Here we present the crystal structures of the two independent intracellular domains of human CNNM4, i.e., the Bateman module and the cyclic nucleotide binding-like domain (cNMP). We also derive a model structure for the full intracellular region in the absence and presence of MgATP and the oncogenic interacting partner, PRL-1. We find that only the Bateman module interacts with ATP and Mg2+, at non-overlapping sites facilitating their positive cooperativity. Furthermore, both domains dimerize autonomously, where the cNMP domain dimer forms a rigid cleft to restrict the Mg2+ induced sliding of the inserting CBS1 motives of the Bateman module, from a twisted to a flat disk shaped dimer.
Collapse
Grants
- ETORTEK IE05-147 Departamento de Industria, Innovación, Comercio y Turismo del Gobierno Vasco
- IE07-202 Departamento de Industria, Innovación, Comercio y Turismo del Gobierno Vasco
- 7/13/08/2006/11 Diputación Foral de Bizkaia
- 7/13/08/2005/14 Diputación Foral de Bizkaia
- BFU2010-17857 Ministerio de Ciencia e Innovación
- BFU2013-47531-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BES-2014-068464 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BFU2016-77408-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BES-2017-080435 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- CSD2008-00005 MICINN CONSOLIDER-INGENIO 2010 Program
- BAG MX20113 Diamond Light source
- 2013111114 Gobierno Vasco-Departamento de Salud
- SAF2017-87301-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- BIO15/CA/014 EITB Maratoia
- SEV-2016-0644 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- 12.01.134/2bT4 Berlin Institute of Health
- #343439 Canadian Institute for Health Research
- MX15832-9 Diamond Light Source
- MX15832-10 Diamond Light Source
- PGC2018-096049-B100 Ministerio de Economía, Industria y Competitividad, Gobierno de España
- CTQ2017-83810-R Ministerio de Economía, Industria y Competitividad, Gobierno de España
- PI2010-17 Departamento de Educación, Universidades e Investigación del Gobierno Vasco
- BAG 2019073624 ALBA Synchrotron
Collapse
Affiliation(s)
- Paula Giménez-Mascarell
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Iker Oyenarte
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Irene González-Recio
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Carmen Fernández-Rodríguez
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - María Ángeles Corral-Rodríguez
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Igone Campos-Zarraga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Jorge Simón
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| | - Elie Kostantin
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; (E.K.); (S.H.); (M.L.T.)
| | - Serge Hardy
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; (E.K.); (S.H.); (M.L.T.)
| | - Antonio Díaz Quintana
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla—CSIC. Avda. Americo Vespucio 49, 41092 Sevilla, Spain; (A.D.Q.); (I.D.M.)
| | - Mara Zubillaga Lizeaga
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
| | - Nekane Merino
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
| | - Tammo Diercks
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
| | - Francisco J. Blanco
- Structural Biology Unit, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Spain; (M.Z.L.); (N.M.); (T.D.); (F.J.B.)
- IKERBASQUE, Basque Foundation for Science, María Díaz de Haro 3, 48013 Bilbao, Spain
| | - Irene Díaz Moreno
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla—CSIC. Avda. Americo Vespucio 49, 41092 Sevilla, Spain; (A.D.Q.); (I.D.M.)
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain
| | - Michel L. Tremblay
- Department of Biochemistry and Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada; (E.K.); (S.H.); (M.L.T.)
| | - Dominik Müller
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Disorders, Charité Universitäts medizin, 13353 Berlin, Germany;
| | - Dritan Siliqi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Via G. Amendola 122/O, 70126 Bari, Italy;
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 801A, 48160 Derio, Spain; (P.G.-M.); (I.O.); (I.G.-R.); (C.F.-R.); (M.Á.C.-R.); (I.C.-Z.); (J.S.); (M.L.M.-C.)
