1
|
Ariza MJ, Coca-Prieto I, Rioja J, Muñiz-Grijalvo O, Zambón-Rados D, Blanco-Echevarría A, Arrobas-Velilla T, Delgado-Lista J, León-Jiménez D, Casañas-Martínez M, Álvarez-Sala LA, Gutiérrez-Carrasquilla L, Sánchez-Gil J, Domènech M, González-Jiménez A, Benítez-Toledo MJ, Espíldora-Hernández J, Ortega-Martínez de Victoria E, Sánchez-Chaparro MÁ, Valdivielso P. Pathogenicity assessment of genetic variants identified in patients with severe hypertriglyceridemia: Novel cases of familial chylomicronemia syndrome from the Dyslipidemia Registry of the Spanish Atherosclerosis Society. Genet Med 2025; 27:101365. [PMID: 39873189 DOI: 10.1016/j.gim.2025.101365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025] Open
Abstract
PURPOSE Genetic testing is required to confirm a diagnosis of familial chylomicronemia syndrome (FCS). We assessed the pathogenicity of variants identified in the FCS canonical genes to diagnose FCS cases. METHODS 245 patients with severe hypertriglyceridemia underwent next-generation sequencing. Preliminary variant pathogenicity criteria and classification, based on the American College of Medical Genetics and Genomics guidelines, were obtained online and verified. Phenotype evaluation was based on lipoprotein lipase activity deficiency, a clinical score, and/or type I hyperlipoproteinemia determined in 25 patients. RESULTS Twenty-four biallelic variants were analyzed. Evidence-based criteria allowed the reclassification of 8 likely pathogenic (LP) variants in the LPL, APOA5, and LMF1 genes into pathogenic (P) and the change of 2 variants of uncertain significance (VUS) to LP. Conversely, 2 variations in LMF1 remained as VUS. Additionally, 1 variant in LPL and 2 in GPIHBP1 were likely benign. Twenty FCS cases had biallelic P/LP variants and 1 patient, with an FCS phenotype, harbored biallelic VUS. FCS was excluded from 4 patients with pathogenic/likely benign combinations. CONCLUSION The analysis of the clinical and biochemical features of patients with variants in the FCS canonical genes allowed a confident variant classification that helped in the diagnosis of novel FCS cases.
Collapse
Affiliation(s)
- María José Ariza
- Lipids and Atherosclerosis Laboratory, Department of Medicine and Dermatology, Centro de Investigaciones Médico Sanitarias (CIMES), Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA -Plataforma Bionand), University of Málaga, Málaga, Spain
| | - Inmaculada Coca-Prieto
- Lipid Unit, Internal Medicine Service, University Hospital Virgen de la Victoria, Málaga, Spain.
| | - José Rioja
- Lipids and Atherosclerosis Laboratory, Department of Medicine and Dermatology, Centro de Investigaciones Médico Sanitarias (CIMES), Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA -Plataforma Bionand), University of Málaga, Málaga, Spain
| | - Ovidio Muñiz-Grijalvo
- Lipid Unit, Internal Medicine Service, University Hospital Virgen del Rocío, Seville, Spain
| | | | - Agustín Blanco-Echevarría
- Internal Medicine Department, University Hospital October 12, i+12 Institute, Madrid, Spain; Department of Medicine, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Teresa Arrobas-Velilla
- Nutrition and cardiovascular risk laboratory, Clinical Biochemistry Unit, University Hospital Virgen Macarena, Sevilla, Spain
| | - Javier Delgado-Lista
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, University Hospital Reina Sofía, Department of Medical and Surgical Sciences, Universidad de Córdoba, IMIBIC, Córdoba, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain
| | - David León-Jiménez
- Vascular Risk Unit, Internal Medicine department, Clinical Unit for Comprehensive Medical Care (UCAMI), University Hospital Virgen del Rocío, University of Seville, Seville, Spain; Clinical Epidemiology and Vascular Unit, Instituto de Biomedicina de Sevilla (IBIS), Seville, Spain
| | - Marta Casañas-Martínez
- Lipids and Vascular Risk Unit, Internal Medicine Service, Hospital San Pedro, Logroño, Spain
| | - Luis Antonio Álvarez-Sala
- Lipids and Cardiovascular Risk Unit, Internal Medicine Service, Hospital General Universitario Gregorio Marañón, Instituto de investigaciones Sanitarias Gregorio Marañón (IiSGM), Madrid, Spain; Department of Medicine, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | | | - Justo Sánchez-Gil
- Lipid Unit, Internal Medicine Service, Hospital de Antequera, Málaga, Spain
| | - Mónica Domènech
- Occupational health area, Lipids and Vascular Risk Unit, Hospital Clínic Barcelona, Spain
| | - Andrés González-Jiménez
- Bioinformatics platform, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA Plataforma BIONAND), Málaga, Spain
| | | | | | - Emilio Ortega-Martínez de Victoria
- CIBER Fisiopatología Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; Lipid and Vascular risk Unit, Endocrinology and Nutrition department, IDIBAPS-FCRB, Hospital Clínic Barcelona, Spain
| | - Miguel Ángel Sánchez-Chaparro
