1
|
Jafar B, Alemayehu H, Bhat R, Zayek M. Multiple Intestinal Anomalies in a Newborn with 22q11.2 Microdeletion Syndrome: A Case Report and Literature Review. J Pediatr Genet 2024; 13:237-244. [PMID: 39086451 PMCID: PMC11288709 DOI: 10.1055/s-0042-1750748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 05/11/2022] [Indexed: 10/16/2022]
Abstract
Although 40 years have passed since the first case of DiGeorge's syndrome was described, and the knowledge about this disorder has steadily increased since that time, 22q11.2 deletion syndrome (DS) remains a challenging diagnosis because its clinical presentation varies widely. We describe an infant with 22q11.2 DS who presented with annular pancreas, anorectal malformation, Morgagni-type congenital diaphragmatic hernia, and ventricular septal defect. This constellation of anomalies has never been described in DiGeorge's syndrome. Here, we provide a case presentation and a thorough review of the literature.
Collapse
Affiliation(s)
- Bedour Jafar
- Department of Pediatrics, University of South Alabama, Mobile, Alabama, United States
| | - Hanna Alemayehu
- Division of Pediatric Surgery, Department of Surgery, University of South Alabama, Mobile, Alabama, United States
| | - Ramachandra Bhat
- Division of Neonatology, Department of Pediatrics, Louisiana State University Health Science Center, Shreveport, Louisiana, United States
| | - Michael Zayek
- Division of Neonatology, Department of Pediatrics, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
2
|
Spineli-Silva S, Monlleó IL, Félix TM, Gil-da-Silva-Lopes VL, Vieira TP. Overlapping Spectrum of Craniofacial Microsomia Phenotype in Cat-Eye Syndrome. Cleft Palate Craniofac J 2024; 61:1578-1585. [PMID: 37183441 DOI: 10.1177/10556656231174435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
This study reports three patients with Cat-eye Syndrome (CES), two of which present a previous clinical diagnosis of Craniofacial microsomia (CFM). Chromosomal microarray analysis (CMA) revealed a tetrasomy of 1,7 Mb at the 22q11.2q11.21 region, which is the typical region triplicated in the CES, in all patients. The most frequent craniofacial features found in individuals with CFM and CES are preauricular tags and/or pits and mandibular hypoplasia. We reinforce that the candidate genes for CFM features, particularly ear malformation, preauricular tags/pits, and facial asymmetry, can be in the proximal region of the 22q11.2 region.
Collapse
Affiliation(s)
- Samira Spineli-Silva
- Laboratory of Human Cytogenetics and Cytogenomics, Department of Translational Medicine, School of Medical Sciences, State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Isabella L Monlleó
- Faculty of Medicine, Federal University of Alagoas (UFAL), Maceió, Alagoas, Brazil
- Clinical Genetics Service, University Hospital, Federal University of Alagoas (UFAL), Maceió, Alagoas, Brazil
| | - Têmis M Félix
- Medical Genetics Service, Clinical Hospital of Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
| | - Vera L Gil-da-Silva-Lopes
- Laboratory of Human Cytogenetics and Cytogenomics, Department of Translational Medicine, School of Medical Sciences, State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| | - Társis P Vieira
- Laboratory of Human Cytogenetics and Cytogenomics, Department of Translational Medicine, School of Medical Sciences, State University of Campinas (Unicamp), Campinas, São Paulo, Brazil
| |
Collapse
|
3
|
Pitsava G, Pankratz N, Lane J, Yang W, Rigler S, Shaw GM, Mills JL. Exome sequencing findings in children with annular pancreas. Mol Genet Genomic Med 2023; 11:e2233. [PMID: 37635636 PMCID: PMC10568395 DOI: 10.1002/mgg3.2233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/13/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Annular pancreas (AP) is a congenital defect of unknown cause in which the pancreas encircles the duodenum. Theories include abnormal migration and rotation of the ventral bud, persistence of ectopic pancreatic tissue, and inappropriate fusion of the ventral and dorsal buds before rotation. The few reported familial cases suggest a genetic contribution. METHODS We conducted exome sequencing in 115 affected infants from the California birth defects registry. RESULTS Seven cases had a single heterozygous missense variant in IQGAP1, five of them with CADD scores >20; seven other infants had a single heterozygous missense variant in NRCAM, five of them with CADD scores >20. We also looked at genes previously associated with AP and found two rare heterozygous missense variants, one each in PDX1 and FOXF1. CONCLUSION IQGAP1 and NRCAM are crucial in cell polarization and migration. Mutations result in decreased motility which could possibly cause the ventral bud to not migrate normally. To our knowledge, this is the first study reporting a possible association for IQGAP1 and NRCAM with AP. Our findings of rare genetic variants involved in cell migration in 15% of our population raise the possibility that AP may be related to abnormal cell migration.
