2
|
Zheng Y, She Y, Su Z, Huang K, Chen S, Zhou L. A novel pathogenic variant in TDP2 causes spinocerebellar ataxia autosomal recessive 23 accompanied by pituitary tumor and hyperhidrosis: a case report. Neurol Sci 2024; 45:2881-2885. [PMID: 38433132 DOI: 10.1007/s10072-024-07397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024]
Abstract
TDP2 gene encodes tyrosyl DNA phosphodiesterase 2, an enzyme required for effective repair of the DNA double-strand breaks (DSBs). Spinocerebellar ataxia autosomal recessive 23 (SCAR23) is a rare disease caused by the pathogenic mutation of TDP2 gene and characterized by intellectual disability, progressive ataxia and refractory epilepsy. Thus far, merely nine patients harboring five different variants (c.425 + 1G > A; c.413_414delinsAA, p. Ser138*; c.400C > T, p. Arg134*; c.636 + 3_ 636 + 6 del; c.4G > T, p. Glu2*) in TDP2 gene have been reported. Here, we describe the tenth patient with a novel variant (c.650del, p. Gly217GlufsTer7) and new phenotype (pituitary tumor and hyperhidrosis).
Collapse
Affiliation(s)
- Yuqiu Zheng
- Department of Neurology, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Yingfang She
- Department of Neurology, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Zhengwei Su
- Department of Neurology, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Kanghui Huang
- Department of Neurology, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Shuda Chen
- Department of Neurology, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China.
| | - Liemin Zhou
- Department of Neurology, the Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China.
| |
Collapse
|
3
|
Zagnoli-Vieira G, Brazina J, Van Den Bogaert K, Huybrechts W, Molenaers G, Caldecott KW, Van Esch H. Inactivating TDP2 missense mutation in siblings with congenital abnormalities reminiscent of fanconi anemia. Hum Genet 2023; 142:1417-1427. [PMID: 37558815 PMCID: PMC10449949 DOI: 10.1007/s00439-023-02589-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/15/2023] [Indexed: 08/11/2023]
Abstract
Mutations in TDP2, encoding tyrosyl-DNA phosphodiesterase 2, have been associated with a syndromal form of autosomal recessive spinocerebellar ataxia, type 23 (SCAR23). This is a very rare and progressive neurodegenerative disorder described in only nine patients to date, and caused by splice site or nonsense mutations that result in greatly reduced or absent TDP2 protein. TDP2 is required for the rapid repair of DNA double-strand breaks induced by abortive DNA topoisomerase II (TOP2) activity, important for genetic stability in post-mitotic cells such as neurons. Here, we describe a sibship that is homozygous for the first TDP2 missense mutation (p.Glu152Lys) and which presents with clinical features overlapping both SCAR23 and Fanconi anemia (FA). We show that in contrast to previously reported SCAR23 patients, fibroblasts derived from the current patient retain significant levels of TDP2 protein. However, this protein is catalytically inactive, resulting in reduced rates of repair of TOP2-induced DNA double-strand breaks and cellular hypersensitivity to the TOP2 poison, etoposide. The TDP2-mutated patient-derived fibroblasts do not display increased chromosome breakage following treatment with DNA crosslinking agents, but both TDP2-mutated and FA cells exhibit increased chromosome breakage in response to etoposide. This suggests that the FA pathway is required in response to TOP2-induced DNA lesions, providing a possible explanation for the clinical overlap between FA and the current TDP2-mutated patients. When reviewing the relatively small number of patients with SCAR23 that have been reported, it is clear that the phenotype of such patients can extend beyond neurological features, indicating that the TDP2 protein influences not only neural homeostasis but also other tissues as well.
Collapse
Affiliation(s)
- Guido Zagnoli-Vieira
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK.
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge, CB2 1QN, UK.
| | - Jan Brazina
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK
| | - Kris Van Den Bogaert
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, 3000, Louvain, Belgium
| | - Wim Huybrechts
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, 3000, Louvain, Belgium
| | - Guy Molenaers
- Pediatric Orthopedics, Department of Orthopedics, University Hospitals Leuven, Herestraat 49, 3000, Louvain, Belgium
| | - Keith W Caldecott
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, UK.
| | - Hilde Van Esch
- Center for Human Genetics, University Hospitals Leuven, Herestraat 49, 3000, Louvain, Belgium.
| |
Collapse
|
4
|
Tazelaar GHP, Hop PJ, Seelen M, van Vugt JJFA, van Rheenen W, Kool L, van Eijk KR, Gijzen M, Dooijes D, Moisse M, Calvo A, Moglia C, Brunetti M, Canosa A, Nordin A, Pardina JSM, Ravits J, Al-Chalabi A, Chio A, McLaughlin RL, Hardiman O, Van Damme P, de Carvalho M, Neuwirth C, Weber M, Andersen PM, van den Berg LH, Veldink JH, van Es MA. Whole genome sequencing analysis reveals post-zygotic mutation variability in monozygotic twins discordant for amyotrophic lateral sclerosis. Neurobiol Aging 2023; 122:76-87. [PMID: 36521271 DOI: 10.1016/j.neurobiolaging.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 10/23/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
Amyotrophic lateral sclerosis is a heterogeneous, fatal neurodegenerative disease, characterized by motor neuron loss and in 50% of cases also by cognitive and/or behavioral changes. Mendelian forms of ALS comprise approximately 10-15% of cases. The majority is however considered sporadic, but also with a high contribution of genetic risk factors. To explore the contribution of somatic mutations and/or epigenetic changes to disease risk, we performed whole genome sequencing and methylation analyses using samples from multiple tissues on a cohort of 26 monozygotic twins discordant for ALS, followed by in-depth validation and replication experiments. The results of these analyses implicate several mechanisms in ALS pathophysiology, which include a role for de novo mutations, defects in DNA damage repair and accelerated aging.