| |
Collapse
|
4
|
Parveen A, Mirza MU, Vanmeert M, Akhtar J, Bashir H, Khan S, Shehzad S, Froeyen M, Ahmed W, Ansar M, Wasif N. A novel pathogenic missense variant in CNNM4 underlying Jalili syndrome: Insights from molecular dynamics simulations. Mol Genet Genomic Med 2019; 7:e902. [PMID: 31347285 PMCID: PMC6732295 DOI: 10.1002/mgg3.902] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/04/2019] [Accepted: 07/08/2019] [Indexed: 12/24/2022] Open
Abstract
Background Jalili syndrome (JS) is a rare cone‐rod dystrophy (CRD) associated with amelogenesis imperfecta (AI). The first clinical presentation of JS patients was published in 1988 by Jalili and Smith. Pathogenic mutations in the Cyclin and CBS Domain Divalent Metal Cation Transport Mediator 4 (CNNM4) magnesium transporter protein have been reported as the leading cause of this anomaly. Methods In the present study, a clinical and genetic investigation was performed in a consanguineous family of Pakistani origin, showing characteristic features of JS. Sanger sequencing was successfully used to identify the causative variant in CNNM4. Molecular dynamics (MD) simulations were performed to study the effect of amino acid change over CNNM4 protein. Results Sequence analysis of CNNM4 revealed a novel missense variant (c.1220G>T, p.Arg407Leu) in exon‐1 encoding cystathionine‐β‐synthase (CBS) domain. To comprehend the mutational consequences in the structure, the mutant p.Arg407Leu was modeled together with a previously reported variant (c.1484C>T, p.Thr495Ile) in the same domain. Additionally, docking analysis deciphered the binding mode of the adenosine triphosphate (ATP) cofactor. Furthermore, 60ns MD simulations were carried out on wild type (p.Arg407/p.Thr495) and mutants (p.Arg407Leu/p.Thr495Ile) to understand the structural and energetic changes in protein structure and its dynamic behavior. An evident conformational shift of ATP in the binding site was observed in simulated mutants disrupting the native ATP‐binding mode. Conclusion The novel identified variant in CNNM4 is the first report from the Pakistani population. Overall, the study is valuable and may give a novel insight into metal transport in visual function and biomineralization.
Collapse
Affiliation(s)
- Asia Parveen
- Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRiMM), The University of Lahore, Lahore, Pakistan.,Faculty of Life Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| | - Muhammad U Mirza
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Michiel Vanmeert
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Javed Akhtar
- Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRiMM), The University of Lahore, Lahore, Pakistan
| | - Hina Bashir
- Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRiMM), The University of Lahore, Lahore, Pakistan.,Department of Biochemistry, Sharif Medical and Dental College, Lahore, Pakistan
| | - Saadullah Khan
- Department of Biotechnology and Genetic Engineering, Kohat University of Science and Technology (KUST), Kohat, Pakistan
| | - Saqib Shehzad
- Faculty of Life Sciences, University of Central Punjab (UCP), Lahore, Pakistan
| | - Matheus Froeyen
- Department of Pharmaceutical Sciences, REGA Institute for Medical Research, Medicinal Chemistry, University of Leuven, Leuven, Belgium
| | - Wasim Ahmed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Ansar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Naveed Wasif
- Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRiMM), The University of Lahore, Lahore, Pakistan.,Institute of Human Genetics, University of Ulm & University Hospital, Ulm, Germany.,Institute of Human Genetics, University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
5
|
Giménez-Mascarell P, González-Recio I, Fernández-Rodríguez C, Oyenarte I, Müller D, Martínez-Chantar ML, Martínez-Cruz LA. Current Structural Knowledge on the CNNM Family of Magnesium Transport Mediators. Int J Mol Sci 2019; 20:1135. [PMID: 30845649 PMCID: PMC6429129 DOI: 10.3390/ijms20051135] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 02/28/2019] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
The cyclin and cystathionine β-synthase (CBS) domain magnesium transport mediators, CNNMs, are key players in maintaining the homeostasis of magnesium in different organs. The human family includes four members, whose impaired activity causes diseases such as Jalili Syndrome or Familial Hypomagnesemia, but is also linked to neuropathologic disorders, altered blood pressure, and infertility. Recent findings demonstrated that CNNMs are associated with the highly oncogenic phosphatases of the regenerating liver to promote tumor growth and metastasis, which has attracted renewed focus on their potential exploitation as targets for cancer treatment. However, the exact function of CNNMs remains unclear and is subject to debate, proposed as either direct transporters, sensors, or homeostatic factors. This review gathers the current structural knowledge on the CNNM family, highlighting similarities and differences with the closely related structural partners such as the bacterial Mg2+/Co2+ efflux protein CorC and the Mg2+ channel MgtE.
Collapse
Affiliation(s)
- Paula Giménez-Mascarell
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Bizkaia, Spain.
| | - Irene González-Recio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Bizkaia, Spain.
| | - Cármen Fernández-Rodríguez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Bizkaia, Spain.
| | - Iker Oyenarte
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Bizkaia, Spain.
| | - Dominik Müller
- Department of Pediatric Gastroenterology, Nephrology and Metabolic Disorders, Charité Universitäts Medizin, Berlin, 13353 Berlin, Germany.
| | - María Luz Martínez-Chantar
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Bizkaia, Spain.