Collapse
Affiliation(s)
- Georgia Pitsava
- Division of Intramural Research, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Nathan Pankratz
- Department of Laboratory Medicine and PathologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - John Lane
- Department of Laboratory Medicine and PathologyUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
| | - Wei Yang
- Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
| | - Shannon Rigler
- Department of NeonatologyNaval Medical Center PortsmouthPortsmouthVirginiaUSA
| | - Gary M. Shaw
- Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
| | - James L. Mills
- Division of Intramural Research, Division of Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
4
|
Wang X, Chai Y, Zhang Y, Chai G, Xu H. Exploration of Novel Genetic Evidence and Clinical Significance Into Hemifacial Microsomia Pathogenesis. J Craniofac Surg 2023; 34:834-838. [PMID: 36745106 DOI: 10.1097/scs.0000000000009167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 10/24/2022] [Indexed: 02/07/2023] Open
Abstract
The authors browsed through past genetic findings in hemifacial microsomia along with our previously identified mutations in ITGB4 and PDE4DIP from whole genome sequencing of hemifacial microsomia patients. Wondering whether these genes influence mandibular bone modeling by regulation on osteogenesis, the authors approached mechanisms of hemifacial microsomia through this investigation into gene knockdown effects in vitro. MC3T3E1 cells were divided into 5 groups: the negative control group without osteogenesis induction or siRNA, the positive control group with only osteogenesis induction, and 3 gene silenced groups with both osteogenesis induction and siRNA. Validation of transfection was through fluorescence microscopy and quantitative real-time Polymerase chain reaction on knockdown efficiency. Changes in expression levels of the 3 genes during osteogenesis and impact of Itgb4 and Pde4dip knockdown on osteogenesis were examined by quantitative real-time Polymerase chain reaction, alkaline phosphatase, and alizarin red staining. Elevation of osteogenic genes Alpl, Col1a1, Bglap, Spp1, and Runx2 verified successful osteogenesis. Both genes were upregulated under osteogenic induction, while they had different trends over time. Intracellular fluorophores under microscope validated successful transfection and si-m-Itgb4_003, si-m-Pde4dip_002 had satisfactory knockdown effects. During osteogenesis, Pde4dip knockdown enhanced Spp1 expression (1.95±0.13 folds, P =0.045). The authors speculated that these genes may have different involvements in osteogenesis. Stimulated expression of Spp1 by Pde4dip knockdown may suggest that Pde4dip inhibits osteogenesis.
Collapse
Affiliation(s)
- Xuetong Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanhao Chai
- McKelvey School of Engineering, Washington University, St. Louis, MO
| | - Yan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Chai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haisong Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Gavril EC, Popescu R, Nucă I, Ciobanu CG, Butnariu LI, Rusu C, Pânzaru MC. Different Types of Deletions Created by Low-Copy Repeats Sequences Location in 22q11.2 Deletion Syndrome: Genotype-Phenotype Correlation. Genes (Basel) 2022; 13:2083. [PMID: 36360320 PMCID: PMC9690028 DOI: 10.3390/genes13112083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 09/19/2023] Open
Abstract
The most frequent microdeletion, 22q11.2 deletion syndrome (22q11.2DS), has a wide and variable phenotype that causes difficulties in diagnosis. 22q11.2DS is a contiguous gene syndrome, but due to the existence of several low-copy-number repeat sequences (LCR) it displays a high variety of deletion types: typical deletions LCR A-D-the most common (~90%), proximal deletions LCR A-B, central deletions (LCR B, C-D) and distal deletions (LCR D-E, F). METHODS We conducted a retrospective study of 59 22q11.2SD cases, with the aim of highlighting phenotype-genotype correlations. All cases were tested using MLPA combined kits: SALSA MLPA KIT P245 and P250 (MRC Holland). RESULTS most cases (76%) presented classic deletion LCR A-D with various severity and phenotypic findings. A total of 14 atypical new deletions were identified: 2 proximal deletions LCR A-B, 1 CES (Cat Eye Syndrome region) to LCR B deletion, 4 nested deletions LCR B-D and 1 LCR C-D, 3 LCR A-E deletions, 1 LCR D-E, and 2 small single gene deletions: delDGCR8 and delTOP3B. CONCLUSIONS This study emphasizes the wide phenotypic variety and incomplete penetrance of 22q11.2DS. Our findings contribute to the genotype-phenotype data regarding different types of 22q11.2 deletions and illustrate the usefulness of MLPA combined kits in 22q11.2DS diagnosis.
Collapse
Affiliation(s)
- Eva-Cristiana Gavril
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania
- Investigații Medicale Praxis, St. Moara de Vant No 35, 700376 Iasi, Romania
| | - Roxana Popescu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania
- Department of Medical Genetics “Saint Mary” Emergency Children’s Hospital, St. Vasile Lupu No 62, 700309 Iasi, Romania
| | - Irina Nucă
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania
- Investigații Medicale Praxis, St. Moara de Vant No 35, 700376 Iasi, Romania
| | - Cristian-Gabriel Ciobanu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania
| | - Lăcrămioara Ionela Butnariu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania
- Department of Medical Genetics “Saint Mary” Emergency Children’s Hospital, St. Vasile Lupu No 62, 700309 Iasi, Romania
| | - Cristina Rusu
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania
- Department of Medical Genetics “Saint Mary” Emergency Children’s Hospital, St. Vasile Lupu No 62, 700309 Iasi, Romania
| | - Monica-Cristina Pânzaru
- Department of Medical Genetics, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, University Street, No 16, 700115 Iasi, Romania
- Department of Medical Genetics “Saint Mary” Emergency Children’s Hospital, St. Vasile Lupu No 62, 700309 Iasi, Romania
| |
Collapse
|
6
|
Tingaud-Sequeira A, Trimouille A, Sagardoy T, Lacombe D, Rooryck-Thambo C. Oculo-auriculo-vertebral spectrum: new genes and literature review on a complex disease. J Med Genet 2022; 59:417-427. [PMID: 35110414 DOI: 10.1136/jmedgenet-2021-108219] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/30/2021] [Indexed: 12/23/2022]
Abstract
Oculo-auriculo-vertebral spectrum (OAVS) or Goldenhar syndrome is due to an abnormal development of first and second branchial arches derivatives during embryogenesis and is characterised by hemifacial microsomia associated with auricular, ocular and vertebral malformations. The clinical and genetic heterogeneity of this spectrum with incomplete penetrance and variable expressivity, render its molecular diagnosis difficult. Only a few recurrent CNVs and genes have been identified as causatives in this complex disorder so far. Prenatal environmental causal factors have also been hypothesised. However, most of the patients remain without aetiology. In this review, we aim at updating clinical diagnostic criteria and describing genetic and non-genetic aetiologies, animal models as well as novel diagnostic tools and surgical management, in order to help and improve clinical care and genetic counselling of these patients and their families.
