1
|
Gruca-Stryjak K, Doda-Nowak E, Dzierla J, Wróbel K, Szymankiewicz-Bręborowicz M, Mazela J. Advancing the Clinical and Molecular Understanding of Cornelia de Lange Syndrome: A Multidisciplinary Pediatric Case Series and Review of the Literature. J Clin Med 2024; 13:2423. [PMID: 38673696 PMCID: PMC11050916 DOI: 10.3390/jcm13082423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/08/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a complex genetic disorder with distinct facial features, growth limitations, and limb anomalies. Its broad clinical spectrum presents significant challenges in pediatric diagnosis and management. Due to cohesin complex mutations, the disorder's variable presentation requires extensive research to refine care and improve outcomes. This article provides a case series review of pediatric CdLS patients alongside a comprehensive literature review, exploring clinical variability and the relationship between genotypic changes and phenotypic outcomes. It also discusses the evolution of diagnostic and therapeutic techniques, emphasizing innovations in genetic testing, including detecting mosaicism and novel genetic variations. The aim is to synthesize case studies with current research to advance our understanding of CdLS and the effectiveness of management strategies in pediatric healthcare. This work highlights the need for an integrated, evidence-based approach to diagnosis and treatment. It aims to fill existing research gaps and advocate for holistic care protocols and tailored treatment plans for CdLS patients, ultimately improving their quality of life.
Collapse
Affiliation(s)
- Karolina Gruca-Stryjak
- Department of Perinatology, Faculty of Medicine, University of Medical Sciences, 60-535 Poznan, Poland
- Department of Obstetrics and Gynecology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
- Centers for Medical Genetics Diagnostyka GENESIS, 60-406 Poznan, Poland
| | - Emilia Doda-Nowak
- Faculty of Medicine, University of Medical Sciences, 61-701 Poznan, Poland (J.D.)
| | - Julia Dzierla
- Faculty of Medicine, University of Medical Sciences, 61-701 Poznan, Poland (J.D.)
| | - Karolina Wróbel
- Department of Neonatology, Faculty of Medicine, University of Medical Sciences, 60-535 Poznan, Poland
| | | | - Jan Mazela
- Department of Neonatology, Faculty of Medicine, University of Medical Sciences, 60-535 Poznan, Poland
| |
Collapse
|
2
|
Latorre-Pellicer A, Gil-Salvador M, Parenti I, Lucia-Campos C, Trujillano L, Marcos-Alcalde I, Arnedo M, Ascaso Á, Ayerza-Casas A, Antoñanzas-Pérez R, Gervasini C, Piccione M, Mariani M, Weber A, Kanber D, Kuechler A, Munteanu M, Khuller K, Bueno-Lozano G, Puisac B, Gómez-Puertas P, Selicorni A, Kaiser FJ, Ramos FJ, Pié J. Clinical relevance of postzygotic mosaicism in Cornelia de Lange syndrome and purifying selection of NIPBL variants in blood. Sci Rep 2021; 11:15459. [PMID: 34326454 PMCID: PMC8322329 DOI: 10.1038/s41598-021-94958-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/19/2021] [Indexed: 11/09/2022] Open
Abstract
Postzygotic mosaicism (PZM) in NIPBL is a strong source of causality for Cornelia de Lange syndrome (CdLS) that can have major clinical implications. Here, we further delineate the role of somatic mosaicism in CdLS by describing a series of 11 unreported patients with mosaic disease-causing variants in NIPBL and performing a retrospective cohort study from a Spanish CdLS diagnostic center. By reviewing the literature and combining our findings with previously published data, we demonstrate a negative selection against somatic deleterious NIPBL variants in blood. Furthermore, the analysis of all reported cases indicates an unusual high prevalence of mosaicism in CdLS, occurring in 13.1% of patients with a positive molecular diagnosis. It is worth noting that most of the affected individuals with mosaicism have a clinical phenotype at least as severe as those with constitutive pathogenic variants. However, the type of genetic change does not vary between germline and somatic events and, even in the presence of mosaicism, missense substitutions are located preferentially within the HEAT repeat domain of NIPBL. In conclusion, the high prevalence of mosaicism in CdLS as well as the disparity in tissue distribution provide a novel orientation for the clinical management and genetic counselling of families.
