1
|
Ciaccio C, Taddei M, Pantaleoni C, Grisoli M, Di Bella D, Magri S, Taroni F, D'Arrigo S. Phenotypic Spectrum and Natural History of Gillespie Syndrome. An Updated Literature Review with 2 New Cases. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2655-2670. [PMID: 39177731 PMCID: PMC11585489 DOI: 10.1007/s12311-024-01733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Gillespie syndrome is a rare disorder caused by pathogenic variants in ITPR1 gene and characterized by the typical association of cerebellar ataxia, bilateral aniridia and intellectual disability. Since its first description in 1965, less than 100 patients have been reported and only 30 with a molecular confirmation. METHODS We present two additional cases, both carrying a loss-of-function variant in the Gly2539 amino acid residue. We describe the clinical evolution of the patients, one of whom is now 17 years old, and discuss the updated phenotypic spectrum of the disorder. RESULTS The study gives an overview on the condition, allowing to confirm important data, such as an overall positive evolution of development (with some patient not presenting intellectual disability), a clinical stability of the neurological signs (regardless of a possible progression of cerebellar atrophy) and ocular aspects, and a low prevalence of general health comorbidities. DISCUSSION Data about development and the observation of middle-aged patients lend support to the view that Gillespie is to be considered a non-progressive cerebellar ataxia, making this concept a key point for both clinicians and therapists, and for the families.
Collapse
Affiliation(s)
- Claudia Ciaccio
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Matilde Taddei
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Chiara Pantaleoni
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marina Grisoli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Milan, Italy
| | - Daniela Di Bella
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Magri
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Medical Genetics and Neurogenetics Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefano D'Arrigo
- Department of Pediatric Neurosciences, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
2
|
Tolonen JP, Parolin Schnekenberg R, McGowan S, Sims D, McEntagart M, Elmslie F, Shears D, Stewart H, Tofaris GK, Dabir T, Morrison PJ, Johnson D, Hadjivassiliou M, Ellard S, Shaw‐Smith C, Znaczko A, Dixit A, Suri M, Sarkar A, Harrison RE, Jones G, Houlden H, Ceravolo G, Jarvis J, Williams J, Shanks ME, Clouston P, Rankin J, Blumkin L, Lerman‐Sagie T, Ponger P, Raskin S, Granath K, Uusimaa J, Conti H, McCann E, Joss S, Blakes AJ, Metcalfe K, Kingston H, Bertoli M, Kneen R, Lynch SA, Martínez Albaladejo I, Moore AP, Jones WD, Genomics England Research Consortium, Becker EB, Németh AH. Detailed Analysis of ITPR1 Missense Variants Guides Diagnostics and Therapeutic Design. Mov Disord 2024; 39:141-151. [PMID: 37964426 PMCID: PMC10952845 DOI: 10.1002/mds.29651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/16/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND The ITPR1 gene encodes the inositol 1,4,5-trisphosphate (IP3 ) receptor type 1 (IP3 R1), a critical player in cerebellar intracellular calcium signaling. Pathogenic missense variants in ITPR1 cause congenital spinocerebellar ataxia type 29 (SCA29), Gillespie syndrome (GLSP), and severe pontine/cerebellar hypoplasia. The pathophysiological basis of the different phenotypes is poorly understood. OBJECTIVES We aimed to identify novel SCA29 and GLSP cases to define core phenotypes, describe the spectrum of missense variation across ITPR1, standardize the ITPR1 variant nomenclature, and investigate disease progression in relation to cerebellar atrophy. METHODS Cases were identified using next-generation sequencing through the Deciphering Developmental Disorders study, the 100,000 Genomes project, and clinical collaborations. ITPR1 alternative splicing in the human cerebellum was investigated by quantitative polymerase chain reaction. RESULTS We report the largest, multinational case series of 46 patients with 28 unique ITPR1 missense variants. Variants clustered in functional domains of the protein, especially in the N-terminal IP3 -binding domain, the carbonic anhydrase 8 (CA8)-binding region, and