1
|
Infante A, Alcorta-Sevillano N, Macías I, Cabodevilla L, Medhat D, Lafaver B, Crawford TK, Phillips CL, Bueno AM, Sagastizabal B, Arroyo M, Campino A, Gerovska D, Araúzo-Bravo M, Gener B, Rodríguez CI. Galunisertib downregulates mutant type I collagen expression and promotes MSCs osteogenesis in pediatric osteogenesis imperfecta. Biomed Pharmacother 2024; 175:116725. [PMID: 38744219 DOI: 10.1016/j.biopha.2024.116725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Qualitative alterations in type I collagen due to pathogenic variants in the COL1A1 or COL1A2 genes, result in moderate and severe Osteogenesis Imperfecta (OI), a rare disease characterized by bone fragility. The TGF-β signaling pathway is overactive in OI patients and certain OI mouse models, and inhibition of TGF-β through anti-TGF-β monoclonal antibody therapy in phase I clinical trials in OI adults is rendering encouraging results. However, the impact of TGF-β inhibition on osteogenic differentiation of mesenchymal stem cells from OI patients (OI-MSCs) is unknown. The following study demonstrates that pediatric skeletal OI-MSCs have imbalanced osteogenesis favoring the osteogenic commitment. Galunisertib, a small molecule inhibitor (SMI) that targets the TGF-β receptor I (TβRI), favored the final osteogenic maturation of OI-MSCs. Mechanistically, galunisertib downregulated type I collagen expression in OI-MSCs, with greater impact on mutant type I collagen, and concomitantly, modulated the expression of unfolded protein response (UPR) and autophagy markers. In vivo, galunisertib improved trabecular bone parameters only in female oim/oim mice. These results further suggest that type I collagen is a tunable target within the bone ECM that deserves investigation and that the SMI, galunisertib, is a promising new candidate for the anti-TGF-β targeting for the treatment of OI.
Collapse
Affiliation(s)
- Arantza Infante
- Stem Cells and Advanced Therapies Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Natividad Alcorta-Sevillano
- Stem Cells and Advanced Therapies Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Department of Cell Biology and Histology, University of Basque Country UPV/EHU, Leioa, Spain
| | - Iratxe Macías
- Stem Cells and Advanced Therapies Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Leire Cabodevilla
- Stem Cells and Advanced Therapies Group, Biobizkaia Health Research Institute, Barakaldo, Spain
| | - Dalia Medhat
- Medical Biochemistry Department, National Research Centre, Dokki, Giza, Egypt
| | - Brittany Lafaver
- Department of Biochemistry, University of Missouri, Columbia, USA
| | - Tara K Crawford
- Department of Biochemistry, University of Missouri, Columbia, USA
| | | | - Ana M Bueno
- Department of Orthopedic Surgery, Getafe University Hospital, Madrid, Spain
| | | | - Maitane Arroyo
- Department of Traumatology, Basurto Hospital, Bilbao, Spain
| | - Ainara Campino
- Service of Pharmacy, Cruces University Hospital, Barakaldo, Spain
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine Research Group, Biogipuzkoa Health Research Institute, Donostia, Spain
| | - Marcos Araúzo-Bravo
- Computational Biology and Systems Biomedicine Research Group, Biogipuzkoa Health Research Institute, Donostia, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao 48009, Spain; Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), Spain
| | - Blanca Gener
- Stem Cells and Advanced Therapies Group, Biobizkaia Health Research Institute, Barakaldo, Spain; Service of Genetics, Cruces University Hospital, Barakaldo, Spain
| | - Clara I Rodríguez
- Stem Cells and Advanced Therapies Group, Biobizkaia Health Research Institute, Barakaldo, Spain.