Collapse
Affiliation(s)
- Angèle Tingaud-Sequeira
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, F-33000 Bordeaux, France
| | - Aurélien Trimouille
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, F-33000 Bordeaux, France.,CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, F-33076, Bordeaux, France
| | - Thomas Sagardoy
- CHU de Bordeaux, Service d'oto-rhino-laryngologie, de chirurgie cervico-faciale et d'ORL pédiatrique, 33076 Bordeaux, France
| | - Didier Lacombe
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, F-33000 Bordeaux, France.,CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, F-33076, Bordeaux, France
| | - Caroline Rooryck-Thambo
- Univ. Bordeaux, Maladies Rares: Génétique et Métabolisme (MRGM), U 1211 INSERM, F-33000 Bordeaux, France .,CHU de Bordeaux, Service de Génétique Médicale, Centre de Référence Anomalies du Développement et Syndromes Malformatifs, F-33076, Bordeaux, France
| |
Collapse
|
7
|
Identification of Hub Genes in Hemifacial Microsomia: Evidence From Bioinformatic Analysis. J Craniofac Surg 2021; 33:e145-e149. [PMID: 34855631 DOI: 10.1097/scs.0000000000008164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE This thesis addresses a neglected aspect of bioinformatics research of hemifacial microsomia (HFM). Existing research stops short of prediction based on big data. This study combines multiple databases to explore underlying pathogenesis using bioinformatic approach. METHODS The research consisted of multiple bioinformatic methods, included pathogenic genes analyses, protein-protein interaction network construction, functional enrichment, and mining target genes related miRNA, for studying pathogenic genes of HFM. RESULTS Total of 140 genes were identified as potential genes in the study. The protein-protein interaction networks for pathogenic genes were constructed, which contained 138 nodes and 243 edges with RAF1, MAP2K1, MAP2K2, MAPK3, MAPK1, EGFR, BRAF, LMNA, ESPR1, and SFN as the hub genes. These genes were discovered significantly enriched in MAPK pathway. Besides, the whole of interactions between miRNAs and the top 5 hub genes were revealed. CONCLUSIONS Our results indicated that occurrence of HFM is attributed to a variety of genes. Furthermore, the interactions of pathogenic genes were further elucidated by using bioinformatics approach. It reveals the MAPK pathway play an essential role in its pathogenesis. It may provide a novel perspective on better understanding the pathogenesis and more accurate early screening of HFM.
Collapse
|
8
|
Xue J, Shen R, Xie M, Liu Y, Zhang Y, Gong L, Li H. 22q11.2 recurrent copy number variation-related syndrome: a retrospective analysis of our own microarray cohort and a systematic clinical overview of ClinGen curation. Transl Pediatr 2021; 10:3273-3281. [PMID: 35070841 PMCID: PMC8753460 DOI: 10.21037/tp-21-560] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/15/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Chromosomal 22q11.2 dosage changes in the recurrent region can lead to a series of clinically variable pediatric syndromes. This study conducted a retrospective analysis of microarray tested cases with 22q11.2 recurrent copy number variations (CNVs) at our laboratory from September 2018 to August 2021, and provides a systematical clinical overview of ClinGen curation. METHODS The data of 34 microarray tested cases with 22q11.2 recurrent CNVs at our laboratory from September 2018 to August 2021 were retrospectively analyzed, and the variant types, abnormal chromosome regions, clinical phenotypes, and follow-up information were evaluated and summarized. A ClinGen Dosage Sensitivity Map was retrieved for "22q11.2". The information of each 22q11.2 recurrent region was collected and systematically classified. RESULTS We reported 34 cases (including 18 22q11.2 microdeletion cases and 16 microduplication cases) from 8,465 microarrays. Of the 22q11.2 recurrent CNV-carried samples, 74% (25/34) comprised prenatal amniotic fluid or villus, and up to 50% (17/34) of the cases contained the proximal A-D interval. Across these 22q11.2 microdeletion samples, the congenital cardiovascular defect, which mainly included the tetralogy of fallot, ventricular septal defect, and patent foramen ovale, was identified as the most common feature (13/18, 72%). However, 22q11.2 microduplication cases exhibited a broad range of highly variable phenotypes, spanning from severe abnormality to mild characteristics and even the completely normal phenotype. This study also systematically reviewed the ClinGen dosage sensitivity curation on 22q11.2 recurrent regions, and found that A-D/A-B haploinsufficiency score reached "3", responsible for DiGeorge syndrome (DGS)/velocardiofacial syndrome (VCFS). Also, A-D/A-B triplosensitivity score "3" could further account for multiple variable phenotypes. CONCLUSIONS Taken together, this study provides clinical overview of the ClinGen curation and data support for the American College of Medical Genetics and Genomics (ACMG) evaluation in the pathogenicity of each interval involved in 22q11.2 recurrent deletion and duplication. Certainly, more evidences on the genotype-phenotype contributions of different 22q11.2 recurrent CNVs need to be gathered.