the C-terminal transmembrane channel domain. Variants outside these domains were of questionable clinical significance. Standardized transcript annotation, based on our ITPR1 transcript expression data, greatly facilitated analysis. Genotype-phenotype associations were highly variable. Importantly, while cerebellar atrophy was common, cerebellar volume loss did not correlate with symptom progression. CONCLUSIONS This dataset represents the largest cohort of patients with ITPR1 missense variants, expanding the clinical spectrum of SCA29 and GLSP. Standardized transcript annotation is essential for future reporting. Our findings will aid in diagnostic interpretation in the clinic and guide selection of variants for preclinical studies. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jussi Pekka Tolonen
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Kavli Institute of Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - Ricardo Parolin Schnekenberg
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Oxford Center for Genomic MedicineOxford University Hospitals National Health Service Foundation Trust, University of OxfordOxfordUK
| | - Simon McGowan
- Centre for Computational Biology, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - David Sims
- Centre for Computational Biology, MRC Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Meriel McEntagart
- South West Regional Genetics ServiceSt. George's University HospitalsLondonUK
| | - Frances Elmslie
- South West Regional Genetics ServiceSt. George's University HospitalsLondonUK
| | - Debbie Shears
- Oxford Center for Genomic MedicineOxford University Hospitals National Health Service Foundation Trust, University of OxfordOxfordUK
| | - Helen Stewart
- Oxford Center for Genomic MedicineOxford University Hospitals National Health Service Foundation Trust, University of OxfordOxfordUK
| | - George K. Tofaris
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Kavli Institute of Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - Tabib Dabir
- Northern Ireland Regional Genetics ServiceBelfast City HospitalBelfastUK
| | - Patrick J. Morrison
- Patrick G. Johnston Centre for Cancer Research and Cell BiologyQueen's University BelfastBelfastUK
| | - Diana Johnson
- Sheffield Clinical Genetics ServiceSheffield Children's NHS Foundation TrustSheffieldUK
| | - Marios Hadjivassiliou
- Department of NeurologyRoyal Hallamshire Hospital, Sheffield Teaching Hospital NHS Foundation TrustSheffieldUK
| | - Sian Ellard
- Exeter Genomics LaboratoryRoyal Devon University Healthcare NHS Foundation TrustUK
| | - Charles Shaw‐Smith
- Peninsula Clinical Genetics Service, Royal Devon University HospitalRoyal Devon University Healthcare NHS Foundation TrustExeterUK
| | - Anna Znaczko
- Peninsula Clinical Genetics Service, Royal Devon University HospitalRoyal Devon University Healthcare NHS Foundation TrustExeterUK
| | - Abhijit Dixit
- Department of Clinical GeneticsNottingham University Hospitals NHS TrustNottinghamUK
| | - Mohnish Suri
- Department of Clinical GeneticsNottingham University Hospitals NHS TrustNottinghamUK
| | - Ajoy Sarkar
- Department of Clinical GeneticsNottingham University Hospitals NHS TrustNottinghamUK
| | - Rachel E. Harrison
- Department of Clinical GeneticsNottingham University Hospitals NHS TrustNottinghamUK
| | - Gabriela Jones
- Department of Clinical GeneticsNottingham University Hospitals NHS TrustNottinghamUK
| | - Henry Houlden
- Department of Neuromuscular DisordersUCL Queen Square Institute of Neurology, University College LondonLondonUK
| | - Giorgia Ceravolo
- Department of Neuromuscular DisordersUCL Queen Square Institute of Neurology, University College LondonLondonUK
- Unit of Pediatric Emergency, Department of Adult and Childhood Human PathologyUniversity Hospital of MessinaMessinaItaly
| | - Joanna Jarvis
- Birmingham Women's and Children's NHS Foundation TrustBirminghamUK
| | - Jonathan Williams
- Oxford Regional Genetics Laboratory, Churchill HospitalOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Morag E. Shanks
- Oxford Regional Genetics Laboratory, Churchill HospitalOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Penny Clouston
- Oxford Regional Genetics Laboratory, Churchill HospitalOxford University Hospitals NHS Foundation TrustOxfordUK
| | - Julia Rankin