- Lipids and Atherosclerosis Laboratory, Department of Medicine and Dermatology, Centro de Investigaciones Médico Sanitarias (CIMES), Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA -Plataforma Bionand), University of Málaga, Málaga, Spain; Lipid Unit, Internal Medicine Service, University Hospital Virgen de la Victoria, Málaga, Spain
| | - Pedro Valdivielso
- Lipids and Atherosclerosis Laboratory, Department of Medicine and Dermatology, Centro de Investigaciones Médico Sanitarias (CIMES), Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina (IBIMA -Plataforma Bionand), University of Málaga, Málaga, Spain; Lipid Unit, Internal Medicine Service, University Hospital Virgen de la Victoria, Málaga, Spain
| |
Collapse
|
2
|
Ariza Corbo MJ, Muñiz-Grijalvo O, Blanco Echevarría A, Díaz-Díaz JL. Genetic basis of hypertriglyceridemia. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS : PUBLICACION OFICIAL DE LA SOCIEDAD ESPANOLA DE ARTERIOSCLEROSIS 2024; 36 Suppl 2:S3-S12. [PMID: 39672669 DOI: 10.1016/j.arteri.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 12/15/2024]
Abstract
The development of massive sequencing techniques and guidelines for assessing the pathogenicity of variants are allowing us the identification of new cases of familial chylomicronemia syndrome (FCS) mostly in the LPL gene, less frequently in GPIHBP1 and APOA5, and with even fewer cases in LMF1 and APOC2. From the included studies, it can be deduced that, in cases with multifactorial chylomicronemia syndrome (MCS), both loss-of-function variants and common variants in canonical genes for FCH contribute to the manifestation of this other form of chylomicronemia. Other common and rare variants in other triglyceride metabolism genes have been identified in MCS patients, although their real impact on the development of severe hypertriglyceridemia is unknown. There may be up to 60 genes involved in triglyceride metabolism, so there is still a long way to go to know whether other genes not discussed in this monograph (MLXIPL, PLTP, TRIB1, PPAR alpha or USF1, for example) are genetic determinants of severe hypertriglyceridemia that need to be taken into account.
Collapse
Affiliation(s)
- María José Ariza Corbo
- Departamento de Medicina y Dermatología, Laboratorio de Lípidos y Aterosclerosis, Centro de Investigaciones Médico Sanitarias (CIMES), Instituto de Investigación Biomédica de Málaga plataforma Bionand (IBIMA), Universidad de Málaga, Málaga, España
| | - Ovidio Muñiz-Grijalvo
- UCERV-UCAMI, Departamento de Medicina Interna, Hospital Universitario Virgen del Rocío, Sevilla, España
| | - Agustín Blanco Echevarría
- Servicio de Medicina Interna, Instituto de Investigación Biomédica, Hospital Universitario 12 de Octubre, Madrid, España
| | - J L Díaz-Díaz
- Unidad de Lípidos y Riesgo Cardiovascular, Servicio de Medicina Interna, Complejo Hospitalario Universitario de A Coruña, A Coruña, España.
| |
Collapse
|
3
|
Zhang L, Shen M, Shu X, Zhou J, Ding J, Lin H, Pan B, Zhang C, Wang B, Guo W. The recommendation of re-classification of variants of uncertain significance (VUS) in adult genetic disorders patients. J Hum Genet 2024; 69:425-431. [PMID: 38839994 DOI: 10.1038/s10038-024-01263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/07/2024]
Abstract
Since variants of uncertain significance (VUS) reported in genetic testing cannot be acted upon clinically, this classification may delay or prohibit precise diagnosis and genetic counseling in adult genetic disorders patients. Large-scale analyses about qualitatively distinct lines of evidence used for VUS can make them re-classification more accurately. We analyzed 458 Chinese adult patients WES data, within 15 pathogenic evidence PS1, PS2, PM1, PM6 and PP4 were not used for VUS pathogenic classification, meanwhile the PP3, BP4, PP2 were used much more frequently. The PM2_Supporting was used most widely for all reported variants. There were also 31 null variants (nonsense, frameshift, canonical ±1 or 2 splice sites) which were probably the disease-causing variants of the patients were classified as VUS. By analyzed the evidence used for all VUS we recommend that appropriate genetic counseling, reliable releasing of in-house data, allele frequency comparison between case and control, expanded verification in patient family, co-segregation analysis and functional assays were urgent need to gather more evidence to reclassify VUS. We also found adult patients with nervous system disease were reported the most phenotype-associated VUS and the lower the phenotypic specificity, the more reported VUS. This result emphasized the importance of pretest genetic counseling which would make less reporting of VUS. Our result revealed the characteristics of the pathogenic classification evidence used for VUS in adult genetic disorders patients for the first time, recommend a rules-based process to evaluate the pathogenicity of VUS which could provide a strong basis for accurately evaluating the pathogenicity and clinical grade information of VUS. Meanwhile, we further expanded the genetic spectrum and improve the diagnostic rate of adult genetic disorders.