Collapse
Affiliation(s)
- Jiangyang Xue
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China
| | - Ru Shen
- Division of Laboratory, Kunming Maternity and Child Care Hospital, Kunming, China
| | - Min Xie
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China
| | - Yingwen Liu
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China
| | - Yuxin Zhang
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China
| | - Linglu Gong
- Ultrasonography Department, Ningbo Women and Children's Hospital, Ningbo, China
| | - Haibo Li
- The Central Laboratory of Birth Defects Prevention and Control, Ningbo Women and Children's Hospital, Ningbo, China
| |
Collapse
|
9
|
Glaeser AB, Diniz BL, Santos AS, Guaraná BB, Muniz VF, Carlotto BS, Everling EM, Noguchi PY, Garcia AR, Miola J, Riegel M, Mergener R, Gazzola Zen PR, Machado Rosa RF. A child with cat-eye syndrome and oculo-auriculo-vertebral spectrum phenotype: A discussion around molecular cytogenetic findings. Eur J Med Genet 2021; 64:104319. [PMID: 34474176 DOI: 10.1016/j.ejmg.2021.104319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/23/2021] [Accepted: 08/22/2021] [Indexed: 10/20/2022]
Abstract
Cat eye syndrome (CES) is a rare chromosomal disorder that may be evident at birth. A small supernumerary chromosome is present, frequently has 2 centromeres, is bisatellited, and represents an inv dup(22)(q11) in those affected. It's known that the 22q11 region is associated with disorders involving higher and lower gene dosages. Conditions such as CES, 22q11 microduplication syndrome (Dup22q11) and oculoauriculovertebral spectrum phenotype (OAVS) may share genes belonging to this same region, which is known to have a predisposition to chromosomal rearrangements. The conditions, besides being related to chromosome 22, also share similar phenotypes. Here we have added a molecular evaluation update and results found of the first patient described with CES and OAVS phenotype, trying to explain the potential mechanism involved in the occurrence of this association.
Collapse
Affiliation(s)
- Andressa Barreto Glaeser
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Bruna Lixinski Diniz
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | | | | | | | - Bianca Soares Carlotto
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | | | | | | | - Juliana Miola
- Graduation in Medicine, UFCSPA, Porto Alegre, RS, Brazil
| | - Mariluce Riegel
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil
| | - Rafaella Mergener
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paulo Ricardo Gazzola Zen
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Department of Internal Medicine, Clinical Genetics, UFCSPA and Irmandade da Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre, RS, Brazil
| | - Rafael Fabiano Machado Rosa
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Department of Internal Medicine, Clinical Genetics, UFCSPA and Irmandade da Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre, RS, Brazil.
| |
Collapse
|
10
|
Pereira AR, Grangeiro CHP, Pereira LC, Leão LL, Guarato JCC. OCULO-AURICULO-VERTEBRAL SPECTRUM ASSOCIATED WITH ABERRANT SUBCLAVIAN ARTERY IN AN INFANT WITH RECURRENT RESPIRATORY DISTRESS. REVISTA PAULISTA DE PEDIATRIA 2021; 40:e2020153. [PMID: 34076202 PMCID: PMC8240622 DOI: 10.1590/1984-0462/2022/40/2020153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/17/2020] [Indexed: 11/23/2022]
Abstract
Objective: To describe an infant with craniofacial microsomia and recurrent respiratory distress associated with aberrant right subclavian artery in order to review its most frequent congenital anomalies and alert the pediatrician to its rarer and more severe complications. Case description: This case report involves an 18-month-old male infant, only son of non-consanguineous parents. At birth, the child presented craniofacial dysmorphisms (facial asymmetry, maxillary and mandibular hypoplasia, macrostomia, grade 3 microtia, and accessory preauricular tag) restricted to the right side of the face. Additional tests showed asymmetric hypoplasia of facial structures and thoracic hemivertebrae. No cytogenetic or cytogenomic abnormalities were identified. The patient progressed to several episodes of respiratory distress, stridor, and nausea, even after undergoing gastrostomy and tracheostomy in the neonatal period. Investigation guided by respiratory symptoms identified compression of the esophagus and trachea by an aberrant right subclavian artery. After surgical correction of this anomaly, the infant has not presented respiratory symptoms and remains under multidisciplinary follow-up, seeking rehabilitation. Comments: Craniofacial microsomia presents a wide phenotypic variability compared to both craniofacial and extracraniofacial malformations. The latter, similarly to the aberrant right subclavian artery, is rarer and associated with morbidity and mortality. The main contribution of this case report was the identification of a rare anomaly, integrating a set of malformations of a relatively common condition, responsible for a very frequent complaint in pediatric care.
Collapse
|
11
|
Chen X, Liu F, Mar Aung Z, Zhang Y, Chai G. Whole-Exome Sequencing Reveals Rare Germline Mutations in Patients With Hemifacial Microsomia. Front Genet 2021; 12:580761. [PMID: 34079577 PMCID: PMC8165440 DOI: 10.3389/fgene.2021.580761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Abstract
Hemifacial microsomia (HFM) is a rare congenital disease characterized by a spectrum of craniomaxillofacial malformations, including unilateral hypoplasia of the mandible and surrounding structures. Genetic predisposition for HFM is evident but the causative genes have not been fully understood. Thus, in the present study, we used whole-exome sequencing to screen 52 patients with HFM for rare germline mutations. We revealed 3,341 rare germline mutations in this patient cohort, including those in 13 genes previously shown to be associated with HFM. Among these HFM-related genes, NID2 was most frequently mutated (in 3/52 patients). PED4DIP, which has not been previously associated with HFM, exhibited rare variants most frequently (in 7/52 patients). Pathway enrichment analysis of genes that were mutated in >2 patients predicted the "laminin interactions" pathway to be most significantly disrupted, predominantly by mutations in ITGB4, NID2, or LAMA5. In summary, this study is the first to identify rare germline mutations in HFM. The likely disruptions in the signaling pathways due to the mutations reported here may be considered potential causes of HFM.
