1
|
Ozturk O, Ozturk M, Ates K, Esener Z, Erguven NN, Ozgor B, Gungor S, Sigirci A, Tekedereli I. Exploring the Genetic Etiology of Pediatric Epilepsy: Insights from Targeted Next-Generation Sequence Analysis. Mol Syndromol 2025; 16:115-127. [PMID: 40176841 PMCID: PMC11961108 DOI: 10.1159/000540762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/03/2024] [Indexed: 04/05/2025] Open
Abstract
Introduction Epilepsy is a group of neurologic disorders with clinical and genetic heterogeneity. Epilepsy often affects children; thus, early diagnosis and precise treatment are vital to protecting the standard of life of a child. Progress in epilepsy-related gene discovery has caused enormous novelty in specific epilepsy diagnoses. Genetic testing using next-generation sequencing is now reachable, leading to higher diagnosis ratios and understanding of the disease's underlying mechanisms. The study's primary aim was to identify the genetic etiology based on targeted next-generation sequence analysis data and to calculate the diagnostic value of the epilepsy gene panel in the 0-17 age-group diagnosed with epilepsy. The secondary aim was to demonstrate the significance of periodic reinterpretation of variant of uncertain significance (VUS) variants and genotype-phenotype correlation. Methods This retrospective study comprised 107 patients with epilepsy aged 8 months to 17 years, for whom a targeted gene panel covered 110 genes. VUS variants were reanalyzed, and genotype-phenotype correlation was performed. Results In the initial evaluation, causal variants were described in 23 patients (21.5%). After reinterpretation of VUS, we detected causal variants in 30 out of 107 patients (28%). By reinterpreting the VUS and evaluating genotype-phenotype correlations, we enhanced our diagnostic value by 30.32%. After reinterpretation of VUS variants, the ACMG classification of 36 variants, including 15 benign (31%), 15 likely benign (31%), 5 likely pathogenic (10%), and 1 pathogenic (2%), were redefined. We most frequently detected causal variants in TSC2 (n = 5), GRIN2A (n = 4), and ALDH7A1 (n = 4) genes. Conclusion The predictive value for epilepsy panel testing was 28% in the cohort. Our study revealed the importance of reanalysis of VUS variants and contributed to enriching the mutation spectrum in epilepsy.
Collapse
Affiliation(s)
- Ozden Ozturk
- Genetic Diseases Screening Laboratory, General Directorate of Public Health, Ankara, Turkey
| | - Murat Ozturk
- Medical Genetics, Batman Training and Research Hospital, Batman, Turkey
| | - Kubra Ates
- Medical Genetics, Sakarya Training and Research Hospital, Serdivan, Turkey
| | - Zeynep Esener
- Medical Genetics, Balikesir University, Balikesir, Turkey
| | | | - Bilge Ozgor
- Pediatric Neurology, Inonu University, Malatya, Turkey
| | - Serdal Gungor
- Pediatric Neurology, Medical Park Antalya Hospital, Antalya, Turkey
| | | | | |
Collapse
|
2
|
Chourasia N, Vaidya R, Sengupta S, Mefford HC, Wheless J. A Retrospective Review of Reclassification of Variants of Uncertain Significance in a Pediatric Epilepsy Cohort Undergoing Genetic Panel Testing. Pediatr Neurol 2024; 161:101-107. [PMID: 39357456 DOI: 10.1016/j.pediatrneurol.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND The interpretation and communication of variant of uncertain significance (VUS) genetic results often present a challenge in clinical practice. VUSs can be reclassified over time into benign/likely benign (B/LB) or pathogenic/likely pathogenic (P/LP) based on the availability of updated data. We evaluate the frequency of VUS reclassification in our tertiary care epilepsy cohort undergoing epilepsy genetic panel (EGP) testing. METHODS Patients with established diagnoses of epilepsy (neonates to 18 years of age) who underwent EGP testing between 2017 and 2022 from a single commercial laboratory were evaluated. Patients who had any variant reclassified from their initial EGP report were included. Duration between reclassification of VUSs and types of reclassifications were compared between developmental and epileptic encephalopathy (DEE) versus non-DEE phenotypes. RESULTS Over the five years, 1025 probands were tested using EGP. Eighty-five probands (8%) had at least one genetic variant reclassified. A total of 252 initial VUSs were reported in the 85 probands, of which 113 (45%) VUSs were reclassified. Of 113 reclassification events, 21 (19%) were upgraded to P/LP and 92 (81%) were reclassified to B/LB. The median (interquartile range) duration between variant reinterpretations in the cohort was 12 (14.5) months. There were no significant differences in the duration between reclassification and the likelihood of reclassification of VUSs to B/LB or P/LP between the two groups (DEE versus non-DEE). CONCLUSIONS VUS reclassification over time can lead to clinically significant variant reinterpretation in patients with unknown genetic diagnoses. Periodic genomic test reinterpretation, preferably yearly, is recommended in routine clinical practice.