Collapse
Affiliation(s)
- Li Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Minna Shen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xianhong Shu
- Department of Echocardiography, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - Jingmin Zhou
- Department of Cardiology Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huandong Lin
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Liu X, Lei M, Xue Y, Li H, Yin J, Li D, Shu J, Cai C. Multi-dimensional Insight into the Coexistence of Pathogenic Genes for ADAR1 and TSC2: Careful Consideration is Essential for Interpretation of ADAR1 Variants. Biochem Genet 2024; 62:1811-1826. [PMID: 37740860 DOI: 10.1007/s10528-023-10488-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/06/2023] [Indexed: 09/25/2023]
Abstract
Aicardi-Goutières syndrome 6 (AGS6) is a serious auto-immunization-associated acute neurologic decompensation. AGS6 manifests as acute onset of severe generalized dystonia of limbs and developmental regression secondary to febrile illness mostly. Dyschromatosis symmetrica hereditaria (DSH), as pigmentary genodermatosis, is a characterized mixture of hyperpigmented and hypopigmented macules. Both AGS6 and DSH are associated with ADAR1 pathogenic variants. To explore the etiology of a proband with developmental regression with mixture of hyperpigmentation and hypopigmentation macules, we used the trio-WES. Later, to clarify the association between variants and diseases, we used guidelines of ACMG for variants interpretation and quantitative Real-time PCR for verifying elevated expression levels of interferon-stimulated genes, separately. By WES, we detected 2 variants in ADAR1 and a variant in TSC2, respectively, were NM_001111.5:c.1096_1097del, NM_001111.5:c.518A>G, and NM_000548.5:c.1864C>T. Variants interpretation suggested that these 3 variants were both pathogenic. Expression levels of interferon-stimulated genes also elevated as expected. We verified the co-occurrence of pathogenic variants of ADAR1 and TSC2 in AGS6 patients with DSH. Our works contributed to the elucidation of ADAR1 pathogenic mechanism, given the specific pathogenic mechanism of ADAR1, and it is necessary to consider with caution when variants were found in ADAR1.
Collapse
Affiliation(s)
- Xiangyu Liu
- Graduate College of Tianjin Medical University, Tianjin, 300070, China
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
| | - Meifang Lei
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Yan Xue
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China
| | - Hong Li
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China
| | - Jing Yin
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
- Department of Immunology, Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China
| | - Dong Li
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China.
- Department of Neurology, Tianjin Children's Hospital (Tianjin University Children's Hospital), No. 238 Longyan Road, Beichen District, Tianjin, 300134, China.
| | - Jianbo Shu
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China.
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China.
| | - Chunquan Cai
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, 300134, China.
- Tianjin Pediatric Research Institute, Tianjin Children's Hospital (Tianjin University Children's Hospital), Beichen District, No. 238 Longyan Road, Tianjin, 300134, China.
- Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, 300134, China.
| |
Collapse
|
5
|
Al-Saei O, Malka S, Owen N, Aliyev E, Vempalli FR, Ocieczek P, Al-Khathlan B, Fakhro K, Moosajee M. Increasing the diagnostic yield of childhood glaucoma cases recruited into the 100,000 Genomes Project. BMC Genomics 2024; 25:484. [PMID: 38755526 PMCID: PMC11097485 DOI: 10.1186/s12864-024-10353-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/25/2024] [Indexed: 05/18/2024] Open
Abstract
Childhood glaucoma (CG) encompasses a heterogeneous group of genetic eye disorders that is responsible for approximately 5% of childhood blindness worldwide. Understanding the molecular aetiology is key to improving diagnosis, prognosis and unlocking the potential for optimising clinical management. In this study, we investigated 86 CG cases from 78 unrelated families of diverse ethnic backgrounds, recruited into the Genomics England 100,000 Genomes Project (GE100KGP) rare disease cohort, to improve the genetic diagnostic yield. Using the Genomics England/Genomic Medicine Centres (GE/GMC) diagnostic pipeline, 13 unrelated families were solved (13/78, 17%). Further interrogation using an expanded gene panel yielded a molecular diagnosis in 7 more unrelated families (7/78, 9%). This analysis effectively raises the total number of solved CG families in the GE100KGP to 26% (20/78 families). Twenty-five percent (5/20) of the solved families had primary congenital glaucoma (PCG), while 75% (15/20) had secondary CG; 53% of this group had non-acquired ocular anomalies (including iris hypoplasia, megalocornea, ectopia pupillae, retinal dystrophy, and refractive errors) and 47% had non-acquired systemic diseases such as cardiac abnormalities, hearing impairment, and developmental delay. CYP1B1 was the most frequently implicated gene, accounting for 55% (11/20) of the solved families. We identified two novel likely pathogenic variants in the TEK gene, in addition to one novel pathogenic copy number variant (CNV) in FOXC1. Variants that passed undetected in the GE100KGP diagnostic pipeline were likely due to limitations of the tiering process, the use of smaller gene panels during analysis, and the prioritisation of coding SNVs and indels over larger structural variants, CNVs, and non-coding variants.