- Department of Clinical GeneticsRoyal Devon and Exeter NHS Foundation TrustExeterUK
| | - Lubov Blumkin
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
- Pediatric Movement Disorders Service, Pediatric Neurology UnitEdith Wolfson Medical CenterHolonIsrael
| | - Tally Lerman‐Sagie
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
- Magen Center for Rare Diseases‐Metabolic, NeurogeneticWolfson Medical CenterHolonIsrael
| | - Penina Ponger
- Sackler School of MedicineTel Aviv UniversityTel AvivIsrael
- Movement Disorders Unit, Department of NeurologyTel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Salmo Raskin
- Genetika Centro de Aconselhamento e LaboratórioCuritibaBrazil
| | - Katariina Granath
- Research Unit of Clinical MedicineMedical Research Center, Oulu University Hospital and University of OuluOuluFinland
| | - Johanna Uusimaa
- Research Unit of Clinical MedicineMedical Research Center, Oulu University Hospital and University of OuluOuluFinland
| | - Hector Conti
- All Wales Medical Genomics ServiceWrexham Maelor HospitalWrexhamUK
| | - Emma McCann
- Liverpool Women's Hospital Foundation TrustLiverpoolUK
| | - Shelagh Joss
- West of Scotland Centre for Genomic MedicineQueen Elizabeth University HospitalGlasgowUK
| | - Alexander J.M. Blakes
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of BiologyMedicine and Health, University of ManchesterManchesterUK
- Manchester Centre for Genomic MedicineUniversity of Manchester, St. Mary's Hospital, Manchester Academic Health Science CentreManchesterUK
| | - Kay Metcalfe
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of BiologyMedicine and Health, University of ManchesterManchesterUK
- Manchester Centre for Genomic MedicineUniversity of Manchester, St. Mary's Hospital, Manchester Academic Health Science CentreManchesterUK
| | - Helen Kingston
- Manchester Centre for Genomic MedicineUniversity of Manchester, St. Mary's Hospital, Manchester Academic Health Science CentreManchesterUK
| | - Marta Bertoli
- Northern Genetics ServiceInternational Centre for LifeNewcastle upon TyneUK
| | - Rachel Kneen
- Department of NeurologyAlder Hey Children's NHS Foundation TrustLiverpoolUK
| | - Sally Ann Lynch
- Department of Clinical GeneticsChildren's Health Ireland (CHI) at CrumlinDublinIreland
| | | | | | - Wendy D. Jones
- North East Thames Regional Genetics ServiceGreat Ormond Street Hospital for Children, Great Ormond Street NHS Foundation TrustLondonUK
| | | | - Esther B.E. Becker
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Kavli Institute of Nanoscience DiscoveryUniversity of OxfordOxfordUK
| | - Andrea H. Németh
- Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
- Oxford Center for Genomic MedicineOxford University Hospitals National Health Service Foundation Trust, University of OxfordOxfordUK
| |
Collapse
|
3
|
Terry LE, Arige V, Neumann J, Wahl AM, Knebel TR, Chaffer JW, Malik S, Liston A, Humblet-Baron S, Bultynck G, Yule DI. Missense mutations in inositol 1,4,5-trisphosphate receptor type 3 result in leaky Ca 2+ channels and activation of store-operated Ca 2+ entry. iScience 2022; 25:105523. [PMID: 36444295 PMCID: PMC9700043 DOI: 10.1016/j.isci.2022.105523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Mutations in all subtypes of the inositol 1,4,5-trisphosphate receptor Ca2+ release channel are associated with human diseases. In this report, we investigated the functionality of three neuropathy-associated missense mutations in IP3R3 (V615M, T1424M, and R2524C). The mutants only exhibited function when highly over-expressed compared to endogenous hIP3R3. All variants resulted in elevated basal cytosolic Ca2+ levels, decreased endoplasmic reticulum Ca2+ store content, and constitutive store-operated Ca2+ entry in the absence of any stimuli, consistent with a leaky IP3R channel pore. These variants differed in channel function; when stably over-expressed the R2524C mutant was essentially dead, V615M was poorly functional, and T1424M exhibited activity greater than that of the corresponding wild-type following threshold stimulation. These results demonstrate that a common feature of these mutations is decreased IP3R3 function. In addition, these mutations exhibit a novel phenotype manifested as a constitutively open channel, which inappropriately gates SOCE in the absence of stimulation.