Collapse
Affiliation(s)
- Nitish Chourasia
- Le Bonheur Children's Comprehensive Epilepsy Center, University of Tennessee Health Science Center, Memphis, Tennessee.
| | - Rohan Vaidya
- Le Bonheur Children's Comprehensive Epilepsy Center, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Soham Sengupta
- Center for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Heather C Mefford
- Center for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - James Wheless
- Le Bonheur Children's Comprehensive Epilepsy Center, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
3
|
Goh ESY, Chad L, Richer J, Bombard Y, Mighton C, Agatep R, Lacaria M, Penny B, Thomas MA, Zawati MH, MacFarlane J, Laberge AM, Nelson TN. Canadian College of Medical Geneticists: clinical practice advisory document - responsibility to recontact for reinterpretation of clinical genetic testing. J Med Genet 2024; 61:1123-1131. [PMID: 39362754 PMCID: PMC11672037 DOI: 10.1136/jmg-2024-110330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/26/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Advances in technology and knowledge have facilitated both an increase in the number of patient variants reported and variants reclassified. While there is currently no duty to recontact for reclassified genetic variants, there may be a responsibility. The purpose of this clinical practice advisory document is to provide healthcare practitioners guidance for recontact of previously identified and classified variants, suggest methods for recontact, and principles to consider, taking account patient safety, feasibility, ethical considerations, health service capacity and resource constraints. The target audience are practitioners who order genetic testing, follow patients who have undergone genetic testing and those analysing and reporting genetic testing. METHODS A multidisciplinary group of laboratory and ordering clinicians, patient representatives, ethics and legal researchers and a genetic counsellor from the Canadian Association of Genetic Counsellors reviewed the existing literature and guidelines on responsibility to recontact in a clinical context to make recommendations. Comments were collected from the Canadian College of Medical Geneticists (CCMG) Education, Ethics, and Public Policy, Clinical Practice and Laboratory Practice committees, and the membership at large. RESULTS Following incorporation of feedback, and external review by the Canadian Association of Genetic Counsellors and patient groups, the document was approved by the CCMG Board of Directors. The CCMG is the Canadian organisation responsible for certifying laboratory and medical geneticists who provide medical genetics services, and for establishing professional and ethical standards for clinical genetics services in Canada. CONCLUSION The document describes the ethical and practical factors and suggests a shared responsibility between patients, ordering clinician and laboratory practitioners.
Collapse
Affiliation(s)
- Elaine Suk-Ying Goh
- Laboratory Medicine and Genetics, Trillium Health Partners, Mississauga, Ontario, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Lauren Chad
- The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Julie Richer
- Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Yvonne Bombard
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Chloe Mighton
- Genomics Health Services Research Program, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | - Ron Agatep
- Genomics, Shared Health Diagnostic Services, Winnipeg, Manitoba, Canada
| | - Melanie Lacaria
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | | | - Mary Ann Thomas
- Departments of Medical Genetics and Pediatrics, University of Calgary, Calgary, Alberta, Canada
| | - Ma'n H Zawati
- Human Genetics, Centre of Genomics and Policy - McGill University, Montreal, Quebec, Canada
| | - Julie MacFarlane
- Screening Programs, Perinatal Services BC, Vancouver, British Columbia, Canada
| | - Anne-Marie Laberge
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
- Medical Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec, Canada
| | - Tanya N Nelson
- Genome Diagnostics, Pathology and Laboratory Medicine, BC Children's Hospital, Vancouver, British Columbia, Canada
- Genome Diagnostics, Pathology and Laboratory Medicine, BC Women's Hospital and Health Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
Lipiński P, Wójcicka-Kowalczyk K, Bogdańska A, Ehmke E, Pajdowska M, Skrzypek K, Charzewska A, Hoffman-Zacharska D. Case report: Early (molecular) diagnosis is the clue: report on ALDH7A1 deficiency in newborns. Front Genet 2024; 15:1464556. [PMID: 39329078 PMCID: PMC11424414 DOI: 10.3389/fgene.2024.1464556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
The first-tier genetic testing for developmental and epileptic encephalopathies (DEE) is now increasingly used in routine clinical practice. Antiquitin deficiency, also referred to as pyridoxine-dependent epilepsy (PDE-ALDH7A1), represents an inherited metabolic disorder with the phenotype of an early infantile DEE. In addition to the fact that biochemical biomarkers of PDE-ALDH7A1, including α-aminoadipic semialdehyde dehydrogenase, pipecolic acid (PA), Δ1-piperideine-6-carboxylate, and 6-oxopipecolate (6-oxo-PIP), are well-characterized, and their analysis and usefulness have some limitations. Here, we describe the case of a newborn presenting with seizures from the first hours of life, who was resistant to standard antiepileptic drugs and was found to be a biallelic compound heterozygote of two clearly pathogenic variants in the ALDH7A1 gene based on targeted next-generation sequencing (NGS). The diagnostic process of PDE-ALDH7A1 was limited by the possibility to determine only urinary PA and 6-oxo-PIP (urinary organic acid profile using the GC-MS method), and the exogenous peak of levetiracetam, due to the fact that it has a similar retention time as 6-oxo-PIP, masked the detection of 6-oxo-PIP.