Collapse
Affiliation(s)
- Xiaojun Chen
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fatao Liu
- Bio-X Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Zin Mar Aung
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Chai
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Manno GC, Segal GS, Yu A, Xu F, Ray JW, Cooney E, Britt AD, Jain SK, Goldblum RM, Robinson SS, Dong J. Genotypic and phenotypic variability of 22q11.2 microdeletions – an institutional experience. AIMS MOLECULAR SCIENCE 2021; 8:257-274. [PMID: 34938854 PMCID: PMC8691803 DOI: 10.3934/molsci.2021020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
<abstract>
<p>Patients with chromosome 22q11.2 deletion syndromes classically present with variable cardiac defects, parathyroid and thyroid gland hypoplasia, immunodeficiency and velopharyngeal insufficiency, developmental delay, intellectual disability, cognitive impairment, and psychiatric disorders. New technologies including chromosome microarray have identified smaller deletions in the 22q11.2 region. An increasing number of studies have reported patients presenting with various features harboring smaller 22q11.2 deletions, suggesting a need to better elucidate 22q11.2 deletions and their phenotypic contributions so that clinicians may better guide prognosis for families. We identified 16 pediatric patients at our institution harboring various 22q11.2 deletions detected by chromosomal microarray and report their clinical presentations. Findings include various neurodevelopmental delays with the most common one being attention deficit hyperactivity disorder (ADHD), one reported case of infant lethality, four cases of preterm birth, one case with dual diagnoses of 22q11.2 microdeletion and Down syndrome. We examined potential genotypic contributions of the deleted regions.</p>
</abstract>
Collapse
Affiliation(s)
- Gabrielle C. Manno
- School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Gabrielle S. Segal
- School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alexander Yu
- School of Medicine, University of Texas Medical Branch, Galveston, Texas, USA
| | - Fangling Xu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Joseph W. Ray
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Erin Cooney
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Allison D. Britt
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sunil K. Jain
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Randall M. Goldblum
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Sally S. Robinson
- Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jianli Dong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Correspondence:; Tel: 4097724866
| |
Collapse
|
13
|
Spineli‐Silva S, Sgardioli IC, Santos AP, Bergamini LL, Monlleó IL, Fontes MIB, Félix TM, Ribeiro EM, Xavier AC, Lustosa‐Mendes E, Gil‐da‐Silva‐Lopes VL, Vieira TP. Genomic imbalances in craniofacial microsomia. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:970-985. [DOI: 10.1002/ajmg.c.31857] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/10/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Samira Spineli‐Silva
- Department of Medical Genetics and Genomic Medicine School of Medical Sciences, State University of Campinas (Unicamp) Campinas Brazil
| | - Ilária C. Sgardioli
- Department of Medical Genetics and Genomic Medicine School of Medical Sciences, State University of Campinas (Unicamp) Campinas Brazil
| | - Ana P. Santos
- Department of Medical Genetics and Genomic Medicine School of Medical Sciences, State University of Campinas (Unicamp) Campinas Brazil
| | - Luna L. Bergamini
- Faculty of Medicine Federal University of Alagoas (UFAL) Maceió Brazil
| | - Isabella L. Monlleó
- Faculty of Medicine Federal University of Alagoas (UFAL) Maceió Brazil
- Clinical Genetics Service University Hospital, Federal University of Alagoas (UFAL) Maceió Brazil
| | - Marshall I. B. Fontes
- Clinical Genetics Service University Hospital, Federal University of Alagoas (UFAL) Maceió Brazil
| | - Têmis M. Félix
- Medical Genetics Service Clinical Hospital of Porto Alegre (HCPA) Porto Alegre Brazil
| | - Erlane M. Ribeiro
- Medical Genetics Service Hospital Infantil Albert Sabin (HIAS) Fortaleza Brazil
| | - Ana C. Xavier
- Centre for Research and Rehabilitation of Lip and Palate Lesions Centrinho Prefeito Luiz Gomes Joinville Brazil
| | | | - Vera L. Gil‐da‐Silva‐Lopes
- Department of Medical Genetics and Genomic Medicine School of Medical Sciences, State University of Campinas (Unicamp) Campinas Brazil
| | - Tarsis P. Vieira
- Department of Medical Genetics and Genomic Medicine School of Medical Sciences, State University of Campinas (Unicamp) Campinas Brazil
| |
Collapse
|
14
|
Glaeser AB, Santos AS, Diniz BL, Deconte D, Rosa RFM, Zen PRG. Candidate genes of oculo-auriculo-vertebral spectrum in 22q region: A systematic review. Am J Med Genet A 2020; 182:2624-2631. [PMID: 32893956 DOI: 10.1002/ajmg.a.61841] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 12/19/2022]
Abstract
Oculo-auriculo-vertebral spectrum (hemifacial microsomia/OAVS, OMIM #164210) is a heterogenous and congenital condition caused by a morphogenesis defect of the first and second pharyngeal arches. Etiology includes unknown genetic, environmental factors and chromosomal alterations, which 22q11.2 region is the most frequently reported. Several candidate genes for OAVS have been proposed; however, none has been confirmed as causative of the phenotype. This review aims to sum up all clinical and molecular findings in 22q region of individuals diagnosed with OAVS and to investigate genes that may be involved in the development of the spectrum. A search was performed in PubMed using all entry terms to OAVS and Chromosome 22q11. After screening, 11 papers were eligible for review. Deletions and duplications in the q11.2 region were the most frequent (18/22) alterations reported and a total of 68 genes were described. Our systematic review reinforces the hypothesis that 22q11 region is a candidate locus for OAVS as well as CLTCL1, GSC2, HIRA, MAPK1, TBX1, and YPEL1 as potential candidates genes for genotype-phenotype correlation. Complementary studies regarding genes interaction involved in the 22q11 region are still necessary in the search for a genotype-phenotype association, since the diagnosis of OAVS is a constant medical challenge.