Collapse
Affiliation(s)
- Lara E. Terry
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Julika Neumann
- KU Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Amanda M. Wahl
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Taylor R. Knebel
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - James W. Chaffer
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Adrian Liston
- KU Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | | | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
4
|
Zheng W, Bai X, Zhou Y, Yu L, Ji D, Zheng Y, Meng N, Wang H, Huang Z, Chen W, Yam JWP, Xu Y, Cui Y. Transcriptional ITPR3 as potential targets and biomarkers for human pancreatic cancer. Aging (Albany NY) 2022; 14:4425-4444. [PMID: 35580861 PMCID: PMC9186782 DOI: 10.18632/aging.204080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
Inositol 1,4,5-Triphosphate Receptor Family (ITPRs) are necessary intracellular Ca2+-release channel encoders and participate in mammalian cell physiological and pathological processes. Previous studies have suggested that ITPRs participate in tumorigenesis of multiple cancers. Nevertheless, the diverse expression profiles and prognostic significance of three ITPRs in pancreatic cancer have yet to be uncovered. In this work, we examined the expression levels and survival dates of ITPRs in patients with pancreatic cancer. As a result, we identified that ITPR1 and ITPR3 expression levels are significantly elevated in cancerous specimens. Survival data revealed that over-expression of ITPR2 and ITPR3 resulted in unfavourable overall survival and pathological stage. The multivariate Cox logistic regression analysis showed that ITPR3 could be an independent risk factor for PAAD patient survival. Moreover, to investigate how ITPRs work, co-expressed genes, alterations, protein-protein interaction, immune infiltration, methylation, and functional enrichment of ITPRs were also analyzed. Then, we evaluated these findings in clinical samples. Moreover, the gain and loss of function of ITPR3 were also conducted. The electron microscope assay was employed to explore the role of ITPR3 in pancreatic cancer cell lines' endoplasmic reticulum stress. In summary, our findings demonstrated that ITPR3 has the potential to be drug targets and biomarkers for human pancreatic cancer.
Collapse
Affiliation(s)
- Wangyang Zheng
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
- Department II of Gastroenterology, Third Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Xue Bai
- Department of Clinic of Internal Medicine I, Ulm University, Ulm 89081, Germany
| | - Yongxu Zhou
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Liang Yu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
| | - Daolin Ji
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
- Department of Hepatopancreatobiliary Surgery, Fourth Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Yuling Zheng
- Department of Pediatric, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Nanfeng Meng
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Hang Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Wangming Chen
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Judy Wai Ping Yam
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
- The Key Laboratory of Myocardial Ischemia, Harbin Medical University, Ministry of Education, Harbin 150086, China
- Department of Pathology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| |
Collapse
|
5
|
Muñoz Cardona ML, López Mahecha JM. Gillespie’s Syndrome Phenotype in A Patient with a Homozygous Variant of Uncertain Significance in the ITPR1 Gene. Neuroophthalmology 2021; 46:186-189. [DOI: 10.1080/01658107.2021.1982991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
6
|
Kinoshita A, Ohyama K, Tanimura S, Matsuda K, Kishino T, Negishi Y, Asahina N, Shiraishi H, Hosoki K, Tomiwa K, Ishihara N, Mishima H, Mori R, Nakashima M, Saitoh S, Yoshiura KI. Itpr1 regulates the formation of anterior eye segment tissues derived from neural crest cells. Development 2021; 148:271160. [PMID: 34338282 DOI: 10.1242/dev.188755] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/19/2021] [Indexed: 01/23/2023]
Abstract
Mutations in ITPR1 cause ataxia and aniridia in individuals with Gillespie syndrome (GLSP). However, the pathogenic mechanisms underlying aniridia remain unclear. We identified a de novo GLSP mutation hotspot in the 3'-region of ITPR1 in five individuals with GLSP. Furthermore, RNA-sequencing and immunoblotting revealed an eye-specific transcript of Itpr1, encoding a 218amino acid isoform. This isoform is localized not only in the endoplasmic reticulum, but also in the nuclear and cytoplasmic membranes. Ocular-specific transcription was repressed by SOX9 and induced by MAF in the anterior eye segment (AES) tissues. Mice lacking seven base pairs of the last Itpr1 exon exhibited ataxia and aniridia, in which the iris lymphatic vessels, sphincter and dilator muscles, corneal endothelium and stroma were disrupted, but the neural crest cells persisted after completion of AES formation. Our analyses revealed that the 218-amino acid isoform regulated the directionality of actin fibers and the intensity of focal adhesion. The isoform might control the nuclear entry of transcriptional regulators, such as YAP. It is also possible that ITPR1 regulates both AES differentiation and muscle contraction in the iris.