| |
Collapse
|
2
|
Stricker PEF, de Oliveira NB, Mogharbel BF, Lührs L, Irioda AC, Abdelwahid E, Regina Cavalli L, Zotarelli-Filho IJ, de Carvalho KAT. Meta-analysis of the Mesenchymal Stem Cells Immortalization Protocols: A Guideline for Regenerative Medicine. Curr Stem Cell Res Ther 2024; 19:1009-1020. [PMID: 38221663 DOI: 10.2174/011574888x268464231016070900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND This systematic review describes the most common methodologies for immortalizing human and animal mesenchymal stem cells (MSCs). This study follows the rules of PRISMA and is registered in the Institutional Review Board of PROSPERO International of systematic reviews, numbered protocol code: CRD42020202465. METHOD The data search systematization was based on the words "mesenchymal stem cell" AND "immortalization." The search period for publications was between 2000 and 2022, and the databases used were SCOPUS, PUBMED, and SCIENCE DIRECT. The search strategies identified 384 articles: 229 in the SCOPUS database, 84 in PUBMED, and 71 in SCIENCE DIRECT. After screening by titles and abstracts, 285 articles remained. This review included thirty-nine articles according to the inclusion and exclusion criteria. RESULT In 28 articles, MSCs were immortalized from humans and 11 animals. The most used immortalization methodology was viral transfection. The most common immortalized cell type was the MSC from bone marrow, and the most used gene for immortalizing human and animal MSCs was hTERT (39.3%) and SV40T (54.5%), respectively. CONCLUSION Also, it was observed that although less than half of the studies performed tumorigenicity assays to validate the immortalized MSCs, other assays, such as qRT-PCR, colony formation in soft agar, karyotype, FISH, and cell proliferation, were performed in most studies on distinct MSC cell passages.
Collapse
Affiliation(s)
| | | | - Bassam Felipe Mogharbel
- Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties, Curitiba, Brazil
| | - Larissa Lührs
- Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties, Curitiba, Brazil
| | - Ana Carolina Irioda
- Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties, Curitiba, Brazil
| | - Eltyeb Abdelwahid
- Feinberg School of Medicine, Feinberg Cardiovascular Research Institute, Northwestern University, Chicago, IL, USA
| | - Luciane Regina Cavalli
- Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties, Curitiba, Brazil
| | - Idiberto José Zotarelli-Filho
- Pelé Pequeno Príncipe Research Institute Research & Pequeno Príncipe Faculties, Curitiba, Brazil
- ABRAN - Associação Brasileira de Nutrologia/Brazilian Association of Nutrology, Catanduva, Sao Paulo, Brazil
- College of Palliative Medicine of Sri Lanka, Colombo, Sri Lanka
| | | |
Collapse
|
3
|
Daponte V, Tonelli F, Masiero C, Syx D, Exbrayat-Héritier C, Biggiogera M, Willaert A, Rossi A, Coucke PJ, Ruggiero F, Forlino A. Cell differentiation and matrix organization are differentially affected during bone formation in osteogenesis imperfecta zebrafish models with different genetic defects impacting collagen type I structure. Matrix Biol 2023; 121:105-126. [PMID: 37336269 DOI: 10.1016/j.matbio.2023.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/25/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Osteogenesis imperfecta (OI) is a family of rare heritable skeletal disorders associated with dominant mutations in the collagen type I encoding genes and recessive defects in proteins involved in collagen type I synthesis and processing and in osteoblast differentiation and activity. Historically, it was believed that the OI bone phenotype was only caused by abnormal collagen type I fibrils in the extracellular matrix, but more recently it became clear that the altered bone cell homeostasis, due to mutant collagen retention, plays a relevant role in modulating disease severity in most of the OI forms and it is correlated to impaired bone cell differentiation. Despite in vitro evidence, in vivo data are missing. To better understand the physiopathology of OI, we used two zebrafish models: Chihuahua (Chi/+), carrying a dominant p.G736D substitution in the α1 chain of collagen type I, and the recessive p3h1-/-, lacking prolyl 3-hydroxylase (P3h1) enzyme. Both models share the delay of collagen type I folding, resulting in its overmodification and partial intracellular retention. The regeneration of the bony caudal fin of Chi/+ and p3h1-/- was employed to investigate the impact of abnormal collagen synthesis on bone cell differentiation. Reduced regenerative ability was evident in both models, but it was associated to impaired osteoblast differentiation and osteoblastogenesis/adipogenesis switch only in Chi/+. On the contrary, reduced osteoclast number and activity were found in both models during regeneration. The dominant OI model showed a more detrimental effect in the extracellular matrix organization. Interestingly, the chemical chaperone 4-phenylbutyrate (4-PBA), known to reduce cellular stress and increase collagen secretion, improved bone formation only in p3h1-/- by favoring caudal fin growth without affecting bone cell markers expression. Taken together, our in vivo data proved the negative impact of structurally abnormal collagen type I on bone formation but revealed a gene mutation-specific effect on bone cell differentiation and matrix organization in OI. These, together with the distinct ability to respond to the chaperone treatment, underline the need for precision medicine approaches to properly treat the disease.