Collapse
Affiliation(s)
- Omayma Al-Saei
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Samantha Malka
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | - Nicholas Owen
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK
| | - Elbay Aliyev
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | | | - Paulina Ocieczek
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK
| | | | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Mariya Moosajee
- Institute of Ophthalmology, University College London, London, EC1V 9EL, UK.
- Moorfields Eye Hospital NHS Foundation Trust, London, EC1V 2PD, UK.
- The Francis Crick Institute, London, NW1 1AT, UK.
| |
Collapse
|
6
|
Yuan J, Yan XM. Detection of LAMA2 c.715C>G:p.R239G mutation in a newborn with raised creatine kinase: A case report. World J Clin Cases 2024; 12:2445-2450. [PMID: 38765743 PMCID: PMC11099404 DOI: 10.12998/wjcc.v12.i14.2445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/08/2024] [Accepted: 03/28/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND We report a rare case of primary clinical presentation featuring elevated creatine kinase (CK) levels in a neonate, which is associated with the LAMA2 gene. In this case, a heterozygous mutation in exon5 of the LAMA2 gene, c.715C>G (resulting in a change of nucleotide number 715 in the coding region from cytosine to guanine), induced an amino acid alteration p.R239G (No. 239) in the patient, representing a missense mutation. This observation may be elucidated by the neonatal creatine monitoring mechanism, a phenomenon not previously reported. CASE SUMMARY We analysed the case of a neonate presenting solely with elevated CK levels who was eventually discharged after supportive treatment. The chief complaint was identification of increased CK levels for 15 d and higher CK values for 1 d. Admission occurred at 18 d of age, and despite prolonged treatment with creatine and vitamin C, the elevated CK levels showed limited improvement. Whole exome sequencing revealed the presence of a c.715C>G mutation in LAMA2 in the newborn, correlating with a clinical phenotype. However, the available information offers insufficient evidence for clinical pathogenicity. CONCLUSION Mutations in LAMA2 are associated with the clinical phenotype of increased neonatal CK levels, for which no specific treatment exists. Whole genome sequencing facilitates early diagnosis.
Collapse
Affiliation(s)
- Jing Yuan
- Department of Pediatric, Children’s Hospital of Soochow University, Suzhou 215025, Jiangsu Province, China
| | - Xiang-Ming Yan
- Department of Surgery, Children's Hospital of Soochow University, Suzhou 215000, Jiangsu Province, China
| |
Collapse
|
7
|
Hadar N, Dolgin V, Oustinov K, Yogev Y, Poleg T, Safran A, Freund O, Agam N, Jean MM, Proskorovski-Ohayon R, Wormser O, Drabkin M, Halperin D, Eskin-Schwartz M, Narkis G, Sued-Hendrickson S, Aminov I, Gombosh M, Aharoni S, Birk OS. VARista: a free web platform for streamlined whole-genome variant analysis across T2T, hg38, and hg19. Hum Genet 2024; 143:695-701. [PMID: 38607411 DOI: 10.1007/s00439-024-02671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/24/2024] [Indexed: 04/13/2024]
Abstract
With the increasing importance of genomic data in understanding genetic diseases, there is an essential need for efficient and user-friendly tools that simplify variant analysis. Although multiple tools exist, many present barriers such as steep learning curves, limited reference genome compatibility, or costs. We developed VARista, a free web-based tool, to address these challenges and provide a streamlined solution for researchers, particularly those focusing on rare monogenic diseases. VARista offers a user-centric interface that eliminates much of the technical complexity typically associated with variant analysis. The tool directly supports VCF files generated using reference genomes hg19, hg38, and the emerging T2T, with seamless remapping capabilities between them. Features such as gene summaries and links, tissue and cell-specific gene expression data for both adults and fetuses, as well as automated PCR design and integration with tools such as SpliceAI and AlphaMissense, enable users to focus on the biology and the case itself. As we demonstrate, VARista proved effective in narrowing down potential disease-causing variants, prioritizing them effectively, and providing meaningful biological context, facilitating rapid decision-making. VARista stands out as a freely available and comprehensive tool that consolidates various aspects of variant analysis into a single platform that embraces the forefront of genomic advancements. Its design inherently supports a shift in focus from technicalities to critical thinking, thereby promoting better-informed decisions in genetic disease research. Given its unique capabilities and user-centric design, VARista has the potential to become an essential asset for the genomic research community. https://VARista.link.