Collapse
Affiliation(s)
- Akira Kinoshita
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Kaname Ohyama
- Department of Pharmacy Practice, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-3131, Japan
| | - Susumu Tanimura
- Department of Cell Regulation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki 852-3131, Japan
| | - Katsuya Matsuda
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Tatsuya Kishino
- Gene Research Center, Center for Frontier Life Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Yutaka Negishi
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8602, Japan
| | - Naoko Asahina
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Kana Hosoki
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka 594-1101, Japan
| | - Kiyotaka Tomiwa
- Department of Pediatrics, Todaiji Ryoiku Hospital for Children, Nara 630-8211, Japan
| | - Naoko Ishihara
- Department of Pediatrics, Fujita Health University School of Medicine, Toyoake 470-1192, Japan
| | - Hiroyuki Mishima
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Ryoichi Mori
- Department of Pathology, Nagasaki University School of Medicine and Graduate School of Biomedical Sciences, Nagasaki 852-8523, Japan
| | - Masahiro Nakashima
- Department of Tumor and Diagnostic Pathology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8602, Japan
| | - Koh-Ichiro Yoshiura
- Department of Human Genetics, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
7
|
Keehan L, Jiang MM, Li X, Marom R, Dai H, Murdock D, Liu P, Hunter JV, Heaney JD, Robak L, Emrick L, Lotze T, Blieden LS, Lewis RA, Levin AV, Capasso J, Craigen WJ, Rosenfeld JA, Lee B, Burrage LC. A novel de novo intronic variant in ITPR1 causes Gillespie syndrome. Am J Med Genet A 2021; 185:2315-2324. [PMID: 33949769 DOI: 10.1002/ajmg.a.62232] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/01/2021] [Indexed: 11/07/2022]
Abstract
Gillespie syndrome (GLSP) is characterized by bilateral symmetric partial aplasia of the iris presenting as a fixed and large pupil, cerebellar hypoplasia with ataxia, congenital hypotonia, and varying levels of intellectual disability. GLSP is caused by either biallelic or heterozygous, dominant-negative, pathogenic variants in ITPR1. Here, we present a 5-year-old male with GLSP who was found to have a heterozygous, de novo intronic variant in ITPR1 (NM_001168272.1:c.5935-17G > A) through genome sequencing (GS). Sanger sequencing of cDNA from this individual's fibroblasts showed the retention of 15 nucleotides from intron 45, which is predicted to cause an in-frame insertion of five amino acids near the C-terminal transmembrane domain of ITPR1. In addition, qPCR and cDNA sequencing demonstrated reduced expression of both ITPR1 alleles in fibroblasts when compared to parental samples. Given the close proximity of the predicted in-frame amino acid insertion to the site of previously described heterozygous, de novo, dominant-negative, pathogenic variants in GLSP, we predict that this variant also has a dominant-negative effect on ITPR1 channel function. Overall, this is the first report of a de novo intronic variant causing GLSP, which emphasizes the utility of GS and cDNA studies for diagnosing patients with a clinical presentation of GLSP and negative clinical exome sequencing.
Collapse
Affiliation(s)
- Laura Keehan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ming-Ming Jiang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Xiaohui Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - David Murdock
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Baylor Genetics, Houston, Texas, USA
| | - Jill V Hunter
- Texas Children's Hospital, Houston, Texas, USA.,Department of Radiology, Baylor College of Medicine, Houston, Texas, USA
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Laurie Robak
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Lisa Emrick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine (BCM), Houston, Texas, USA.,Division of Neurology and Developmental Neuroscience, Department of Pediatrics, BCM, Houston, Texas, USA
| | - Timothy Lotze
- Texas Children's Hospital, Houston, Texas, USA.,Department of Pediatrics, Baylor College of Medicine (BCM), Houston, Texas, USA.,Division of Neurology and Developmental Neuroscience, Department of Pediatrics, BCM, Houston, Texas, USA
| | - Lauren S Blieden
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | | | - Richard Alan Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA.,Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, USA
| | - Alex V Levin
- Flaum Eye Institute and Golisano Children's Hospital, Departments of Ophthalmology and Pediatrics, University of Rochester, Rochester, New York, USA
| | - Jenina Capasso
- Flaum Eye Institute and Golisano Children's Hospital, Departments of Ophthalmology and Pediatrics, University of Rochester, Rochester, New York, USA
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.,Texas Children's Hospital, Houston, Texas, USA
| |
Collapse
|
8
|
Terry LE, Alzayady KJ, Wahl AM, Malik S, Yule DI. Disease-associated mutations in inositol 1,4,5-trisphosphate receptor subunits impair channel function. J Biol Chem 2020; 295:18160-18178. [PMID: 33093175 PMCID: PMC7939385 DOI: 10.1074/jbc.ra120.015683] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/21/2020] [Indexed: 01/27/2023] Open
Abstract
The inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs), which form tetrameric channels, play pivotal roles in regulating the spatiotemporal patterns of intracellular calcium signals. Mutations in IP3Rs have been increasingly associated with many debilitating human diseases such as ataxia, Gillespie syndrome, and generalized anhidrosis. However, how these mutations affect IP3R function, and how the perturbation of as-sociated calcium signals contribute to the pathogenesis and severity of these diseases remains largely uncharacterized. Moreover, many of these diseases occur as the result of autosomal dominant inheritance, suggesting that WT and mutant subunits associate in heterotetrameric channels. How the in-corporation of different numbers of mutant subunits within the tetrameric channels affects its activities and results in different disease phenotypes is also unclear. In this report, we investigated representative disease-associated missense mutations to determine their effects on IP3R channel activity. Additionally, we designed concatenated IP3R constructs to create tetrameric channels with a predefined subunit composition to explore the functionality of heteromeric channels. Using calcium imaging techniques to assess IP3R channel function, we observed that all the mutations studied resulted in severely attenuated Ca2+ release when expressed as homotetramers. However, some heterotetramers retained varied degrees of function dependent on the composition of the tetramer. Our findings suggest that the effect of mutations depends on the location of the mutation in the IP3R structure, as well as on the stoichiometry of mutant subunits assembled within the tetrameric channel. These studies provide insight into the pathogenesis and penetrance of these devastating human diseases.