Collapse
Affiliation(s)
- Valentina Daponte
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Francesca Tonelli
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Cecilia Masiero
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Delfien Syx
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Chloé Exbrayat-Héritier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| | - Marco Biggiogera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Andy Willaert
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Antonio Rossi
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy
| | - Paul J Coucke
- Department of Biomolecular Medicine, Center of Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Florence Ruggiero
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, F-69007 Lyon, France
| | - Antonella Forlino
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, Pavia, Italy.
| |
Collapse
|
4
|
Lang E, Semon JA. Mesenchymal stem cells in the treatment of osteogenesis imperfecta. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:7. [PMID: 36725748 PMCID: PMC9892307 DOI: 10.1186/s13619-022-00146-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/18/2022] [Indexed: 02/03/2023]
Abstract
Osteogenesis imperfecta (OI) is a disease caused by mutations in different genes resulting in mild, severe, or lethal forms. With no cure, researchers have investigated the use of cell therapy to correct the underlying molecular defects of OI. Mesenchymal stem cells (MSCs) are of particular interest because of their differentiation capacity, immunomodulatory effects, and their ability to migrate to sites of damage. MSCs can be isolated from different sources, expanded in culture, and have been shown to be safe in numerous clinical applications. This review summarizes the preclinical and clinical studies of MSCs in the treatment of OI. Altogether, the culmination of these studies show that MSCs from different sources: 1) are safe to use in the clinic, 2) migrate to fracture sites and growth sites in bone, 3) engraft in low levels, 4) improve clinical outcome but have a transient effect, 5) have a therapeutic effect most likely due to paracrine mechanisms, and 6) have a reduced therapeutic potential when isolated from patients with OI.
Collapse
Affiliation(s)
- Erica Lang
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| | - Julie A. Semon
- grid.260128.f0000 0000 9364 6281Department of Biological Sciences, Missouri University of Science and Technology, 400 W 11th St., Rolla, MO USA
| |
Collapse
|
5
|
Dalle Carbonare L, Bertacco J, Gaglio SC, Minoia A, Cominacini M, Cheri S, Deiana M, Marchetto G, Bisognin A, Gandini A, Antoniazzi F, Perduca M, Mottes M, Valenti MT. Fisetin: An Integrated Approach to Identify a Strategy Promoting Osteogenesis. Front Pharmacol 2022; 13:890693. [PMID: 35652047 PMCID: PMC9149166 DOI: 10.3389/fphar.2022.890693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Flavonoids may modulate the bone formation process. Among flavonoids, fisetin is known to counteract tumor growth, osteoarthritis, and rheumatoid arthritis. In addition, fisetin prevents inflammation-induced bone loss. In order to evaluate its favorable use in osteogenesis, we assayed fisetin supplementation in both in vitro and in vivo models and gathered information on nanoparticle-mediated delivery of fisetin in vitro and in a microfluidic system. Real-time RT-PCR, Western blotting, and nanoparticle synthesis were performed to evaluate the effects of fisetin in vitro, in the zebrafish model, and in ex vivo samples. Our results demonstrated that fisetin at 2.5 µM concentration promotes bone formation in vitro and mineralization in the zebrafish model. In addition, we found that fisetin stimulates osteoblast maturation in cell cultures obtained from cleidocranial dysplasia patients. Remarkably, PLGA nanoparticles increased fisetin stability and, consequently, its stimulating effects on RUNX2 and its downstream gene SP7 expression. Therefore, our findings demonstrated the positive effects of fisetin on osteogenesis and suggest that patients affected by skeletal diseases, both of genetic and metabolic origins, may actually benefit from fisetin supplementation.
