1
|
Wang S, Xu Z, Wang Z, Yi X, Wu J. M6A methyltransferase METTL3 promotes glucose metabolism hub gene expression and induces metabolic dysfunction-associated steatotic liver disease (MASLD). BMC Genomics 2025; 26:188. [PMID: 39994526 PMCID: PMC11853331 DOI: 10.1186/s12864-025-11377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 02/18/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) RNA modification plays a crucial role in various biological events and is implicated in various metabolic-related diseases. However, its role in MASLD remains unclear. This study aims to investigate the impact of METTL3 on MASLD through multi-omics analysis, with a focus on exploring its potential mechanisms of action. METHODS An MASLD mouse model was established by feeding C57BL/6J mice a high-fat diet for 12 weeks. A METTL3 stable overexpression AML12 cell model was also constructed via lentiviral transfection. Subsequent transcriptomic and proteomic analyses, as well as integrated analysis between different omics datasets, were conducted. RESULTS METTL3 expression was significantly increased in the MASLD mouse model. Through our transcriptomic and proteomic analyses, we identified 848 genes with significant inconsistencies between the transcriptomic and proteomic datasets. GO/ KEGG enrichment analyses identified terms that may be involved in post-transcriptional modifications, particularly METTL3-mediated m6A modification. Subsequently, through integrated proteomic analysis of the METTL3-overexpressed AML12 cell model and the MASLD mouse model, we selected the top 20 co-upregulated and co-downregulated GO/ KEGG terms as the main biological processes influenced by METTL3 during MASLD. By intersecting with pathways obtained from previous integrated analyses, we identified GO/ KEGG terms affected by METTL3-induced m6A modification. Protein-protein interaction analysis of proteins involved in these pathways highlighted GAPDH and TPI1 as two key hub genes. CONCLUSIONS During MASLD, METTL3 regulates the glycolytic pathway through m6A modification, influencing the occurrence and development of the disease via the key hub genes GAPDH and TPI1. These findings expand our understanding of MASLD and provide strong evidence for potential therapeutic targets and drug development.
Collapse
Affiliation(s)
- Shuowen Wang
- Gastroenterology Department, Children's Hospital Capital Institute of Pediatrics, Beijing, 100020, China
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Ziying Xu
- Bacteriology Department, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zijun Wang
- Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, China
| | - Xiaoyu Yi
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Jianxin Wu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, 100020, China.
- Beijing Tongren Hospital, Capital Medical University, Beijing, 100005, China.
| |
Collapse
|
2
|
de la Mora-de la Mora I, García-Torres I, Flores-López LA, López-Velázquez G, Hernández-Alcántara G, Gómez-Manzo S, Enríquez-Flores S. Methylglyoxal-Induced Modifications in Human Triosephosphate Isomerase: Structural and Functional Repercussions of Specific Mutations. Molecules 2024; 29:5047. [PMID: 39519689 PMCID: PMC11547674 DOI: 10.3390/molecules29215047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/14/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Triosephosphate isomerase (TPI) dysfunction is a critical factor in diverse pathological conditions. Deficiencies in TPI lead to the accumulation of toxic methylglyoxal (MGO), which induces non-enzymatic post-translational modifications, thus compromising protein stability and leading to misfolding. This study investigates how specific TPI mutations (E104D, N16D, and C217K) affect the enzyme's structural stability when exposed to its substrate glyceraldehyde 3-phosphate (G3P) and MGO. We employed circular dichroism, intrinsic fluorescence, native gel electrophoresis, and Western blotting to assess the structural alterations and aggregation propensity of these TPI mutants. Our findings indicate that these mutations markedly increase TPI's susceptibility to MGO-induced damage, leading to accelerated loss of enzymatic activity and enhanced protein aggregation. Additionally, we observed the formation of MGO-induced adducts, such as argpyrimidine (ARGp), that contribute to enzyme inactivation and aggregation. Importantly, the application of MGO-scavenging molecules partially mitigated these deleterious effects, highlighting potential therapeutic strategies to counteract MGO-induced damage in TPI-related disorders.
Collapse
Affiliation(s)
- Ignacio de la Mora-de la Mora
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.G.-T.); (L.A.F.-L.); (G.L.-V.)
| | - Itzhel García-Torres
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.G.-T.); (L.A.F.-L.); (G.L.-V.)
| | - Luis Antonio Flores-López
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.G.-T.); (L.A.F.-L.); (G.L.-V.)