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Bizkaia, Spain.
| | - Luis Alfonso Martínez-Cruz
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Bizkaia Science and Technology Park Bld 800, 48160 Derio, Bizkaia, Spain.
| |
Collapse
|
6
|
Daneshmandpour Y, Darvish H, Pashazadeh F, Emamalizadeh B. Features, genetics and their correlation in Jalili syndrome: a systematic review. J Med Genet 2019; 56:358-369. [DOI: 10.1136/jmedgenet-2018-105716] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 01/02/2019] [Accepted: 01/09/2019] [Indexed: 11/03/2022]
Abstract
Jalili syndrome is a rare genetic disorder first identified by Jalili in Gaza. Amelogenesis imperfecta and cone-rode dystrophy are simultaneously seen in Jalili syndrome patients as the main and primary manifestations. Molecular analysis has revealed that theCNNM4gene is responsible for this rare syndrome. Jalili syndrome has been observed in many countries around the world, especially in the Middle East and North Africa. In the current scoping systematic review we searched electronic databases to find studies related to Jalili syndrome. In this review we summarise the reported clinical symptoms,CNNM4gene and protein structure,CNNM4mutations, attempts to reach a genotype-phenotype correlation, the functional role ofCNNM4mutations, and epidemiological aspects of Jalili syndrome. In addition, we have analysed the reported mutations in mutation effect prediction databases in order to gain a better understanding of the mutation’s outcomes.
Collapse
|
7
|
Hirji N, Bradley PD, Li S, Vincent A, Pennesi ME, Thomas AS, Heon E, Bhan A, Mahroo OA, Robson A, Inglehearn CF, Moore AT, Michaelides M. Jalili Syndrome: Cross-sectional and Longitudinal Features of Seven Patients With Cone-Rod Dystrophy and Amelogenesis Imperfecta. Am J Ophthalmol 2018; 188:123-130. [PMID: 29421294 PMCID: PMC5873517 DOI: 10.1016/j.ajo.2018.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/18/2022]
Abstract
PURPOSE To characterize a series of 7 patients with cone-rod dystrophy (CORD) and amelogenesis imperfecta (AI) owing to confirmed mutations in CNNM4, first described as "Jalili Syndrome." DESIGN Retrospective observational case series. METHODS Seven patients from 6 families with Jalili Syndrome were identified at 3 tertiary referral centers. We systematically reviewed their available medical records, spectral-domain optical coherence tomography (SD-OCT), fundus autofluorescence imaging (FAF), color fundus photography, and electrophysiological assessments. RESULTS The mean age at presentation was 6.7 years (range 3-16 years), with 6 male and 1 female patient. CNNM4 mutations were identified in all patients. The mean Snellen best-corrected visual acuity (BCVA) at presentation was 20/246 (range 20/98 to 20/399) in the right eye and 20/252 (range 20/98 to 20/480) in the left. Nystagmus was observed in all 7 patients, and photophobia was present in 6. Funduscopic findings at presentation were variable, ranging from only mild disc pallor to retinal vascular attenuation and macular atrophy. Multimodal imaging demonstrated disease progression in all 7 patients over time. Electroretinography uniformly revealed progressive cone-rod dysfunction. CONCLUSIONS Jalili Syndrome is a rare CORD associated with AI. We have further characterized its ocular phenotype, including describing SD-OCT, FAF, and electrophysiological features; and report several novel disease-causing sequence variants. Moreover, this study presents novel longitudinal data demonstrating structural and functional progression over time, allowing better informed advice on prognosis.
Collapse
Affiliation(s)
- Nashila Hirji
- Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Patrick D Bradley
- Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Shuning Li
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada
| | - Ajoy Vincent
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada; Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Mark E Pennesi
- Oregon Health & Science University, Casey Eye Institute, Portland, Oregon
| | | | - Elise Heon
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada; Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Aparna Bhan
- Genetics and Genome Biology, Hospital for Sick Children, Toronto, Canada
| | - Omar A Mahroo
- Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Anthony Robson
- Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | | - Anthony T Moore
- UCSF School of Medicine, Department of Ophthalmology, San Francisco, California
| | - Michel Michaelides
- Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, University College London, London, United Kingdom.