Collapse
Affiliation(s)
- Ana Latorre-Pellicer
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Marta Gil-Salvador
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Ilaria Parenti
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Cristina Lucia-Campos
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Laura Trujillano
- Unit of Clinical Genetics, Service of Paediatrics, Hospital Clínico Universitario Lozano Blesa, Department of Paediatrics, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Iñigo Marcos-Alcalde
- Molecular Modelling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), 28049, Madrid, Spain
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - María Arnedo
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Ángela Ascaso
- Unit of Clinical Genetics, Service of Paediatrics, Hospital Clínico Universitario Lozano Blesa, Department of Paediatrics, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Ariadna Ayerza-Casas
- Unit of Paediatric Cardiology, Service of Paediatrics, Hospital Universitario Miguel Servet, 50009, Zaragoza, Spain
| | - Rebeca Antoñanzas-Pérez
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Cristina Gervasini
- Genetica Medica, Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| | - Maria Piccione
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Milena Mariani
- Centro Fondazione Mariani per il Bambino Fragile, Department of Pediatrics, ASST-Lariana Sant'Anna Hospital, San Fermo della Battaglia (Como), Italy
| | - Axel Weber
- Institute of Human Genetics, Justus-Liebig-University, Giessen, Germany
| | - Deniz Kanber
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Alma Kuechler
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Martin Munteanu
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Katharina Khuller
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
| | - Gloria Bueno-Lozano
- Unit of Clinical Genetics, Service of Paediatrics, Hospital Clínico Universitario Lozano Blesa, Department of Paediatrics, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Beatriz Puisac
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain
| | - Paulino Gómez-Puertas
- Molecular Modelling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), 28049, Madrid, Spain
| | - Angelo Selicorni
- Centro Fondazione Mariani per il Bambino Fragile, Department of Pediatrics, ASST-Lariana Sant'Anna Hospital, San Fermo della Battaglia (Como), Italy
| | - Frank J Kaiser
- Institut für Humangenetik, Universitätsklinikum Essen, Universität Duisburg-Essen, Essen, Germany
- Essener Zentrum für Seltene Erkrankungen (EZSE), Universitätsmedizin Essen, Universitätsklinikum Essen, Essen, Germany
| | - Feliciano J Ramos
- Unit of Clinical Genetics, Service of Paediatrics, Hospital Clínico Universitario Lozano Blesa, Department of Paediatrics, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain.
| | - Juan Pié
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, Universidad de Zaragoza, CIBERER-GCV02 and IIS-Aragon, 50009, Zaragoza, Spain.
| |
Collapse
|
3
|
Cucco F, Sarogni P, Rossato S, Alpa M, Patimo A, Latorre A, Magnani C, Puisac B, Ramos FJ, Pié J, Musio A. Pathogenic variants in EP300 and ANKRD11 in patients with phenotypes overlapping Cornelia de Lange syndrome. Am J Med Genet A 2020; 182:1690-1696. [PMID: 32476269 DOI: 10.1002/ajmg.a.61611] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/20/2020] [Accepted: 04/20/2020] [Indexed: 12/22/2022]
Abstract
Cornelia de Lange syndrome (CdLS), Rubinstein-Taybi syndrome (RSTS), and KBG syndrome are three distinct developmental human disorders. Variants in seven genes belonging to the cohesin pathway, NIPBL, SMC1A, SMC3, HDAC8, RAD21, ANKRD11, and BRD4, were identified in about 80% of patients with CdLS, suggesting that additional causative genes remain to be discovered. Two genes, CREBBP and EP300, have been associated with RSTS, whereas KBG results from variants in ANKRD11. By exome sequencing, a genetic cause was elucidated in two patients with clinical diagnosis of CdLS but without variants in known CdLS genes. In particular, genetic variants in EP300 and ANKRD11 were identified in the two patients with CdLS. EP300 and ANKRD11 pathogenic variants caused the reduction of the respective proteins suggesting that their low levels contribute to CdLS-like phenotype. These findings highlight the clinical overlap between CdLS, RSTS, and KBG and support the notion that these rare disorders are linked to abnormal chromatin remodeling, which in turn affects the transcriptional machinery.