Collapse
Affiliation(s)
- Noam Hadar
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Vadim Dolgin
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Katya Oustinov
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tomer Poleg
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Amit Safran
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ofek Freund
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Nadav Agam
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Matan M Jean
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Regina Proskorovski-Ohayon
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad Wormser
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Max Drabkin
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Daniel Halperin
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Marina Eskin-Schwartz
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Ginat Narkis
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Sufa Sued-Hendrickson
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ilana Aminov
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Maya Gombosh
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Sarit Aharoni
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel.
| |
Collapse
|
8
|
Li L, Tian X, Woodzell V, Gibbs RA, Yuan B, Venner E. Tracking updates in clinical databases increases efficiency for variant reanalysis. GENETICS IN MEDICINE OPEN 2024; 2:101841. [PMID: 39669589 PMCID: PMC11613846 DOI: 10.1016/j.gimo.2024.101841] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 12/14/2024]
Abstract
Purpose Variant interpretation, guided by American College of Medical Genetics and Genomics guidelines, can inform clinical decision-making. However, interpretations may change over time for a variety of reasons. Periodic reanalysis of previous variant interpretations is important to ensure that reported genetic findings remain accurate according to current knowledge. Methods We performed automated filtering by comparing ClinVar variants available in August 2020 with those from August 2021 to screen for potential reanalysis candidates from 3 projects. These variants were subsequently interpreted based on the American College of Medical Genetics and Genomics/Association for Molecular Pathology variant interpretation guideline or ClinGen revised gene-specific guidelines if applicable. Results Our method annotated 241 unique variants requiring reanalysis, from 3 projects containing 3,832,210 previously interpreted variants, including those filtered automatically. Among these 241 variants, 43 variants changed interpretation, including 55.81% (N = 24) with upgraded and 44.19% (N = 19) with downgraded classifications. An efficiency study showed that our strategy increased the reanalysis efficiency and saved reviewing time. Conclusion We demonstrated an effective high-throughput method, initiating from external data updates, to achieve variant reanalysis in a clinical laboratory. This filtering method reduced the number of variants that need to be reanalyzed, screened potential variants, and saved time and cost for clinical laboratories.
Collapse
Affiliation(s)
- Lele Li
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Xia Tian
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | | | - Richard A. Gibbs
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Bo Yuan
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
| | - Eric Venner
- The Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX
- Codified Genomics, Houston, TX
| |
Collapse
|
9
|
Elliott AM, Adam S, du Souich C, Lehman A, Nelson TN, van Karnebeek C, Alderman E, Armstrong L, Aubertin G, Blood K, Boelman C, Boerkoel C, Bretherick K, Brown L, Chijiwa C, Clarke L, Couse M, Creighton S, Watts-Dickens A, Gibson WT, Gill H, Tarailo-Graovac M, Hamilton S, Heran H, Horvath G, Huang L, Hulait GK, Koehn D, Lee HK, Lewis S, Lopez E, Louie K, Niederhoffer K, Matthews A, Meagher K, Peng JJ, Patel MS, Race S, Richmond P, Rupps R, Salvarinova R, Seath K, Selby K, Steinraths M, Stockler S, Tang K, Tyson C, van Allen M, Wasserman W, Mwenifumbo J, Friedman JM. Genome-wide sequencing and the clinical diagnosis of genetic disease: The CAUSES study. HGG ADVANCES 2022; 3:100108. [PMID: 35599849 PMCID: PMC9117924 DOI: 10.1016/j.xhgg.2022.100108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/11/2022] [Indexed: 12/02/2022] Open
Abstract
Genome-wide sequencing (GWS) is a standard of care for diagnosis of suspected genetic disorders, but the proportion of patients found to have pathogenic or likely pathogenic variants ranges from less than 30% to more than 60% in reported studies. It has been suggested that the diagnostic rate can be improved by interpreting genomic variants in the context of each affected individual's full clinical picture and by regular follow-up and reinterpretation of GWS laboratory results. Trio exome sequencing was performed in 415 families and trio genome sequencing in 85 families in the CAUSES study. The variants observed were interpreted by a multidisciplinary team including laboratory geneticists, bioinformaticians, clinical geneticists, genetic counselors, pediatric subspecialists, and the referring physician, and independently by a clinical laboratory using standard American College of Medical Genetics and Genomics (ACMG) criteria. Individuals were followed for an average of 5.1 years after testing, with clinical reassessment and reinterpretation of the GWS results as necessary. The multidisciplinary team established a diagnosis of genetic disease in 43.0% of the families at the time of initial GWS interpretation, and longitudinal follow-up and reinterpretation of GWS results produced new diagnoses in 17.2% of families whose initial GWS interpretation was uninformative or uncertain. Reinterpretation also resulted in rescinding a diagnosis in four families (1.9%). Of the families studied, 33.6% had ACMG pathogenic or likely pathogenic variants related to the clinical indication. Close collaboration among clinical geneticists, genetic counselors, laboratory geneticists, bioinformaticians, and individuals' primary physicians, with ongoing follow-up, reanalysis, and reinterpretation over time, can improve the clinical value of GWS.