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT)-Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico
| | - Gabriel López-Velázquez
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.G.-T.); (L.A.F.-L.); (G.L.-V.)
| | - Gloria Hernández-Alcántara
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico;
| | - Saúl Gómez-Manzo
- Laboratorio de Bioquímica Genética, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico;
| | - Sergio Enríquez-Flores
- Laboratorio de Biomoléculas y Salud Infantil, Instituto Nacional de Pediatría, Secretaría de Salud, Mexico City 04530, Mexico; (I.G.-T.); (L.A.F.-L.); (G.L.-V.)
| |
Collapse
|
3
|
Selamioğlu A, Karaca M, Balcı MC, Körbeyli HK, Durmuş A, Yıldız EP, Karaman S, Gökçay GF. Triosephosphate Isomerase Deficiency: E105D Mutation in Unrelated Patients and Review of the Literature. Mol Syndromol 2023; 14:231-238. [PMID: 37323194 PMCID: PMC10267495 DOI: 10.1159/000528192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2023] Open
Abstract
Introduction Chronic haemolytic anaemia, increased susceptibility to infections, cardiomyopathy, neurodegeneration, and death in early childhood are the clinical findings of triosephosphate isomerase (TPI) deficiency, which is an ultra-rare disorder. The clinical and laboratory findings and the outcomes of 2 patients with TPI deficiency are reported, with a review of cases reported in the literature. Case Presentation Two unrelated patients with haemolytic anaemia and neurologic findings who were diagnosed as having TPI deficiency are presented. Neonatal onset of initial symptoms was observed in both patients, and the age at diagnosis was around 2 years. The patients had increased susceptibility to infections and respiratory failure, but cardiac symptoms were not remarkable. Screening for inborn errors of metabolism revealed a previously unreported metabolic alteration determined using tandem mass spectrometry in acylcarnitine analysis, causing elevated propionyl carnitine levels in both patients. The patients had p.E105D (c.315G>C) homozygous mutations in the TPI1 gene. Although severely disabled, both patients are alive at the ages of 7 and 9 years. Discussion For better management, it is important to investigate the genetic aetiology in patients with haemolytic anaemia with or without neurologic symptoms who do not have a definitive diagnosis. The differential diagnosis of elevated propionyl carnitine levels using tandem mass spectrometry screening should also include TPI deficiency.
Collapse
Affiliation(s)
- Arzu Selamioğlu
- Division of Paediatric Metabolism, Department of Paediatrics, Istanbul University Faculty of Medicine, Istanbul, Turkey
| | - Meryem Karaca
- Division of Paediatric Metabolism, Department of Paediatrics, Istanbul University Faculty of Medicine, Istanbul, Turkey
| | - Mehmet Cihan Balcı
- Division of Paediatric Metabolism, Department of Paediatrics, Istanbul University Faculty of Medicine, Istanbul, Turkey
| | - Hüseyin Kutay Körbeyli
- Division of Paediatric Metabolism, Department of Paediatrics, Istanbul University Faculty of Medicine, Istanbul, Turkey
| | - Aslı Durmuş
- Division of Paediatric Metabolism, Department of Paediatrics, Istanbul University Faculty of Medicine, Istanbul, Turkey
| | - Edibe Pembegül Yıldız
- Division of Paediatric Neurology, Department of Pediatrics, Istanbul University Faculty of Medicine, Istanbul, Turkey
| | - Serap Karaman
- Division of Paediatric Haematology-Oncology, Department of Pediatrics, Istanbul University Faculty of Medicine, Istanbul, Turkey
| | - Gülden Fatma Gökçay
- Division of Paediatric Metabolism, Department of Paediatrics, Istanbul University Faculty of Medicine, Istanbul, Turkey
| |
Collapse
|
4
|
Popov AV, Endutkin AV, Yatsenko DD, Yudkina AV, Barmatov AE, Makasheva KA, Raspopova DY, Diatlova EA, Zharkov DO. Molecular dynamics approach to identification of new OGG1 cancer-associated somatic variants with impaired activity. J Biol Chem 2021; 296:100229. [PMID: 33361155 PMCID: PMC7948927 DOI: 10.1074/jbc.ra120.014455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/02/2023] Open
Abstract