Collapse
Affiliation(s)
- Lara E Terry
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - Kamil J Alzayady
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - Amanda M Wahl
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA.
| |
Collapse
|
9
|
The genetic architecture of aniridia and Gillespie syndrome. Hum Genet 2018; 138:881-898. [PMID: 30242502 PMCID: PMC6710220 DOI: 10.1007/s00439-018-1934-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Absence of part or all of the iris, aniridia, is a feature of several genetically distinct conditions. This review focuses on iris development and then the clinical features and molecular genetics of these iris malformations. Classical aniridia, a panocular eye malformation including foveal hypoplasia, is the archetypal phenotype associated with heterozygous PAX6 loss-of-function mutations. Since this was identified in 1991, many genetic mechanisms of PAX6 inactivation have been elucidated, the commonest alleles being intragenic mutations causing premature stop codons, followed by those causing C-terminal extensions. Rarely, aniridia cases are associated with FOXC1, PITX2 and/or their regulatory regions. Aniridia can also occur as a component of many severe global eye malformations. Gillespie syndrome—a triad of partial aniridia, non-progressive cerebellar ataxia and intellectual disability—is phenotypically and genotypically distinct from classical aniridia. The causative gene has recently been identified as ITPR1. The same characteristic Gillespie syndrome-like iris, with aplasia of the pupillary sphincter and a scalloped margin, is seen in ACTA2-related multisystemic smooth muscle dysfunction syndrome. WAGR syndrome (Wilms tumour, aniridia, genitourinary anomalies and mental retardation/intellectual disability), is caused by contiguous deletion of PAX6 and WT1 on chromosome 11p. Deletions encompassing BDNF have been causally implicated in the obesity and intellectual disability associated with the condition. Lastly, we outline a genetic investigation strategy for aniridia in light of recent developments, suggesting an approach based principally on chromosomal array and gene panel testing. This strategy aims to test all known aniridia loci—including the rarer, life-limiting causes—whilst remaining simple and practical.
Collapse
|
10
|
Pathophysiological consequences of isoform-specific IP 3 receptor mutations. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1707-1717. [PMID: 29906486 DOI: 10.1016/j.bbamcr.2018.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022]
Abstract
Ca2+ signaling governs a diverse range of cellular processes and, as such, is subject to tight regulation. A main component of the complex intracellular Ca2+-signaling network is the inositol 1,4,5-trisphosphate (IP3) receptor (IP3R), a tetrameric channel that mediates Ca2+ release from the endoplasmic reticulum (ER) in response to IP3. IP3R function is controlled by a myriad of factors, such as Ca2+, ATP, kinases and phosphatases and a plethora of accessory and regulatory proteins. Further complexity in IP3R-mediated Ca2+ signaling is the result of the existence of three main isoforms (IP3R1, IP3R2 and IP3R3) that display distinct functional characteristics and properties. Despite their abundant and overlapping expression profiles, IP3R1 is highly expressed in neurons, IP3R2 in cardiomyocytes and hepatocytes and IP3R3 in rapidly proliferating cells as e.g. epithelial cells. As a consequence, dysfunction and/or dysregulation of IP3R isoforms will have distinct pathophysiological outcomes, ranging from neurological disorders for IP3R1 to dysfunctional exocrine tissues and autoimmune diseases for IP3R2 and -3. Over the past years, several IP3R mutations have surfaced in the sequence analysis of patient-derived samples. Here, we aimed to provide an integrative overview of the clinically most relevant mutations for each IP3R isoform and the subsequent molecular mechanisms underlying the etiology of the disease.
Collapse
|