1
|
Zhao T, Wu S, Shen Y, Leng J, Genchev GZ, Lu H, Feng J. Clinical and genetic characterization of 47 Chinese pediatric patients with Pitt-Hopkins syndrome: a retrospective study. Orphanet J Rare Dis 2024; 19:51. [PMID: 38331897 PMCID: PMC10851572 DOI: 10.1186/s13023-024-03055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024] Open
Abstract
BACKGROUND Pitt-Hopkins syndrome (PTHS) is a neurodevelopmental disorder that remains underdiagnosed and its clinical presentations and mutation profiles in a diverse population are yet to be evaluated. This retrospective study aims to investigate the clinical and genetic characteristics of Chinese patients with PTHS. METHODS The clinical, biochemical, genetic, therapeutic, and follow-up data of 47 pediatric patients diagnosed with PTHS between 2018 and 2021 were retrospectively analyzed. RESULTS The Chinese PTHS patients presented with specific facial features and exhibited global developmental delay of wide severity range. The locus heterogeneity of the TCF4 gene in the patients was highlighted, emphasizing the significance of genetic studies for accurate diagnosis, albeit no significant correlations between genotype and phenotype were observed in this cohort. The study also reports the outcomes of patients who underwent therapeutic interventions, such as ketogenic diets and biomedical interventions. CONCLUSIONS The findings of this retrospective analysis expand the phenotypic and molecular spectra of PTHS patients. The study underscores the need for a long-term prospective follow-up study to assess potential therapeutic interventions.
Collapse
Affiliation(s)
- Tingting Zhao
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Center for Biomedical Informatics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shengnan Wu
- Molecular Diagnostic Laboratory, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yiping Shen
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, USA
| | - Jing Leng
- Wellness Center, 16 Philadelphia Ave, Shillington, PA, 19607, USA
| | - Georgi Z Genchev
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Hui Lu
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Center for Biomedical Informatics, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jincai Feng
- Department of Rehabilitation, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Diagnosis and Treatment Center of Pitt-Hopkins Syndrome, Shanghai Children's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Frankel E, Podder A, Sharifi M, Pillai R, Belnap N, Ramsey K, Dodson J, Venugopal P, Brzezinski M, Llaci L, Gerald B, Mills G, Sanchez-Castillo M, Balak CD, Szelinger S, Jepsen WM, Siniard AL, Richholt R, Naymik M, Schrauwen I, Craig DW, Piras IS, Huentelman MJ, Schork NJ, Narayanan V, Rangasamy S. Genetic and Protein Network Underlying the Convergence of Rett-Syndrome-like (RTT-L) Phenotype in Neurodevelopmental Disorders. Cells 2023; 12:1437. [PMID: 37408271 DOI: 10.3390/cells12101437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/20/2023] [Accepted: 04/29/2023] [Indexed: 07/07/2023] Open
Abstract
Mutations of the X-linked gene encoding methyl-CpG-binding protein 2 (MECP2) cause classical forms of Rett syndrome (RTT) in girls. A subset of patients who are recognized to have an overlapping neurological phenotype with RTT but are lacking a mutation in a gene that causes classical or atypical RTT can be described as having a 'Rett-syndrome-like phenotype (RTT-L). Here, we report eight patients from our cohort diagnosed as having RTT-L who carry mutations in genes unrelated to RTT. We annotated the list of genes associated with RTT-L from our patient cohort, considered them in the light of peer-reviewed articles on the genetics of RTT-L, and constructed an integrated protein-protein interaction network (PPIN) consisting of 2871 interactions connecting 2192 neighboring proteins among RTT- and RTT-L-associated genes. Functional enrichment analysis of RTT and RTT-L genes identified a number of intuitive biological processes. We also identified transcription factors (TFs) whose binding sites are common across the set of RTT and RTT-L genes and appear as important regulatory motifs for them. Investigation of the most significant over-represented pathway analysis suggests that HDAC1 and CHD4 likely play a central role in the interactome between RTT and RTT-L genes.