DNA of living cells is always exposed to damaging factors. To counteract the consequences of DNA lesions, cells have evolved several DNA repair systems, among which base excision repair is one of the most important systems. Many currently used antitumor drugs act by damaging DNA, and DNA repair often interferes with chemotherapy and radiotherapy in cancer cells. Tumors are usually extremely genetically heterogeneous, often bearing mutations in DNA repair genes. Thus, knowledge of the functionality of cancer-related variants of proteins involved in DNA damage response and repair is of great interest for personalization of cancer therapy. Although computational methods to predict the variant functionality have attracted much attention, at present, they are mostly based on sequence conservation and make little use of modern capabilities in computational analysis of 3D protein structures. We have used molecular dynamics (MD) to model the structures of 20 clinically observed variants of a DNA repair enzyme, 8-oxoguanine DNA glycosylase. In parallel, we have experimentally characterized the activity, thermostability, and DNA binding in a subset of these mutant proteins. Among the analyzed variants of 8-oxoguanine DNA glycosylase, three (I145M, G202C, and V267M) were significantly functionally impaired and were successfully predicted by MD. Alone or in combination with sequence-based methods, MD may be an important functional prediction tool for cancer-related protein variants of unknown significance.
Collapse
Affiliation(s)
- Aleksandr V Popov
- Laboratory of Genome and Protein Engineering, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia.
| | - Anton V Endutkin
- Laboratory of Genome and Protein Engineering, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Darya D Yatsenko
- Laboratory of Genome and Protein Engineering, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anna V Yudkina
- Laboratory of Genome and Protein Engineering, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Alexander E Barmatov
- Laboratory of Genome and Protein Engineering, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Kristina A Makasheva
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Darya Yu Raspopova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Evgeniia A Diatlova
- Laboratory of Genome and Protein Engineering, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Dmitry O Zharkov
- Laboratory of Genome and Protein Engineering, SB RAS Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia; Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
5
|
In silico analysis of the effects of disease-associated mutations of β-hexosaminidase A in Tay‒Sachs disease. J Genet 2020. [DOI: 10.1007/s12041-020-01208-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Conway AJ, Brown FC, Hortle EJ, Burgio G, Foote SJ, Morton CJ, Jane SM, Curtis DJ. Bone marrow transplantation corrects haemolytic anaemia in a novel ENU mutagenesis mouse model of TPI deficiency. Dis Model Mech 2018; 11:dmm.034678. [PMID: 29720471 PMCID: PMC5992613 DOI: 10.1242/dmm.034678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/18/2018] [Indexed: 01/11/2023] Open
Abstract
In this study, we performed a genome-wide N-ethyl-N-nitrosourea (ENU) mutagenesis screen in mice to identify novel genes or alleles that regulate erythropoiesis. Here, we describe a recessive mouse strain, called RBC19, harbouring a point mutation within the housekeeping gene, Tpi1, which encodes the glycolysis enzyme, triosephosphate isomerase (TPI). A serine in place of a phenylalanine at amino acid 57 severely diminishes enzyme activity in red blood cells and other tissues, resulting in a macrocytic haemolytic phenotype in homozygous mice, which closely resembles human TPI deficiency. A rescue study was performed using bone marrow transplantation of wild-type donor cells, which restored all haematological parameters and increased red blood cell enzyme function to wild-type levels after 7 weeks. This is the first study performed in a mammalian model of TPI deficiency, demonstrating that the haematological phenotype can be rescued. Summary: In a novel ENU mutagenesis mouse model of TPI deficiency, bone marrow transplantation was conducted to demonstrate that haemolytic and red blood cell glycolytic defects can be effectively rescued.