Collapse
Affiliation(s)
- Patryk Lipiński
- Institute of Clinical Sciences, Maria Skłodowska-Curie Medical Academy, Warsaw, Poland
- Department of Pediatrics, Bielański Hospital, Warsaw, Poland
| | | | - Anna Bogdańska
- Department of Clinical Biochemistry, The Children’s Memorial Health Institute, Warsaw, Poland
| | - Ewa Ehmke
- Department of Pediatrics, Nutrition and Metabolic Diseases, The Children’s Memorial Health Institute, Warsaw, Poland
| | | | - Katarzyna Skrzypek
- Department of Medical Genetics, Institute of Mother and Child, Warsaw, Poland
| | | | | |
Collapse
|
5
|
Conecker G, Xia MY, Hecker J, Achkar C, Cukiert C, Devries S, Donner E, Fitzgerald MP, Gardella E, Hammer M, Hegde A, Hu C, Kato M, Luo T, Schreiber JM, Wang Y, Kooistra T, Oudin M, Waldrop K, Youngquist JT, Zhang D, Wirrell E, Perry MS. Global modified Delphi consensus on diagnosis, phenotypes, and treatment of SCN8A-related epilepsy and/or neurodevelopmental disorders. Epilepsia 2024; 65:2322-2338. [PMID: 38802994 DOI: 10.1111/epi.17992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVE We aimed to develop consensus for diagnosis/management of SCN8A-related disorders. Utilizing a modified Delphi process, a global cohort of experienced clinicians and caregivers provided input on diagnosis, phenotypes, treatment, and management of SCN8A-related disorders. METHODS A Core Panel (13 clinicians, one researcher, six caregivers), divided into three subgroups (diagnosis/phenotypes, treatment, comorbidities/prognosis), performed a literature review and developed questions for the modified Delphi process. Twenty-eight expert clinicians, one researcher, and 13 caregivers from 16 countries participated in the subsequent three survey rounds. We defined consensus as follows: strong consensus, ≥80% fully agree; moderate consensus, ≥80% fully/partially agree, <10% disagree; and modest consensus, 67%-79% fully/partially agree, <10% disagree. RESULTS Early diagnosis is important for long-term clinical outcomes in SCN8A-related disorders. There are five phenotypes: three with early seizure onset (severe developmental and epileptic encephalopathy [DEE], mild/moderate DEE, self-limited (familial) infantile epilepsy [SeL(F)IE]) and two with later/no seizure onset (neurodevelopmental delay with generalized epilepsy [NDDwGE], NDD without epilepsy [NDDwoE]). Caregivers represented six patients with severe DEE, five mild/moderate DEE, one NDDwGE, and one NDDwoE. Phenotypes vary by age at seizures/developmental delay onset, seizure type, electroencephalographic/magnetic resonance imaging findings, and first-line treatment. Gain of function (GOF) versus loss of function (LOF) is valuable for informing treatment. Sodium channel blockers are optimal first-line treatment for GOF, severe DEE, mild/moderate DEE, and SeL(F)IE; levetiracetam is relatively contraindicated in GOF patients. First-line treatment for NDDwGE is valproate, ethosuximide, or lamotrigine; sodium channel blockers are relatively contraindicated in LOF patients. SIGNIFICANCE This is the first-ever global consensus for the diagnosis and treatment of SCN8A-related disorders. This consensus will reduce knowledge gaps in disease recognition and inform preferred treatment across this heterogeneous disorder. Consensus of this type allows more clinicians to provide evidence-based care and empowers SCN8A families to advocate for their children.