Collapse
Affiliation(s)
- Andressa Barreto Glaeser
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | | | - Bruna Lixinski Diniz
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Desireé Deconte
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Rafael Fabiano Machado Rosa
- Department of Internal Medicine, Clinical Genetics, UFCSPA and Irmandade Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre, Brazil
| | - Paulo Ricardo Gazzola Zen
- Department of Internal Medicine, Clinical Genetics, UFCSPA and Irmandade Santa Casa de Misericórdia de Porto Alegre (ISCMPA), Porto Alegre, Brazil
| |
Collapse
|
15
|
Xu C, Xiang Y, Xu X, Zhou L, Li H, Dong X, Tang S. Clinical application of chromosomal microarray analysis for fetuses with craniofacial malformations. Mol Cytogenet 2020; 13:38. [PMID: 32863884 PMCID: PMC7448974 DOI: 10.1186/s13039-020-00502-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/14/2020] [Indexed: 12/26/2022] Open
Abstract
Background The potential correlations between chromosomal abnormalities and craniofacial malformations (CFMs) remain a challenge in prenatal diagnosis. This study aimed to evaluate 118 fetuses with CFMs by applying chromosomal microarray analysis (CMA) and G-banded chromosome analysis. Results Of the 118 cases in this study, 39.8% were isolated CFMs (47/118) whereas 60.2% were non-isolated CFMs (71/118). The detection rate of chromosomal abnormalities in non-isolated CFM fetuses was significantly higher than that in isolated CFM fetuses (26/71 vs. 7/47, p = 0.01). Compared to the 16 fetuses (16/104; 15.4%) with pathogenic chromosomal abnormalities detected by karyotype analysis, CMA identified a total of 33 fetuses (33/118; 28.0%) with clinically significant findings. These 33 fetuses included cases with aneuploidy abnormalities (14/118; 11.9%), microdeletion/microduplication syndromes (9/118; 7.6%), and other pathogenic copy number variations (CNVs) only (10/118; 8.5%).We further explored the CNV/phenotype correlation and found a series of clear or suspected dosage-sensitive CFM genes including TBX1, MAPK1, PCYT1A, DLG1, LHX1, SHH, SF3B4, FOXC1, ZIC2, CREBBP, SNRPB, and CSNK2A1. Conclusion These findings enrich our understanding of the potential causative CNVs and genes in CFMs. Identification of the genetic basis of CFMs contributes to our understanding of their pathogenesis and allows detailed genetic counselling.
Collapse
Affiliation(s)
- Chenyang Xu
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, China
| | - Yanbao Xiang
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, China
| | - Xueqin Xu
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, China
| | - Lili Zhou
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, China
| | - Huanzheng Li
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, China
| | - Xueqin Dong
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, China
| | - Shaohua Tang
- Center of Prenatal Diagnosis, Wenzhou Central Hospital, Wenzhou, China.,Key Laboratory of Medical Genetic, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Glaeser AB, Diniz BL, Deconte D, Santos AS, Rosa RFM, Zen PRG. Microarray-Based Comparative Genomic Hybridization, Multiplex Ligation-Dependent Probe Amplification, and High-Resolution Karyotype for Differential Diagnosis Oculoauriculovertebral Spectrum: A Systematic Review. J Pediatr Genet 2020; 9:149-157. [PMID: 32714614 DOI: 10.1055/s-0040-1712118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/16/2020] [Indexed: 10/24/2022]
Abstract
Oculoauriculovertebral spectrum (OAVS) is a rare class of heterogenous congenital craniofacial malformation conditions of unknown etiology. Although classic OAVS has been described as hemifacial microsomia with facial asymmetry and microtia, there is no consensus regarding clinical criteria for diagnosis or genetic cause. This systematic review aims to assess the applicability of high-resolution (HR) karyotype, fluorescence in situ hybridization, multiplex ligation-dependent probe amplification (MLPA), and microarray-based comparative genomic hybridization (array-CGH) for differential diagnosis of OAVS. A search was performed in PubMed and Web of Science using all entry terms to the following descriptors: Goldenhar's syndrome, cytogenetic analysis, hybridization in situ, fluorescent, comparative genomic hybridization, multiplex polymerase chain reaction, whole genome sequencing, and karyotype analysis methods. After screening, 25 articles met eligibility. Of the included studies, 59 individuals had a genetic alteration identified. Array-CGH, MLPA, and HR karyotype appear to be viable approaches for molecular diagnosis in OAVS. Heterogeneity is a hallmark of OAVS. Establishing an enhanced framework for diagnosis would inform clinical decision making, and better resource utilization could improve health care facility efficiency and economy.