Collapse
Affiliation(s)
- Francesco Cucco
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Patrizia Sarogni
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Sara Rossato
- U.O.C. Pediatria, Ospedale San Bortolo, Vicenza, Italy
| | - Mirella Alpa
- Department of Clinical and Biological Sciences, Center of Research of Immunopathology and Rare Diseases, Coordinating Center of the Network for Rare Diseases of Piedmont and Aosta Valley, Turin, Italy
| | - Alessandra Patimo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Ana Latorre
- Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, Unidad de Genética Clínica y Genómica Funcional, Zaragoza, Spain
| | - Cinzia Magnani
- Neonatology and Neonatal Intensive Care Unit, Maternal and Child Department, University of Parma, Parma, Italy
| | - Beatriz Puisac
- Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, Unidad de Genética Clínica y Genómica Funcional, Zaragoza, Spain
| | - Feliciano J Ramos
- Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, Unidad de Genética Clínica y Genómica Funcional, Zaragoza, Spain
| | - Juan Pié
- Departamento de Farmacología-Fisiología y Departamento de Pediatría, Hospital Clínico Universitario "Lozano Blesa", Facultad de Medicina, Universidad de Zaragoza, ISS-Aragon and CIBERER-GCV02, Unidad de Genética Clínica y Genómica Funcional, Zaragoza, Spain
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
4
|
Sarogni P, Pallotta MM, Musio A. Cornelia de Lange syndrome: from molecular diagnosis to therapeutic approach. J Med Genet 2020; 57:289-295. [PMID: 31704779 PMCID: PMC7231464 DOI: 10.1136/jmedgenet-2019-106277] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/08/2019] [Accepted: 10/02/2019] [Indexed: 12/20/2022]
Abstract
Cornelia de Lange syndrome (CdLS) is a severe genetic disorder characterised by multisystemic malformations. CdLS is due to pathogenetic variants in NIPBL, SMC1A, SMC3, RAD21 and HDAC8 genes which belong to the cohesin pathway. Cohesin plays a pivotal role in chromatid cohesion, gene expression, and DNA repair. In this review, we will discuss how perturbations in those biological processes contribute to CdLS phenotype and will emphasise the state-of-art of CdLS therapeutic approaches.
Collapse
Affiliation(s)
- Patrizia Sarogni
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Maria M Pallotta
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Pisa, Italy
| |
Collapse
|
5
|
Latorre-Pellicer A, Ascaso Á, Trujillano L, Gil-Salvador M, Arnedo M, Lucia-Campos C, Antoñanzas-Pérez R, Marcos-Alcalde I, Parenti I, Bueno-Lozano G, Musio A, Puisac B, Kaiser FJ, Ramos FJ, Gómez-Puertas P, Pié J. Evaluating Face2Gene as a Tool to Identify Cornelia de Lange Syndrome by Facial Phenotypes. Int J Mol Sci 2020; 21:ijms21031042. [PMID: 32033219 PMCID: PMC7038094 DOI: 10.3390/ijms21031042] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 12/19/2022] Open
Abstract
Characteristic or classic phenotype of Cornelia de Lange syndrome (CdLS) is associated with a recognisable facial pattern. However, the heterogeneity in causal genes and the presence of overlapping syndromes have made it increasingly difficult to diagnose only by clinical features. DeepGestalt technology, and its app Face2Gene, is having a growing impact on the diagnosis and management of genetic diseases by analysing the features of affected individuals. Here, we performed a phenotypic study on a cohort of 49 individuals harbouring causative variants in known CdLS genes in order to evaluate Face2Gene utility and sensitivity in the clinical diagnosis of CdLS. Based on the profile images of patients, a diagnosis of CdLS was within the top five predicted syndromes for 97.9% of our cases and even listed as first prediction for 83.7%. The age of patients did not seem to affect the prediction accuracy, whereas our results indicate a correlation between the clinical score and affected genes. Furthermore, each gene presents a different pattern recognition that may be used to develop new neural networks with the goal of separating different genetic subtypes in CdLS. Overall, we conclude that computer-assisted image analysis based on deep learning could support the clinical diagnosis of CdLS.