Collapse
Affiliation(s)
- Alison M. Elliott
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Women’s Health Research Institute, Vancouver, BC, Canada
| | - Shelin Adam
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Christèle du Souich
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Anna Lehman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Tanya N. Nelson
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children’s and Women’s Hospitals, Vancouver, BC, Canada
| | - Clara van Karnebeek
- Department of Pediatrics, Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam, University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Emily Alderman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Linlea Armstrong
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Gudrun Aubertin
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Katherine Blood
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Cyrus Boelman
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Cornelius Boerkoel
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Karla Bretherick
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children’s and Women’s Hospitals, Vancouver, BC, Canada
| | - Lindsay Brown
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children’s and Women’s Hospitals, Vancouver, BC, Canada
| | - Chieko Chijiwa
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Lorne Clarke
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Madeline Couse
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Susan Creighton
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Abby Watts-Dickens
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - William T. Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Harinder Gill
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Sara Hamilton
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Harindar Heran
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Gabriella Horvath
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Lijia Huang
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children’s and Women’s Hospitals, Vancouver, BC, Canada
| | - Gurdip K. Hulait
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - David Koehn
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Hyun Kyung Lee
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Suzanne Lewis
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Elena Lopez
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Kristal Louie
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Karen Niederhoffer
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Allison Matthews
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children’s and Women’s Hospitals, Vancouver, BC, Canada
| | - Kirsten Meagher
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Junran J. Peng
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Millan S. Patel
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Simone Race
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Phillip Richmond
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Rosemarie Rupps
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Ramona Salvarinova
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Kimberly Seath
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Kathryn Selby
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Neurology, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Michelle Steinraths
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Sylvia Stockler
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Division of Biochemical Diseases, Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Kaoru Tang
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Christine Tyson
- Division of Genome Diagnostics, Department of Pathology and Laboratory Medicine, BC Children’s and Women’s Hospitals, Vancouver, BC, Canada
| | - Margot van Allen
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Wyeth Wasserman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
- Department of Pediatrics, Center for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Jill Mwenifumbo
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Jan M. Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| |
Collapse
|
10
|
Joyce KE, Onabanjo E, Brownlow S, Nur F, Olupona K, Fakayode K, Sroya M, Thomas GA, Ferguson T, Redhead J, Millar CM, Cooper N, Layton DM, Boardman-Pretty F, Caulfield MJ, Genomics England Research Consortium, Shovlin CL. Whole genome sequences discriminate hereditary hemorrhagic telangiectasia phenotypes by non-HHT deleterious DNA variation. Blood Adv 2022; 6:3956-3969. [PMID: 35316832 PMCID: PMC9278305 DOI: 10.1182/bloodadvances.2022007136] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/21/2022] [Indexed: 11/20/2022] Open
Abstract
The abnormal vascular structures of hereditary hemorrhagic telangiectasia (HHT) often cause severe anemia due to recurrent hemorrhage, but HHT causal genes do not predict the severity of hematological complications. We tested for chance inheritance and clinical associations of rare deleterious variants in which loss-of-function causes bleeding or hemolytic disorders in the general population. In double-blinded analyses, all 104 patients with HHT from a single reference center recruited to the 100 000 Genomes Project were categorized on new MALO (more/as-expected/less/opposite) sub-phenotype severity scales, and whole genome sequencing data were tested for high impact variants in 75 HHT-independent genes encoding coagulation factors, or platelet, hemoglobin, erythrocyte enzyme, and erythrocyte membrane constituents. Rare variants (all gnomAD allele frequencies <0.003) were identified in 56 (75%) of these 75 HHT-unrelated genes. Deleteriousness assignments by Combined Annotation Dependent Depletion (CADD) scores >15 were supported by gene-level mutation significance cutoff scores. CADD >15 variants were identified in 38/104 (36.5%) patients with HHT, found for 1 in 10 patients within platelet genes; 1 in 8 within coagulation genes; and 1 in 4 within erythrocyte hemolytic genes. In blinded analyses, patients with greater hemorrhagic severity that had been attributed solely to HHT vessels had more CADD-deleterious variants in platelet (Spearman ρ = 0.25; P = .008) and coagulation (Spearman ρ = 0.21; P = .024) genes. However, the HHT cohort had 60% fewer deleterious variants in platelet and coagulation genes than expected (Mann-Whitney test P = .021). In conclusion, patients with HHT commonly have rare variants in genes of relevance to their phenotype, offering new therapeutic targets and opportunities for informed, personalized medicine strategies.