Collapse
Affiliation(s)
- Andressa Barreto Glaeser
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Bruna Lixinski Diniz
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Desirée Deconte
- Graduate Program in Pathology, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Andressa Schneiders Santos
- Undergraduate Program in Biomedicine, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Rafael Fabiano Machado Rosa
- Department of Internal Medicine, Clinical Genetics, Irmandade Santa Casa de Misericórdia de Porto Alegre, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Paulo Ricardo Gazzola Zen
- Department of Internal Medicine, Clinical Genetics, Irmandade Santa Casa de Misericórdia de Porto Alegre, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
17
|
Rengasamy Venugopalan S, Farrow E, Sanchez-Lara PA, Yen S, Lypka M, Jiang S, Allareddy V. A novel nonsense substitution identified in the AMIGO2 gene in an Occulo-Auriculo-Vertebral spectrum patient. Orthod Craniofac Res 2019; 22 Suppl 1:163-167. [PMID: 31074142 DOI: 10.1111/ocr.12259] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/19/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Craniofacial microsmia is the second most common congenital disorder with mostly unilateral defects of ear, temporomandibular joint, mandible, and muscles of facial expression and mastication. The objective of this study was to identify, if there were any, de novo germline or somatic variants in a patient with Occulo-Auriculo-Vertebral Spectrum (OAVS) using whole-exome sequencing. SETTINGS AND SAMPLE POPULATION Trio/Family-based study of an OAVS proband. MATERIALS AND METHODS Children's Mercy Hospital Institutional Review Board approved this study and a request-to-rely was procured from the University of Missouri Kansas City IRB. Informed assent/consent was obtained for all family members prior to any research activities. The peripheral blood/affected side tissues from corrective surgery of the proband and peripheral blood samples from unaffected parents were collected. The isolated genomic DNA were enriched for exomes and sequenced on an Illlumina HiSeq 2500 instrument yielding paired-end 125 nucleotide reads (84X coverage). Gapped alignment to reference sequences (GRCh37.p5) was performed with BWA and the GATK and analysis completed using custom-developed software. RESULTS Analyses revealed that the proband carried a de novo germ line nonsense substitution (c.901C>T) in AMIGO2 gene, and missense substitutions in ZCCHC14 (c.1198C>T), and in SZT2 genes (c.2951C>T). CONCLUSIONS The nonsense substitution in AMIGO2 gene introduces a premature stop codon possibly rendering the gene non-functional via nonsense-mediated pathway decay-therefore considered a stronger candidate. Further functional studies are required to confirm whether loss-of-function variants in AMIGO2 can cause OAVS.
Collapse
Affiliation(s)
| | - Emily Farrow
- Children's Mercy Hospitals, Kansas City, Missouri
| | - Pedro A Sanchez-Lara
- Cedars-Sinai Medical Center, Los Angeles, California.,Children's Hospital Los Angeles, Los Angeles, California
| | - Stephen Yen
- Children's Hospital Los Angeles, Los Angeles, California
| | | | - Shao Jiang
- Children's Mercy Hospitals, Kansas City, Missouri
| | | |
Collapse
|
18
|
Matsuo M, Yamamoto T, Saito K. Long-term natural history of an adult patient with distal 22q11.2 deletion from low copy repeat-D to E. Congenit Anom (Kyoto) 2019; 59:102-103. [PMID: 29926511 DOI: 10.1111/cga.12301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/16/2018] [Accepted: 06/18/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Mari Matsuo
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| | - Toshiyuki Yamamoto
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan.,Institute for Integrated Medical Sciences, Tokyo Women's Medical University, Tokyo, Japan
| | - Kayoko Saito
- Institute of Medical Genetics, Tokyo Women's Medical University, Tokyo, Japan
| |
Collapse
|
19
|
Oliveira LDFS, Júlio-Costa A, Dos Santos FC, Carvalho MRS, Haase VG. Numerical Processing Impairment in 22q11.2 (LCR22-4 to LCR22-5) Microdeletion: A Cognitive-Neuropsychological Case Study. Front Psychol 2018; 9:2193. [PMID: 30524331 PMCID: PMC6258774 DOI: 10.3389/fpsyg.2018.02193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/23/2018] [Indexed: 11/23/2022] Open
Abstract
Although progress has been made, the cognitive, biological and, particularly, the genetic underpinnings of math learning difficulties (MD) remain largely unknown. This difficulty stems from the heterogeneity of MD and from the large contribution of environmental factors to its etiology. Understanding endophenotypes, e.g., the role of the Approximate Number System (ANS), may help understanding the nature of MD. MD associated with ANS impairments has been described in some genetic conditions, e.g., 22q11.2 deletion syndrome (22q11.2DS or Velocardiofacial syndrome, VCFS). Recently, a girl with MD was identified in a school population screening. She has a new syndrome resulting from a microdeletion in 22q11.2 (LCR22-4 to LCR22-5), a region adjacent to but not overlapping with region 22q11.2 (LCR22-2 to LCR22-4), typically deleted in VCFS. Here, we describe her cognitive-neuropsychological and numerical-cognitive profiles. The girl was assessed twice, at 8 and 11 years. Her numerical-cognitive performance at both times was compared to demographically similar girls with normal intelligence in a single-case, quasi-experimental study. Neuropsychological assessment was normal, except for relatively minor impairments in executive functions. She presented severe and persistent difficulties in the simplest single-digit calculations. Difficulties in commutative operations improved from the first to the second assessment. Difficulties in subtraction persisted and were severe. No difficulties were observed in Arabic number writing. Difficulties in single-digit calculation co-occurred with basic numerical processing impairments in symbolic and non-symbolic (single-digit comparison, dot sets size comparison and estimation) tasks. Her difficulties suggest ANS impairment. No difficulties were detected in visuospatial/visuoconstructional and in phonological processing tasks. The main contributions of the present study are: (a) this is the first characterization of the neuropsychological phenotype in 22q11.2DS (LCR22-4 to LCR22.5) with normal intelligence; (b) mild forms of specific genetic conditions contribute to persistent MD in otherwise typical persons; (c) heterogeneity of neurogenetic underpinnings of MD is suggested by poor performance in non-symbolic numerical processing, dissociated from visuospatial/visuoconstructional and phonological impairments; (d) similar to what happens in 22q11.2DS (LCR22-2 to LCR22-4), ANS impairments may also characterize 22q11.2DS (LCR22-4 to LCR22-5).