Collapse
Affiliation(s)
- Ana Latorre-Pellicer
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, E-50009 Zaragoza, Spain; (A.L.-P.); (M.G.-S.); (M.A.); (C.L.-C.); (R.A.-P.); (B.P.); (F.J.R.)
| | - Ángela Ascaso
- Department of Paediatrics, Hospital Clínico Universitario “Lozano Blesa”, E-50009 Zaragoza, Spain; (Á.A.); (L.T.)
| | - Laura Trujillano
- Department of Paediatrics, Hospital Clínico Universitario “Lozano Blesa”, E-50009 Zaragoza, Spain; (Á.A.); (L.T.)
| | - Marta Gil-Salvador
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, E-50009 Zaragoza, Spain; (A.L.-P.); (M.G.-S.); (M.A.); (C.L.-C.); (R.A.-P.); (B.P.); (F.J.R.)
| | - Maria Arnedo
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, E-50009 Zaragoza, Spain; (A.L.-P.); (M.G.-S.); (M.A.); (C.L.-C.); (R.A.-P.); (B.P.); (F.J.R.)
| | - Cristina Lucia-Campos
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, E-50009 Zaragoza, Spain; (A.L.-P.); (M.G.-S.); (M.A.); (C.L.-C.); (R.A.-P.); (B.P.); (F.J.R.)
| | - Rebeca Antoñanzas-Pérez
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, E-50009 Zaragoza, Spain; (A.L.-P.); (M.G.-S.); (M.A.); (C.L.-C.); (R.A.-P.); (B.P.); (F.J.R.)
| | - Iñigo Marcos-Alcalde
- Molecular Modelling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), E-28049 Madrid, Spain;
- Bioscience Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, UFV, E-28223 Pozuelo de Alarcón, Spain
| | - Ilaria Parenti
- Section for Functional Genetics, Institute of Human Genetics, University of Lübeck, 23562 Lübeck, Germany; (I.P.); (F.J.K.)
- Institute of Science and Technology (IST) Austria, 3400 Klosterneuburg, Austria
| | - Gloria Bueno-Lozano
- Department of Paediatrics, Hospital Clínico Universitario “Lozano Blesa”, E-50009 Zaragoza, Spain; (Á.A.); (L.T.)
| | - Antonio Musio
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, I-56124 Pisa, Italy;
| | - Beatriz Puisac
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, E-50009 Zaragoza, Spain; (A.L.-P.); (M.G.-S.); (M.A.); (C.L.-C.); (R.A.-P.); (B.P.); (F.J.R.)
| | - Frank J. Kaiser
- Section for Functional Genetics, Institute of Human Genetics, University of Lübeck, 23562 Lübeck, Germany; (I.P.); (F.J.K.)
- Institute for Human Genetics, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Feliciano J. Ramos
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, E-50009 Zaragoza, Spain; (A.L.-P.); (M.G.-S.); (M.A.); (C.L.-C.); (R.A.-P.); (B.P.); (F.J.R.)
- Department of Paediatrics, Hospital Clínico Universitario “Lozano Blesa”, E-50009 Zaragoza, Spain; (Á.A.); (L.T.)
| | - Paulino Gómez-Puertas
- Molecular Modelling Group, Centro de Biología Molecular Severo Ochoa, CBMSO (CSIC-UAM), E-28049 Madrid, Spain;
- Correspondence: (J.P.); (P.G.-P.); Tel.: +34-976-761677 (J.P.); +34-91-1964663 (P.G.-P.)
| | - Juan Pié
- Unit of Clinical Genetics and Functional Genomics, Department of Pharmacology-Physiology, School of Medicine, University of Zaragoza, CIBERER-GCV02 and ISS-Aragon, E-50009 Zaragoza, Spain; (A.L.-P.); (M.G.-S.); (M.A.); (C.L.-C.); (R.A.-P.); (B.P.); (F.J.R.)