Collapse
Affiliation(s)
- Katie E. Joyce
- Imperial College School of Medicine, Imperial College, London, United Kingdom
- Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, United Kingdom
| | - Ebun Onabanjo
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Sheila Brownlow
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Fadumo Nur
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Kike Olupona
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Kehinde Fakayode
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Manveer Sroya
- Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | | | - Teena Ferguson
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Julian Redhead
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Carolyn M. Millar
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | - Nichola Cooper
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | - D. Mark Layton
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
- Centre for Haematology, Department of Immunology and Inflammation, Imperial College, London, United Kingdom
| | | | - Mark J. Caulfield
- Genomics England Research Consortium, Genomics England, London, United Kingdom
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; and
| | | | - Claire L. Shovlin
- Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, United Kingdom
- West London Genomic Medicine Centre, Imperial College Healthcare NHS Trust, London, United Kingdom
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
11
|
Burke W, Parens E, Chung WK, Berger SM, Appelbaum PS. The Challenge of Genetic Variants of Uncertain Clinical Significance : A Narrative Review. Ann Intern Med 2022; 175:994-1000. [PMID: 35436152 PMCID: PMC10555957 DOI: 10.7326/m21-4109] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Genomic tests expand diagnostic and screening opportunities but also identify genetic variants of uncertain clinical significance (VUSs). Only a minority of VUSs are likely to prove pathogenic when later reassessed, but resolution of the uncertainty is rarely timely. That uncertainty adds complexity to clinical decision making and can result in harms and costs to patients and the health care system, including the time-consuming analysis required to interpret a VUS and the potential for unnecessary treatment and adverse psychological effects. Current efforts to improve variant interpretation will help reduce the scope of the problem, but the high prevalence of rare and novel variants in the human genome points to VUSs as an ongoing challenge. Additional strategies can help mitigate the potential harms of VUSs, including testing protocols that limit identification or reporting of VUSs, subclassification of VUSs according to the likelihood of pathogenicity, routine family-based evaluation of variants, and enhanced counseling efforts. All involve tradeoffs, and the appropriate balance of measures is likely to vary for different test uses and clinical settings. Cross-specialty deliberation and public input could contribute to systematic and broadly supported policies for managing VUSs.
Collapse
Affiliation(s)
- Wylie Burke
- Department of Bioethics and Humanities, University of Washington, Seattle, WA, USA
| | | | - Wendy K. Chung
- Departments of Pediatrics and Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - Sara M. Berger
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Paul S. Appelbaum
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
12
|
Ruffo P, Perrone B, Conforti FL. SOD-1 Variants in Amyotrophic Lateral Sclerosis: Systematic Re-Evaluation According to ACMG-AMP Guidelines. Genes (Basel) 2022; 13:genes13030537. [PMID: 35328090 PMCID: PMC8955492 DOI: 10.3390/genes13030537] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/08/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common type of motor neuron disease whose causes are unclear. The first ALS gene associated with the autosomal dominant form of the disease was SOD1. This gene has a high rate of rare variants, and an appropriate classification is essential for a correct ALS diagnosis. In this study, we re-evaluated the classification of all previously reported SOD1 variants (n = 202) from ALSoD, project MinE, and in-house databases by applying the ACMG-AMP criteria to ALS. New bioinformatics analysis, frequency rating, and a thorough search for functional studies were performed. We also proposed adjusting criteria strength describing how to apply them to SOD1 variants. Most of the previously reported variants have been reclassified as likely pathogenic and pathogenic based on the modified weight of the PS3 criterion, highlighting how in vivo or in vitro functional studies are determining their interpretation and classification. Furthermore, this study reveals the concordance and discordance of annotations between open databases, indicating the need for expert review to adapt the study of variants to a specific disease. Indeed, in complex diseases, such as ALS, the oligogenic inheritance, the presence of genes that act as risk factors and the reduced penetration must be considered. Overall, the diagnosis of ALS remains clinical, and improving variant classification could support genetic data as diagnostic criteria.
Collapse
|
13
|
Anderson E, Sharma L, Alsafi A, Shovlin CL. Pulmonary arteriovenous malformations may be the only clinical criterion present in genetically confirmed hereditary haemorrhagic telangiectasia. Thorax 2022; 77:628-630. [PMID: 35165143 PMCID: PMC9120382 DOI: 10.1136/thoraxjnl-2021-218332] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/14/2022] [Indexed: 11/03/2022]
Abstract
Pulmonary arteriovenous malformations (PAVMs) result in preventable complications demanding specialty care. Underlying hereditary haemorrhagic telangiectasia (HHT) can be identified by genetic testing, if the diagnosis is considered. Retrospectively reviewing 152 unrelated adults with genetically confirmed HHT due to ACVRL1, ENG or SMAD4, we found that only 104/152 (68%) met a clinical diagnosis of HHT with three Curaçao criteria. The genetic diagnostic rate was similar for patients with three (104/137, 76%) or one to two (48/71, 68%; p=0.25) criteria. Of 83 unrelated probands with PAVM(s) and genetically-confirmed HHT, 20/83 (24%) had few, if any, features of HHT. Enhanced clinical suspicion, as well as HHT genetic testing, is recommended if one or more PAVMs are present.