Collapse
Affiliation(s)
- Eric Frankel
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Avijit Podder
- Quantitative Medicine Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Megan Sharifi
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Roshan Pillai
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Newell Belnap
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Keri Ramsey
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Julius Dodson
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Pooja Venugopal
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Molly Brzezinski
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Lorida Llaci
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
- Quantitative Medicine Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Brittany Gerald
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Gabrielle Mills
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Meredith Sanchez-Castillo
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Chris D Balak
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Szabolcs Szelinger
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Wayne M Jepsen
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Ashley L Siniard
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Ryan Richholt
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Marcus Naymik
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Isabelle Schrauwen
- Center for Statistical Genetics, Department of Neurology, Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY 10032, USA
| | - David W Craig
- Department of Translational Genomics, University of Southern California, Los Angeles, CA 90033, USA
| | - Ignazio S Piras
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Matthew J Huentelman
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
- Quantitative Medicine Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Nicholas J Schork
- Quantitative Medicine Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
- City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Vinodh Narayanan
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| | - Sampathkumar Rangasamy
- Neurogenomics Division, Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
- Center for Rare Childhood Disorders (C4RCD), Translational Genomics Research Institute (TGen), Phoenix, AZ 85004, USA
| |
Collapse
|
3
|
Sharkov A, Sparber P, Stepanova A, Pyankov D, Korostelev S, Skoblov M. Case Report: Phenotype-Driven Diagnosis of Atypical Dravet-Like Syndrome Caused by a Novel Splicing Variant in the SCN2A Gene. Front Genet 2022; 13:888481. [PMID: 35711923 PMCID: PMC9194094 DOI: 10.3389/fgene.2022.888481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/19/2022] [Indexed: 01/18/2023] Open
Abstract
Febrile-associated epileptic encephalopathy is a large genetically heterogeneous group that is associated with pathogenic variants in SCN1A, PCDH19, SCN2A, SCN8A, and other genes. The disease onset ranges from neonatal or early-onset epileptic encephalopathy to late-onset epilepsy after 18 months. Some etiology-specific epileptic encephalopathies have target therapy which can serve as a clue for the correct genetic diagnosis. We present genetic, clinical, electroencephalographic, and behavioral features of a 4-year-old girl with epileptic encephalopathy related to a de novo intronic variant in the SCN2A gene. Initial NGS analysis revealed a frameshift variant in the KDM6A gene and a previously reported missense variant in SCN1A. Due to lack of typical clinical signs of Kabuki syndrome, we performed X-chromosome inactivation that revealed nearly complete skewed inactivation. Segregation analysis showed that the SCN1A variant was inherited from a healthy father. The proband had resistance to multiple antiseizure medications but responded well to sodium channel inhibitor Carbamazepine. Reanalysis of NGS data by a neurogeneticist revealed a previously uncharacterized heterozygous variant c.1035-7A>G in the SCN2A gene. Minigene assay showed that the c.1035-7A>G variant activates a cryptic intronic acceptor site which leads to 6-nucleotide extension of exon 9 (NP_066287.2:p.(Gly345_Gln346insTyrSer). SCN2A encephalopathy is a recognizable severe phenotype. Its electro-clinical and treatment response features can serve as a hallmark. In such a patient, reanalysis of genetic data is strongly recommended in case of negative or conflicting results of DNA analysis.
Collapse
Affiliation(s)
- Artem Sharkov
- Genomed Ltd., Moscow, Russia.,Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University, Moscow, Russia
| | - Peter Sparber
- Research Centre for Medical Genetics, Moscow, Russia
| | | | | | | | | |
Collapse
|
4
|
Bai X, Zheng L, Ma S, Kan X. Prenatal diagnosis of chromosome 18 long arm deletion syndrome by high-throughput sequencing: Two case reports. Medicine (Baltimore) 2021; 100:e28143. [PMID: 34918667 PMCID: PMC8677896 DOI: 10.1097/md.0000000000028143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Chromosome 18 long arm deletion syndrome is a group of clinical syndromes caused by partial or total genetic material deletion of the long arm of chromosome 18 (18q), whose clinical manifestations are related to presentation and developmental abnormalities in various aspects such as intelligence, face, and movement. Prenatal diagnosis of this syndrome is challenging because of its low incidence and uncharacteristic prenatal clinical performance. In this paper, 2 cases of partial deletion of 18q found in prenatal amniotic fluid examination by high-throughput sequencing were reported and analyzed. PATIENT CONCERNS In patient 1, non-invasive prenatal gene detection at 21 + 2 weeks of gestation suggests a risk of trisomy 18. In patient 2, ultrasound examination at 21 + 2 weeks of gestation revealed a single live fetus, but it was difficult to pinpoint whether the fetus had only 1 umbilical artery to supply blood. DIAGNOSIS AND INTERVENTION The 18q deletion syndrome was diagnosed by chromosome karyotype analysis and high-throughput sequencing. OUTCOMES The pregnancies were terminated due to the abnormal chromosome. LESSON This report adds novel variants to the genetic profile of 18q deletion, in order to enrich the genetic data of long arm deletion of 18 chromosomes and provide better services for pre-screening, diagnosis, and genetic counseling for this disease.