- Correspondence: (J.P.); (P.G.-P.); Tel.: +34-976-761677 (J.P.); +34-91-1964663 (P.G.-P.)
| |
Collapse
|
6
|
Krawczynska N, Wierzba J, Wasag B. Genetic Mosaicism in a Group of Patients With Cornelia de Lange Syndrome. Front Pediatr 2019; 7:203. [PMID: 31157197 PMCID: PMC6530423 DOI: 10.3389/fped.2019.00203] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/01/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Cornelia de Lange Syndrome (CdLS) is a heterogeneous disorder. Diverse expression of clinical symptoms can be caused by a variety of pathogenic variants located within the sequence of different genes correlated with the cohesin complex. Methods: Sixty-nine patients with confirmed clinical diagnosis of CdLS were enrolled in the study. Blood and buccal swab samples were collected for molecular studies. Mutational analysis was performed using the Next Generation (deep) Sequencing (NGS) covering 24 genes. In addition, the MLPA technique was applied to detect large rearrangements of NIPBL. Results: MLPA and NGS analysis were performed in 66 (95,7%) and 67 (97,1%) patients, respectively. Large rearrangements of NIPBL were not identified in the studied group. Germline pathogenic variants were detected in 18 (26,1%) patients. Fourteen variants (20,3%) were identified in NIPBL, two (2,9%) in SMC1A, and two (2,9%) in HDAC8. In total, 13 (18,8%) buccal swabs were suitable for deep sequencing. Mosaic variants were found in four (30,8%; 4/13) patients negative for germline alterations. Three mosaic substitutions were detected in NIPBL while one in KMT2A gene. Conclusions: Comprehensive and sensitive molecular techniques allow detecting novel pathogenic variants responsible for the molecular basis of CdLS. In addition, molecular testing of different tissues should be applied since such an approach allows detect mosaic variants specific for a subgroup of CdLS patients. Finally, to test possible pathogenicity of intronic variants, RNA analysis should be conducted.
Collapse
Affiliation(s)
- Natalia Krawczynska
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland.,Laboratory of Clinical Genetics, University Clinical Centre, Gdańsk, Poland
| | - Jolanta Wierzba
- Department of General Nursery, Medical University of Gdańsk, Gdańsk, Poland
| | - Bartosz Wasag
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland.,Laboratory of Clinical Genetics, University Clinical Centre, Gdańsk, Poland
| |
Collapse
|
7
|
Krawczynska N, Kuzniacka A, Wierzba J, Parenti I, Kaiser FJ, Wasag B. Mosaic Intronic NIPBL Variant in a Family With Cornelia de Lange Syndrome. Front Genet 2018; 9:255. [PMID: 30057591 PMCID: PMC6053508 DOI: 10.3389/fgene.2018.00255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/25/2018] [Indexed: 11/18/2022] Open
Abstract
Cornelia de Lange Syndrome (CdLS) is a well described multiple malformation syndrome caused by alterations in genes encoding subunits or regulators of the cohesin complex. In approximately 70% of CdLS patients, pathogenic NIPBL variants are detected and 15% of them are predicted to affect splicing. Moreover, a large portion of genetic variants in NIPBL was shown to be somatic mosaicism. Here we report two family members with different expression of the CdLS phenotype. In both individuals, a c.869-2A>G (r.869_1495del) substitution was detected, affecting a conserved splice-acceptor site. Deep sequencing revealed the presence of somatic mosaicism in the mother. The substitution was detected in 23% of the sequencing reads using DNA derived from blood samples and 51% in DNA from buccal swabs. The analysis of blood DNA of the son excluded the presence of somatic mosaicism. Correlation of molecular and clinical data revealed that various distribution of genetic alteration in different cell types had an impact on the expression of observed clinical features in both individuals.
Collapse
Affiliation(s)
- Natalia Krawczynska
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland.,Laboratory of Clinical Genetics, University Clinical Centre, Gdańsk, Poland
| | - Alina Kuzniacka
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland.,Laboratory of Clinical Genetics, University Clinical Centre, Gdańsk, Poland
| | - Jolanta Wierzba
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdańsk, Gdańsk, Poland.,Department of General Nursery, Medical University of Gdańsk, Gdańsk, Poland
| | - Ilaria Parenti
- Section for Functional Genetics, Institute of Human Genetics, Lübeck, Germany
| | - Frank J Kaiser
- Section for Functional Genetics, Institute of Human Genetics, Lübeck, Germany
| | - Bartosz Wasag
- Department of Biology and Medical Genetics, Medical University of Gdańsk, Gdańsk, Poland.,Laboratory of Clinical Genetics, University Clinical Centre, Gdańsk, Poland
| |
Collapse
|