Collapse
Affiliation(s)
| | - Jessica Bertacco
- Department of Medicine, University of Verona, Verona, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Arianna Minoia
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Samuele Cheri
- Department of Medicine, University of Verona, Verona, Italy
| | - Michela Deiana
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Anna Bisognin
- Biocrystallography Lab, Department of Biotechnology, University of Verona, Verona, Italy
| | - Alberto Gandini
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, Verona, Italy
| | - Franco Antoniazzi
- Department of Surgery, Dentistry, Pediatrics and Gynecology, University of Verona, Verona, Italy
| | - Massimiliano Perduca
- Biocrystallography Lab, Department of Biotechnology, University of Verona, Verona, Italy
| | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Maria Teresa Valenti
- Department of Medicine, University of Verona, Verona, Italy.,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| |
Collapse
|
6
|
Liu Y, Wang Z, Ju M, Zhao Y, Jing Y, Li J, Shao C, Fu T, Lv Z, Li G. Modification of COL1A1 in Autologous Adipose Tissue-Derived Progenitor Cells Rescues the Bone Phenotype in a Mouse Model of Osteogenesis Imperfecta. J Bone Miner Res 2021; 36:1521-1534. [PMID: 33950576 DOI: 10.1002/jbmr.4326] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/17/2022]
Abstract
Osteogenesis imperfecta (OI) is a congenital genetic disorder mainly manifested as bone fragility and recurrent fracture. Mutation of COL1A1/COL1A2 genes encoding the type I collagen are most responsible for the clinical patients. Allogenic mesenchymal stem cells (MSCs) provide the potential to treat OI through differentiation into osteoblasts. Autologous defective MSCs have not been utilized in OI treatment mainly because of their impaired osteogenesis, but the latent mechanism has not been well understood. Here, the relative signaling abnormality of adipose-derived mesenchymal stem cells (ADSCs) isolated from OI type I mice (Col1a1+/-365 mice) was explored. Autologous ADSCs transfected by retrovirus carrying human COL1A1 gene was first utilized in OI therapy. The results showed that decreased activity of Yes-associated protein (YAP) due to hyperactive upstream Hippo kinases greatly contributed to the weakened bone-forming capacity of defective ADSCs. Recovered collagen synthesis of autologous ADSCs by COL1A1 gene modification normalized Hippo/YAP signaling and effectively rescued YAP-mediated osteogenesis. And the COL1A1 gene engineered autologous ADSCs efficaciously improved the microstructure, enhanced the mechanical properties and promoted bone formation of Col1a1+/-365 mice after femoral bone marrow cavity delivery and might serve as an alternative source of stem cells in OI treatment. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Yi Liu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zihan Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Mingyan Ju
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yuxia Zhao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Yaqing Jing
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Jiaci Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Chenyi Shao
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Ting Fu
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Zhe Lv
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| | - Guang Li
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
7
|
Surowiec RK, Battle LF, Schlecht SH, Wojtys EM, Caird MS, Kozloff KM. Gene Expression Profile and Acute Gene Expression Response to Sclerostin Inhibition in Osteogenesis Imperfecta Bone. JBMR Plus 2020; 4:e10377. [PMID: 32803109 PMCID: PMC7422710 DOI: 10.1002/jbm4.10377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 12/31/2022] Open
Abstract