Collapse
Affiliation(s)
- Ashlee J Conway
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne 3004, Australia
| | - Fiona C Brown
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne 3004, Australia
| | - Elinor J Hortle
- The John Curtin School of Medical Research, Australian National University, Canberra 0200, Australia
| | - Gaetan Burgio
- The John Curtin School of Medical Research, Australian National University, Canberra 0200, Australia
| | - Simon J Foote
- The John Curtin School of Medical Research, Australian National University, Canberra 0200, Australia
| | - Craig J Morton
- Australian Cancer Research Foundation Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy 3065, Australia
| | | | - David J Curtis
- Australian Centre for Blood Diseases, Central Clinical School, Monash University, Melbourne 3004, Australia .,Central Clinical School, Monash University, Melbourne 3004, Australia
| |
Collapse
|
7
|
Romero JM, Carrizo ME, Curtino JA. Characterization of human triosephosphate isomerase S-nitrosylation. Nitric Oxide 2018; 77:26-34. [PMID: 29678765 DOI: 10.1016/j.niox.2018.04.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 04/10/2018] [Accepted: 04/16/2018] [Indexed: 12/23/2022]
Abstract
Triosephosphate isomerase (TPI), the glycolytic enzyme that catalyzes the isomerization of dihydroxyacetone phosphate (DHAP) to glyceraldehyde-3-phosphate (G3P), has been frequently identified as a target of S-nitrosylation by proteomic studies. However, the effect of S-nitrosylation on its activity has only been explored in plants and algae. Here, we describe the in vitro S-nitrosylation of human TPI (hTPI), and the effect of the modification on its enzymatic parameters. NO-incorporation into the enzyme cysteine residues occurred by a time-dependent S-transnitrosylation from both, S-nitrosocysteine (CySNO) and S-nitrosoglutathione (GSNO), with CySNO being the more efficient NO-donor. Both X-ray crystal structure and mass spectrometry analyses showed that only Cys217 was S-nitrosylated. hTPI S-nitrosylation produced a 30% inhibition of the Vmax of the DHAP conversion to G3P, without affecting the Km for DHAP. This is the first study describing features of human TPI S-nitrosylation.
Collapse
Affiliation(s)
- Jorge Miguel Romero
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, Universidad Nacional de Córdoba - Consejo Nacional de Investigaciones Científicas y Técnicas (UNC-CONICET)), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina.
| | - María Elena Carrizo
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, Universidad Nacional de Córdoba - Consejo Nacional de Investigaciones Científicas y Técnicas (UNC-CONICET)), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| | - Juan Agustín Curtino
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC, Universidad Nacional de Córdoba - Consejo Nacional de Investigaciones Científicas y Técnicas (UNC-CONICET)), Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA, Córdoba, Argentina
| |
Collapse
|
8
|
Cabrera N, Torres-Larios A, García-Torres I, Enríquez-Flores S, Perez-Montfort R. Differential effects on enzyme stability and kinetic parameters of mutants related to human triosephosphate isomerase deficiency. Biochim Biophys Acta Gen Subj 2018; 1862:1401-1409. [PMID: 29571745 DOI: 10.1016/j.bbagen.2018.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/14/2018] [Accepted: 03/19/2018] [Indexed: 01/06/2023]
Abstract
Human triosephosphate isomerase (TIM) deficiency is a very rare disease, but there are several mutations reported to be causing the illness. In this work, we produced nine recombinant human triosephosphate isomerases which have the mutations reported to produce TIM deficiency. These enzymes were characterized biophysically and biochemically to determine their kinetic and stability parameters, and also to substitute TIM activity in supporting the growth of an Escherichia coli strain lacking the tim gene. Our results allowed us to rate the deleteriousness of the human TIM mutants based on the type and severity of the alterations observed, to classify four "unknown severity mutants" with altered residues in positions 62, 72, 122 and 154 and to explain in structural terms the mutation V231M, the most affected mutant from the kinetic point of view and the only homozygous mutation reported besides E104D.
Collapse
Affiliation(s)
- Nallely Cabrera
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, 04510, Ciudad de México, Mexico
| | - Alfredo Torres-Larios
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, 04510, Ciudad de México, Mexico
| | - Itzhel García-Torres
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Coyoacán, 04530, Ciudad de México, Mexico
| | - Sergio Enríquez-Flores
- Laboratorio de Bioquímica-Genética, Instituto Nacional de Pediatría, Insurgentes Sur 3700-C, Col. Insurgentes Cuicuilco, Coyoacán, 04530, Ciudad de México, Mexico
| | - Ruy Perez-Montfort
- Departamento de Bioquímica y Biología Estructural, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Av. Universidad 3000, Coyoacán, 04510, Ciudad de México, Mexico.
| |
Collapse
|