Collapse
Affiliation(s)
- Lívia de Fátima Silva Oliveira
- Laboratório de Neuropsicologia do Desenvolvimento, Departamento de Psicologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Programa de Pós-Graduação em Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Annelise Júlio-Costa
- Laboratório de Neuropsicologia do Desenvolvimento, Departamento de Psicologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Vitor Geraldi Haase
- Laboratório de Neuropsicologia do Desenvolvimento, Departamento de Psicologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Programa de Pós-Graduação em Neurociências, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Programa de Pós-graduação em Psicologia, Cognição e Comportamento, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Programa de Pós-graduação em Saúde da Criança e do Adolescente, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Instituto Nacional de Ciência e Tecnologia sobre Comportamento, Cognição e Ensino, São Carlos, Brazil
| |
Collapse
|
20
|
Multidisciplinary management of oculo-auriculo-vertebral spectrum. Curr Opin Otolaryngol Head Neck Surg 2018; 26:234-241. [PMID: 29847352 DOI: 10.1097/moo.0000000000000468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
PURPOSE OF REVIEW Oculo-auriculo-vertebral spectrum (OAVS) is a complex disorder that is represented by wide variations in phenotypic presentation. Recent publications and systematic reviews of the available literature are presented here. RECENT FINDINGS Treatment strategies vary among craniofacial centers across the country. Advances in presurgical planning, virtual surgical planning, and computer-aided manufacturing have been incorporated in the treatment of patients. The psychosocial effect of OAVS with longitudinal follow-up is now being studied. SUMMARY Optimal evaluation and management of the OAVS patient requires an awareness of the phenotypic and genetic differences and involves a multidisciplinary team in order to effectively and appropriately diagnose and treat such patients.
Collapse
|
21
|
Ferese R, Bonetti M, Consoli F, Guida V, Sarkozy A, Lepri FR, Versacci P, Gambardella S, Calcagni G, Margiotti K, Piceci Sparascio F, Hozhabri H, Mazza T, Digilio MC, Dallapiccola B, Tartaglia M, Marino B, Hertog JD, De Luca A. Heterozygous missense mutations in NFATC1 are associated with atrioventricular septal defect. Hum Mutat 2018; 39:1428-1441. [PMID: 30007050 DOI: 10.1002/humu.23593] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 06/27/2018] [Accepted: 07/08/2018] [Indexed: 11/10/2022]
Abstract
Atrioventricular septal defect (AVSD) may occur as part of a complex disorder (e.g., Down syndrome, heterotaxy), or as isolate cardiac defect. Multiple lines of evidence support a role of calcineurin/NFAT signaling in AVSD, and mutations in CRELD1, a protein functioning as a regulator of calcineurin/NFAT signaling have been reported in a small fraction of affected subjects. In this study, 22 patients with isolated AVSD and 38 with AVSD and heterotaxy were screened for NFATC1 gene mutations. Sequence analysis identified three missense variants in three individuals, including a subject with isolated AVSD [p.(Ala367Val)], an individual with AVSD and heterotaxy [p.(Val210Met)], and a subject with AVSD, heterotaxy, and oculo-auriculo-vertebral spectrum (OAVS) [p.(Ala696Thr)], respectively. The latter was also heterozygous for a missense change in TBX1 [p.(Pro86Leu)]. Targeted resequencing of genes associated with AVSD, heterotaxy, or OAVS excluded additional hits in the three mutation-positive subjects. Functional characterization of NFATC1 mutants documented defective nuclear translocation and decreased transcriptional transactivation activity. When expressed in zebrafish, the three NFATC1 mutants caused cardiac looping defects and altered atrioventricular canal patterning, providing evidence of their functional relevance in vivo. Our findings support a role of defective NFATC1 function in the etiology of isolated and heterotaxy-related AVSD.
Collapse
Affiliation(s)
| | - Monica Bonetti
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584CT, Utrecht, The Netherlands
| | - Federica Consoli
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013, San Giovanni Rotondo, Italy
| | - Valentina Guida
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013, San Giovanni Rotondo, Italy
| | - Anna Sarkozy
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013, San Giovanni Rotondo, Italy
| | - Francesca Romana Lepri
- Genetics and Rare Diseases Research Division, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - Paolo Versacci
- Division of Pediatric Cardiology, Department of Pediatrics, "Sapienza" University, 00161, Rome, Italy
| | | | - Giulio Calcagni
- Genetics and Rare Diseases Research Division, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - Katia Margiotti
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013, San Giovanni Rotondo, Italy
| | - Francesca Piceci Sparascio
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013, San Giovanni Rotondo, Italy
| | - Hossein Hozhabri
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013, San Giovanni Rotondo, Italy.,Department of Experimental Medicine, Sapienza University of Rome, 00161, Rome, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013, San Giovanni Rotondo, Italy
| | - Maria Cristina Digilio
- Genetics and Rare Diseases Research Division, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - Bruno Dallapiccola
- Genetics and Rare Diseases Research Division, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Bambino Gesù Children Hospital, IRCCS, 00146, Rome, Italy
| | - Bruno Marino
- Division of Pediatric Cardiology, Department of Pediatrics, "Sapienza" University, 00161, Rome, Italy
| | - Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, 3584CT, Utrecht, The Netherlands.,Institute of Biology, 2300RC, Leiden, The Netherlands
| | - Alessandro De Luca
- Molecular Genetics Unit, Casa Sollievo della Sofferenza Hospital, IRCCS, 71013, San Giovanni Rotondo, Italy
| |
Collapse
|