Collapse
|
5
|
Chen HY, Bohlen JF, Maher BJ. Molecular and Cellular Function of Transcription Factor 4 in Pitt-Hopkins Syndrome. Dev Neurosci 2021; 43:159-167. [PMID: 34134113 DOI: 10.1159/000516666] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/20/2021] [Indexed: 11/19/2022] Open
Abstract
Transcription factor 4 (TCF4, also known as ITF2 or E2-2) is a type I basic helix-loop-helix transcription factor. Autosomal dominant mutations in TCF4 cause Pitt-Hopkins syndrome (PTHS), a rare syndromic form of autism spectrum disorder. In this review, we provide an update on the progress regarding our understanding of TCF4 function at the molecular, cellular, physiological, and behavioral levels with a focus on phenotypes and therapeutic interventions. We examine upstream and downstream regulatory networks associated with TCF4 and discuss a range of in vitro and in vivo data with the aim of understanding emerging TCF4-specific mechanisms relevant for disease pathophysiology. In conclusion, we provide comments about exciting future avenues of research that may provide insights into potential new therapeutic targets for PTHS.
Collapse
Affiliation(s)
- Huei-Ying Chen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,
| | - Joseph F Bohlen
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Brady J Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland, USA.,Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Zhao T, Genchev GZ, Wu S, Yu G, Lu H, Feng J. Pitt-Hopkins syndrome: phenotypic and genotypic description of four unrelated patients and structural analysis of corresponding missense mutations. Neurogenetics 2021; 22:161-169. [PMID: 34128147 DOI: 10.1007/s10048-021-00651-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/30/2021] [Indexed: 11/25/2022]
Abstract
Pitt-Hopkins syndrome is an underdiagnosed neurodevelopmental disorder which is characterized by specific facial features, early-onset developmental delay, and moderate to severe intellectual disability. The genetic cause, a deficiency of the TCF4 gene, has been established; however, the underlying pathological mechanisms of this disease are still unclear. Herein, we report four unrelated children with different de novo mutations (T606A, K607E, R578C, and V617I) located at highly conserved sites and with clinical phenotypes which present variable degrees of developmental delay and intellectual disability. Three of these four missense mutations have not yet been reported. The patient with V617I mutation exhibits mild intellectual disability and has attained more advanced motor and verbal skills, which is significantly different from other cases reported to date. Molecular dynamics simulations are used to explore the atomic level mechanism of how missense mutations impair the functions of TCF4. Mutations T606A, K607E, and R578C are found to affect DNA binding directly or indirectly, while V617I only induces subtle conformational changes, which is consistent with the milder clinical phenotype of the corresponding patient. The study expands the mutation spectrum and phenotypic characteristics of Pitt-Hopkins syndrome, and reinforces the genotype-phenotype correlation and strengthens the understanding of phenotype variability, which is helpful for further investigation of pathogenetic mechanisms and improved genetic counseling.
Collapse
Affiliation(s)
- Tingting Zhao
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Georgi Z Genchev
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Bulgarian Institute for Genomics and Precision Medicine, Sofia, Bulgaria
- SJTU-Yale Joint Center for Biostatistics, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shengnan Wu
- Molecular Diagnostic Laboratory, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Guangjun Yu
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Lu
- Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
- SJTU-Yale Joint Center for Biostatistics, Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Jincai Feng
- Department of Rehabilitation, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|