Sclerostin antibody (SclAb) therapy has been suggested as a novel therapeutic approach toward addressing the fragility phenotypic of osteogenesis imperfecta (OI). Observations of cellular and transcriptional responses to SclAb in OI have been limited to mouse models of the disorder, leaving a paucity of data on the human OI osteoblastic cellular response to the treatment. Here, we explore factors associated with response to SclAb therapy in vitro and in a novel xenograft model using OI bone tissue derived from pediatric patients. Bone isolates (approximately 2 mm3) from OI patients (OI type III, type III/IV, and type IV, n = 7; non-OI control, n = 5) were collected to media, randomly assigned to an untreated (UN), low-dose SclAb (TRL, 2.5 μg/mL), or high-dose SclAb (TRH, 25 μg/mL) group, and maintained in vitro at 37°C. Treatment occurred on days 2 and 4 and was removed on day 5 for TaqMan qPCR analysis of genes related to the Wnt pathway. A subset of bone was implanted s.c. into an athymic mouse, representing our xenograft model, and treated (25 mg/kg s.c. 2×/week for 2/4 weeks). Implanted OI bone was evaluated using μCT and histomorphometry. Expression of Wnt/Wnt-related targets varied among untreated OI bone isolates. When treated with SclAb, OI bone showed an upregulation in osteoblast and osteoblast progenitor markers, which was heterogeneous across tissue. Interestingly, the greatest magnitude of response generally corresponded to samples with low untreated expression of progenitor markers. Conversely, samples with high untreated expression of these markers showed a lower response to treatment. in vivo implanted OI bone showed a bone-forming response to SclAb via μCT, which was corroborated by histomorphometry. SclAb induced downstream Wnt targets WISP1 and TWIST1, and elicited a compensatory response in Wnt inhibitors SOST and DKK1 in OI bone with the greatest magnitude from OI cortical bone. Understanding patients' genetic, cellular, and morphological bone phenotypes may play an important role in predicting treatment response. This information may aid in clinical decision-making for pharmacological interventions designed to address fragility in OI. © 2020 The Authors. JBMR Plus published by Wiley Periodicals, Inc. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Rachel K Surowiec
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMIUSA
- Department of Orthopaedic SurgeryUniversity of MichiganAnn ArborMIUSA
| | - Lauren F Battle
- Department of Orthopaedic SurgeryUniversity of MichiganAnn ArborMIUSA
| | - Stephen H Schlecht
- Department of Orthopaedic SurgeryUniversity of MichiganAnn ArborMIUSA
- Department of Mechanical EngineeringUniversity of MichiganAnn ArborMIUSA
| | - Edward M Wojtys
- Department of Orthopaedic SurgeryUniversity of MichiganAnn ArborMIUSA
| | - Michelle S Caird
- Department of Orthopaedic SurgeryUniversity of MichiganAnn ArborMIUSA
| | - Kenneth M Kozloff
- Department of Biomedical EngineeringUniversity of MichiganAnn ArborMIUSA
- Department of Orthopaedic SurgeryUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
8
|
Zhong W, Li X, Pathak JL, Chen L, Cao W, Zhu M, Luo Q, Wu A, Chen Y, Yi L, Ma M, Zhang Q. Dicalcium silicate microparticles modulate the differential expression of circRNAs and mRNAs in BMSCs and promote osteogenesis via circ_1983–miR-6931–Gas7 interaction. Biomater Sci 2020; 8:3664-3677. [PMID: 32463418 DOI: 10.1039/d0bm00459f] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Among C2S-induced differentially expressed circRNAs, circ_1983 is involved in osteogenesis via circ_1983–miR-6931–Gas7 ceRNA interaction-mediated Runx2 upregulation.
Collapse
|
9
|
Li Y, Liang H, Yuan D, Liu B, Liu L, Zhang Y, Hou K, Zhang Y, Chen B, Ding J, Li Y, Wang Q, Wu H, Shi H, Hu M. A novel mutation combining with rs66612022 in a Chinese pedigree suggests a new pathogenesis to osteogenesis imperfecta via whole genome sequencing. Ann Hum Genet 2019; 84:339-344. [PMID: 31853946 DOI: 10.1111/ahg.12371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 11/30/2022]
Abstract
Osteogenesis imperfecta (OI) is a rare heritable disease with systemic connective tissue disorder. Most of the patients represent autosomal dominant form of OI, and are usually resulting from the mutations in type I collagen genes. However, the gene mutations reported previously only account for ∼70% of the OI cases. Here, in a Chinese OI family, we examined seven patients and nine normal individuals using the whole genome sequencing and molecular genetic analysis. The mutation of rs66612022 (COL1A2:p.Gly328Ser) related to glycine substitution was found in the seven patients. Moreover, we identified a novel missense mutation (HMMR:p.Glu2Gln). Interestingly, the individuals of this family with both the mutations were suffering from OI, while the others carried one or none of them are normal. The mutations of COL1A2 and HMMR and their combined effect on OI would further expand the genetic spectrum of OI.