Collapse
Affiliation(s)
- Gijs H P Tazelaar
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Paul J Hop
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Meinie Seelen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Joke J F A van Vugt
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter van Rheenen
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lindy Kool
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Kristel R van Eijk
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marleen Gijzen
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Dennis Dooijes
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matthieu Moisse
- Neurology Department University Hospitals Leuven, Department of Neurosciences and Leuven Brain Institute (LBI) KU Leuven-University of Leuven, Leuven, Belgium; VIB, Center for Brain & Disease Research, Leuven, Belgium
| | - Andrea Calvo
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Cristina Moglia
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Maura Brunetti
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Antonio Canosa
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Angelica Nordin
- Department of Clinical Science, Neurosciences, Umeå University Umeå, Sweden
| | | | - John Ravits
- Department of Neurosciences, University of California at San Diego, La Jolla, CA, USA
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute and United Kingdom Dementia Research Institute, King's College London, London, UK; Department of Neurology, King's College Hospital, London, UK
| | - Adriano Chio
- ALS Centre, "Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy; Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, SC Neurologia 1U, Turin, Italy; Neuroscience Institute of Turin (NIT), Turin, Italy
| | - Russell L McLaughlin
- Population Genetics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Republic of Ireland
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Republic of Ireland; Department of Neurology, Beaumont Hospital, Dublin, Republic of Ireland
| | - Philip Van Damme
- Neurology Department University Hospitals Leuven, Department of Neurosciences and Leuven Brain Institute (LBI) KU Leuven-University of Leuven, Leuven, Belgium; VIB, Center for Brain & Disease Research, Leuven, Belgium
| | - Mamede de Carvalho
- Department of Neurosciences, Hospital de Santa Maria-CHLN, Lisbon, Portugal; Institute of Physiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - Christoph Neuwirth
- Neuromuscular Diseases Unit / ALS Clinic, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Markus Weber
- Neuromuscular Diseases Unit / ALS Clinic, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Peter M Andersen
- Department of Clinical Science, Neurosciences, Umeå University Umeå, Sweden
| | - Leonard H van den Berg
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jan H Veldink
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Michael A van Es
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
6
|
Manoochehri J, Kamal N, Khamirani HJ, Zoghi S, Haghighi MF, Goodarzi HR, Bagher Tabei SM. A combination of two novels homozygous FCSK variants cause disorder of glycosylation with defective fucosylation: New patient and literature review. Eur J Med Genet 2022; 65:104535. [PMID: 35718084 DOI: 10.1016/j.ejmg.2022.104535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 04/04/2022] [Accepted: 06/05/2022] [Indexed: 11/26/2022]
Abstract
Pathogenic variants in FCSK cause Congenital Disorder of Glycosylation with Defective Fucosylation-2 (FCSK-CDG; MIM: 618,324). It is a rare autosomal recessive genetic disease caused by defects in the L-fucose kinase, which is necessary for the fucose salvage pathway. Herein, we report two novel variants in an Iranian patient, the fourth individual with FCSK-CDG described in the literature. Two homozygous variants in FCSK (rs376941268; NM_145059.3: c.379C > A, p. Leu127Met and rs543223292; NM_145059.3: c.394G > C, p. Asp132His) were identified in the proband. Sanger sequencing conducted on his unaffected parents revealed that they were heterozygous for the same variants. The proband, a four-and-a-half year old Iranian male born to consanguineous parents, manifested Intellectual disability, growth delay, ophthalmic abnormalities, seizures, speech disorder, and feeding difficulties.
Collapse
Affiliation(s)
- Jamal Manoochehri
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Neda Kamal
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Jafari Khamirani
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sina Zoghi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Fazelzadeh Haghighi
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Hamed Reza Goodarzi
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Seyed Mohammad Bagher Tabei
- Department of Genetics, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran; Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran; Maternal-fetal Medicine Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
7
|
Pommier Y, Nussenzweig A, Takeda S, Austin C. Human topoisomerases and their roles in genome stability and organization. Nat Rev Mol Cell Biol 2022; 23:407-427. [PMID: 35228717 PMCID: PMC8883456 DOI: 10.1038/s41580-022-00452-3] [Citation(s) in RCA: 226] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/15/2022]
Abstract
Human topoisomerases comprise a family of six enzymes: two type IB (TOP1 and mitochondrial TOP1 (TOP1MT), two type IIA (TOP2A and TOP2B) and two type IA (TOP3A and TOP3B) topoisomerases. In this Review, we discuss their biochemistry and their roles in transcription, DNA replication and chromatin remodelling, and highlight the recent progress made in understanding TOP3A and TOP3B. Because of recent advances in elucidating the high-order organization of the genome through chromatin loops and topologically associating domains (TADs), we integrate the functions of topoisomerases with genome organization. We also discuss the physiological and pathological formation of irreversible topoisomerase cleavage complexes (TOPccs) as they generate topoisomerase DNA–protein crosslinks (TOP-DPCs) coupled with DNA breaks. We discuss the expanding number of redundant pathways that repair TOP-DPCs, and the defects in those pathways, which are increasingly recognized as source of genomic damage leading to neurological diseases and cancer. Topoisomerases have essential roles in transcription, DNA replication, chromatin remodelling and, as recently revealed, 3D genome organization. However, topoisomerases also generate DNA–protein crosslinks coupled with DNA breaks, which are increasingly recognized as a source of disease-causing genomic damage.
Collapse
|