Collapse
Affiliation(s)
- Emily Anderson
- Department of Clinical Genetics, Liverpool Women's NHS Foundation Trust, Liverpool, UK
- Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, UK
| | - Lakshya Sharma
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Ali Alsafi
- Department of Imaging, Imperial College Healthcare NHS Trust, London, UK
| | - Claire L Shovlin
- Genomics England Respiratory Clinical Interpretation Partnership (GeCIP), London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| |
Collapse
|
14
|
Krude H, Berner R, Hoffmann GF. Diagnostik seltener Erkrankungen in der Pädiatrie. Monatsschr Kinderheilkd 2022. [DOI: 10.1007/s00112-021-01354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Mansard L, Baux D, Vaché C, Blanchet C, Meunier I, Willems M, Faugère V, Baudoin C, Moclyn M, Bianchi J, Dollfus H, Gilbert-Dussardier B, Dupin-Deguine D, Bonneau D, Drumare I, Odent S, Zanlonghi X, Claustres M, Koenig M, Kalatzis V, Roux AF. The Study of a 231 French Patient Cohort Significantly Extends the Mutational Spectrum of the Two Major Usher Genes MYO7A and USH2A. Int J Mol Sci 2021; 22:ijms222413294. [PMID: 34948090 PMCID: PMC8703989 DOI: 10.3390/ijms222413294] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/03/2021] [Accepted: 12/08/2021] [Indexed: 01/06/2023] Open
Abstract
Usher syndrome is an autosomal recessive disorder characterized by congenital hearing loss combined with retinitis pigmentosa, and in some cases, vestibular areflexia. Three clinical subtypes are distinguished, and MYO7A and USH2A represent the two major causal genes involved in Usher type I, the most severe form, and type II, the most frequent form, respectively. Massively parallel sequencing was performed on a cohort of patients in the context of a molecular diagnosis to confirm clinical suspicion of Usher syndrome. We report here 231 pathogenic MYO7A and USH2A genotypes identified in 73 Usher type I and 158 Usher type II patients. Furthermore, we present the ACMG classification of the variants, which comprise all types. Among them, 68 have not been previously reported in the literature, including 12 missense and 16 splice variants. We also report a new deep intronic variant in USH2A. Despite the important number of molecular studies published on these two genes, we show that during the course of routine genetic diagnosis, undescribed variants continue to be identified at a high rate. This is particularly pertinent in the current era, where therapeutic strategies based on DNA or RNA technologies are being developed.
Collapse
Affiliation(s)
- Luke Mansard
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - David Baux
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, F-34000 Montpellier, France; (I.M.); (M.W.); (V.K.)
| | - Christel Vaché
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, F-34000 Montpellier, France; (I.M.); (M.W.); (V.K.)
| | - Catherine Blanchet
- National Reference Centre for Inherited Sensory Diseases, University Montpellier, CHU Montpellier, F-34000 Montpellier, France;
- Oto Laryngology Department, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, F-34000 Montpellier, France; (I.M.); (M.W.); (V.K.)
- National Reference Centre for Inherited Sensory Diseases, University Montpellier, CHU Montpellier, F-34000 Montpellier, France;
| | - Marjolaine Willems
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, F-34000 Montpellier, France; (I.M.); (M.W.); (V.K.)
- Medical Genetics Department, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France
| | - Valérie Faugère
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - Corinne Baudoin
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - Melody Moclyn
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - Julie Bianchi
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - Helene Dollfus
- Reference Center for Rare Affections in Ophthalmology Genetics (CARGO), Institute of Medical Genetics of Alsace, University of Strasbourg, CHU Strasbourg, F-67000 Strasbourg, France;
| | | | - Delphine Dupin-Deguine
- Medical Genetics Department, University of Toulouse, CHU Purpan, F-31000 Toulouse, France;
| | - Dominique Bonneau
- Medical Genetics Department, University of Angers, CHU Angers, F-49000 Angers, France;
| | - Isabelle Drumare
- Vision and Neuro-Ophthalmology Department, University of Lille, CHU Lille, F-59000 Lille, France;
| | - Sylvie Odent
- Clinical Genetics Service, University Hospital, Genetics and Development Institute of Rennes IDGDR, UMR6290 University of Rennes, F-35000 Rennes, France;
| | - Xavier Zanlonghi
- Center of Competence for Rare Diseases, Jules Verne Clinic, F-44000 Nantes, France;
| | - Mireille Claustres
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - Michel Koenig
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
| | - Vasiliki Kalatzis
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, F-34000 Montpellier, France; (I.M.); (M.W.); (V.K.)
| | - Anne-Françoise Roux
- Molecular Genetics Laboratory, University of Montpellier, CHU Montpellier, F-34000 Montpellier, France; (L.M.); (D.B.); (C.V.); (V.F.); (C.B.); (M.M.); (J.B.); (M.C.); (M.K.)
- Institute for Neurosciences of Montpellier (INM), University of Montpellier, Inserm, F-34000 Montpellier, France; (I.M.); (M.W.); (V.K.)
- Correspondence:
| |
Collapse
|