Collapse
Affiliation(s)
- Yanjiao Li
- Yunnan Key laboratory for Basic Research on Bone and Joint Diseases &Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan, China
| | - Hongsuo Liang
- Joint Surgery Department of the Second People's Hospital of Nanning City, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Dekai Yuan
- Kunming University School of Medicine, Kunming University, Kunming, Yunnan, China
| | - Baoling Liu
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ling Liu
- Kunming Children's Hospital, Kunming, Yunnan, China
| | - Yongfa Zhang
- The first people's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Kaiyu Hou
- The second people's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Yunchao Zhang
- The third people's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Bin Chen
- Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan, China
| | - Jing Ding
- Kunming General Hospital of Chengdu Military Command, Kunming, Yunnan, China
| | - Yunxia Li
- Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qilin Wang
- Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Haiying Wu
- The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hong Shi
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Min Hu
- Yunnan Key laboratory for Basic Research on Bone and Joint Diseases &Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, Yunnan, China
| |
Collapse
|
10
|
Shih YV, Varghese S. Tissue engineered bone mimetics to study bone disorders ex vivo: Role of bioinspired materials. Biomaterials 2019; 198:107-121. [PMID: 29903640 PMCID: PMC6281816 DOI: 10.1016/j.biomaterials.2018.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/25/2018] [Accepted: 06/05/2018] [Indexed: 12/15/2022]
Abstract
Recent advances in materials development and tissue engineering has resulted in a substantial number of bioinspired materials that recapitulate cardinal features of bone extracellular matrix (ECM) such as dynamic inorganic and organic environment(s), hierarchical organization, and topographical features. Bone mimicking materials, as defined by its self-explanatory term, are developed based on the current understandings of the natural bone ECM during development, remodeling, and fracture repair. Compared to conventional plastic cultures, biomaterials that resemble some aspects of the native environment could elicit a more natural molecular and cellular response relevant to the bone tissue. Although current bioinspired materials are mainly developed to assist tissue repair or engineer bone tissues, such materials could nevertheless be applied to model various skeletal diseases in vitro. This review summarizes the use of bioinspired materials for bone tissue engineering, and their potential to model diseases of bone development and remodeling ex vivo. We largely focus on biomaterials, designed to re-create different aspects of the chemical and physical cues of native bone ECM. Employing these bone-inspired materials and tissue engineered bone surrogates to study bone diseases has tremendous potential and will provide a closer portrayal of disease progression and maintenance, both at the cellular and tissue level. We also briefly touch upon the application of patient-derived stem cells and introduce emerging technologies such as organ-on-chip in disease modeling. Faithful recapitulation of disease pathologies will not only offer novel insights into diseases, but also lead to enabling technologies for drug discovery and new approaches for cell-based therapies.
Collapse
Affiliation(s)
- Yuru Vernon Shih
- Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA.
| | - Shyni Varghese
- Department of Orthopaedic Surgery, Duke University, Durham, NC 27710, USA; Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA; Department of Materials Science and Engineering, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
11
|
Sui BD, Hu CH, Liu AQ, Zheng CX, Xuan K, Jin Y. Stem cell-based bone regeneration in diseased microenvironments: Challenges and solutions. Biomaterials 2017; 196:18-30. [PMID: 29122279 DOI: 10.1016/j.biomaterials.2017.10.046] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/21/2017] [Accepted: 10/28/2017] [Indexed: 12/17/2022]
Abstract
Restoration of extensive bone loss and defects remain as an unfulfilled challenge in modern medicine. Given the critical contributions to bone homeostasis and diseases, mesenchymal stem cells (MSCs) have shown great promise to jumpstart and facilitate bone healing, with immense regenerative potential in both pharmacology-based endogenous MSC rescue/mobilization in skeletal diseases and emerging application of MSC transplantation in bone tissue engineering and cytotherapy. However, efficacy of MSC-based bone regeneration was not always achieved; particularly, fulfillment of MSC-mediated bone healing in diseased microenvironments of host comorbidities remains as a major challenge. Indeed, impacts of diseased microenvironments on MSC function rely not only on the dynamic regulation of resident MSCs by surrounding niche to convoy pathological signals of bone, but also on the profound interplay between transplanted MSCs and recipient components that mediates and modulates therapeutic effects on skeletal conditions. Accordingly, novel solutions have recently been developed, including improving resistance of MSCs to diseased microenvironments, recreating beneficial microenvironments to guarantee MSC-based regeneration, and usage of subcellular vesicles of MSCs in cell-free therapies. In this review, we summarize state-of-the-art knowledge regarding applications and challenges of MSC-mediated bone healing, further offering principles and effective strategies to optimize MSC-based bone regeneration in aging and diseases.
Collapse
Affiliation(s)
- Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi 710032, China
| | - An-Qi Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chen-Xi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Kun Xuan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Research and Development Center for Tissue Engineering, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China.
| |
Collapse
|