| |
Collapse
|
8
|
Maia CMF, Machado RA, Gil-da-Silva-Lopes VL, Lustosa-Mendes E, Rim PHH, Dias VO, Martelli DRB, Nasser LS, Coletta RD, Martelli-Júnior H. Report of two unrelated families with Jalili syndrome and a novel nonsense heterozygous mutation in CNNM4 gene. Eur J Med Genet 2018; 61:384-387. [PMID: 29421602 DOI: 10.1016/j.ejmg.2018.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/10/2018] [Accepted: 02/03/2018] [Indexed: 12/18/2022]
Abstract
Jalili syndrome (JS) is an autosomal recessive disease characterized by a combination of cone-rode retinal dytrophy (CRD) and amelogenesis imperfect (AI). Mutations in cyclin and CBS domain divalent metal cation transport mediator 4 (CNNM4) gene cause JS. Here we described 2 families (3 members) affected by JS. In the first family, JS was caused by the homozygous p.Leu324Pro (c.971T > C) missense mutation and the affected patient developed both CRD and AI. In the second family, a specific combination of a compound heterozygous mutation was found - the p.Leu324Pro (c.971T > C) missense transition and the novel p.Tyr581* (c.1743C > G) nonsense mutation. The proband showed CRD and AI, but her father just developed eye alterations. Together, these findings suggest that the p.Leu324Pro mutation in homozygosis induces a complete phenotype with both CRD and AI, but in heterozygosis and in composition with the novel p.Tyr581* nonsense mutation in CNNM4 promotes variable clinical expressivity, particularly with lack of dental phenotypes. These different phenotypes could be explained by deletions affecting the proband's homologous allele, epistasia or interactions with environmental factors leading to residual activity of protein.
Collapse
Affiliation(s)
| | - Renato Assis Machado
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil.
| | | | - Elaine Lustosa-Mendes
- Department of Medical Genetics, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Priscila Hae Hyun Rim
- Department of Medical Genetics, School of Medical Sciences, University of Campinas, Campinas, São Paulo, Brazil
| | - Verônica Oliveira Dias
- Health Science Program, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
| | | | - Luciano Sólia Nasser
- Health Science Program, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil
| | - Ricardo D Coletta
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Hercílio Martelli-Júnior
- Health Science Program, State University of Montes Claros, Montes Claros, Minas Gerais, Brazil; Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| |
Collapse
|
9
|
Li S, Xi Q, Zhang X, Yu D, Li L, Jiang Z, Chen Q, Wang QK, Traboulsi EI. Identification of a mutation in CNNM4 by whole exome sequencing in an Amish family and functional link between CNNM4 and IQCB1. Mol Genet Genomics 2018; 293:699-710. [PMID: 29322253 DOI: 10.1007/s00438-018-1417-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 01/06/2018] [Indexed: 12/15/2022]
Abstract
We investigated an Amish family in which three siblings presented with an early-onset childhood retinal dystrophy inherited in an autosomal recessive fashion. Genome-wide linkage analysis identified significant linkage to marker D2S2216 on 2q11 with a two-point LOD score of 1.95 and a multi-point LOD score of 3.76. Whole exome sequencing was then performed for the three affected individuals and identified a homozygous nonsense mutation (c.C1813T, p.R605X) in the cyclin and CBS domain divalent metal cation transport mediator 4 (CNNM4) gene located within the 2p14-2q14 Jalili syndrome locus. The initial assessment and collection of the family were performed before the clinical delineation of Jalili syndrome. Another assessment was made after the discovery of the responsible gene and the dental abnormalities characteristic of Jalili syndrome were retrospectively identified. The p.R605X mutation represents the first probable founder mutation of Jalili syndrome identified in the Amish community. The molecular mechanism underlying Jalili syndrome is unknown. Here we show that CNNM4 interacts with IQCB1, which causes Leber congenital amaurosis (LCA) when mutated. A truncated CNNM4 protein starting at R605 significantly increased the rate of apoptosis, and significantly increased the interaction between CNNM4 and IQCB1. Mutation p.R605X may cause Jalili syndrome by a nonsense-mediated decay mechanism, affecting the function of IQCB1 and apoptosis, or both. Our data, for the first time, functionally link Jalili syndrome gene CNNM4 to LCA gene IQCB1, providing important insights into the molecular pathogenic mechanism of retinal dystrophy in Jalili syndrome.
Collapse
Affiliation(s)
- Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Quansheng Xi
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dong Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lin Li
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Zhenyang Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiuyun Chen
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44195, USA
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44195, USA.
| | - Elias I Traboulsi
- Center for Genetic Eye Diseases, Cleveland Clinic Cole Eye Institute, Cleveland, OH, 44195, USA.
| |
Collapse
|