Collapse
Affiliation(s)
- Gabrielle Conecker
- International SCN8A Alliance, a project of Decoding Developmental Epilepsies, Washington, District of Columbia, USA
| | - Maya Y Xia
- International SCN8A Alliance, a project of Decoding Developmental Epilepsies, Washington, District of Columbia, USA
- COMBINEDBrain, Brentwood, Tennessee, USA
| | - JayEtta Hecker
- International SCN8A Alliance, a project of Decoding Developmental Epilepsies, Washington, District of Columbia, USA
| | - Christelle Achkar
- Division of Epilepsy and Clinical Neurophysiology and Epilepsy Genetics Program, Department of Neurology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Cristine Cukiert
- Department of Neurology and Neurosurgery, Cukiert Clinic, São Paulo, Brazil
| | - Seth Devries
- Pediatric Neurology, Helen DeVos Children's Hospital, Grand Rapids, Michigan, USA
| | - Elizabeth Donner
- Division of Neurology, Department of Paediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mark P Fitzgerald
- Epilepsy Neurogenetics Initiative, Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Elena Gardella
- Department of Epilepsy Genetics and Personalized Treatment, Danish Epilepsy Center, Dianalund, Denmark
- University of Southern Denmark, Odense, Denmark
| | - Michael Hammer
- International SCN8A Alliance, a project of Decoding Developmental Epilepsies, Washington, District of Columbia, USA
- Department of Neurology and Bio5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Anaita Hegde
- Department of Pediatric Neurosciences, Bai Jerbai Wadia Hospital for Children, Mumbai, India
| | - Chunhui Hu
- Department of Neurology, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), National Regional Medical Center, Fuzhou, China
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Epilepsy Medical Center, Showa University Hospital, Shinagawa-ku, Tokyo, Japan
| | - Tian Luo
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - John M Schreiber
- Department of Neurology, Children's National Hospital, Washington, District of Columbia, USA
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Tammy Kooistra
- International SCN8A Alliance Caregiver Representative, Washington, District of Columbia, USA
| | - Madeleine Oudin
- International SCN8A Alliance, a project of Decoding Developmental Epilepsies, Washington, District of Columbia, USA
- International SCN8A Alliance Caregiver Representative, Washington, District of Columbia, USA
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, USA
| | - Kayla Waldrop
- International SCN8A Alliance Caregiver Representative, Washington, District of Columbia, USA
| | - J Tyler Youngquist
- International SCN8A Alliance Caregiver Representative, Washington, District of Columbia, USA
| | - Dennis Zhang
- International SCN8A Alliance Caregiver Representative, Washington, District of Columbia, USA
| | - Elaine Wirrell
- Child and Adolescent Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - M Scott Perry
- Jane and John Justin Institute for Mind Health, Neurosciences Center, Cook Children's Medical Center, Fort Worth, Texas, USA
| |
Collapse
|
6
|
Martin BE, Sands T, Bier L, Bergner A, Boehme AK, Lippa N. Comparing the frequency of variants of uncertain significance (VUS) between ancestry groups in a paediatric epilepsy cohort. J Med Genet 2024; 61:645-651. [PMID: 38453479 DOI: 10.1136/jmg-2023-109450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 02/21/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Studies indicate that variants of uncertain significance are more common in non-European populations due to lack of a diversity in population databases. This difference has not been explored in epilepsy, which is increasingly found to be genetic in paediatric populations, and has precision medicine applications. This study examines the differences in the frequency of uncertain next-generation sequencing (NGS) results among a paediatric epilepsy cohort between ancestral groups historically under-represented in biomedical research (UBR) and represented in biomedical research (RBR). METHODS A retrospective chart review of patients with epilepsy seen at Columbia University Irving Medical Center (CUIMC). One hundred seventy-eight cases met the following criteria: (1) visited any provider within the Pediatric Neurology Clinic at CUIMC, (2) had an ICD code indicating a diagnosis of epilepsy, (3) underwent NGS testing after March 2015 and (4) had self-reported ancestry that fit into a single dichotomous category of either historically represented or under-represented in biomedical research. RESULTS UBR cases had significantly higher rates of uncertain results when compared with RBR cases (79.2% UBR, 20.8% RBR; p value=0.002). This finding remained true after controlling for potential confounding factors, including sex, intellectual disability or developmental delay, epilepsy type, age of onset, number of genes tested and year of testing. CONCLUSION Our results add to the literature that individuals who are of ancestries historically under-represented in genetics research are more likely to receive uncertain genetic results than those of represented majority ancestral groups and establishes this finding in an epilepsy cohort.
Collapse
Affiliation(s)
- Bree E Martin
- Department of General Pediatrics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Tristan Sands
- Department of Neurology, Columbia University, New York, New York, USA
- Columbia University Irving Medical Center, New York, New York, USA
| | - Louise Bier
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Amanda Bergner
- Genetic Counseling Graduate Program, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
- Department of Genetics and Development, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Amelia K Boehme
- Department of Neurology, Columbia University, New York, New York, USA
| | - Natalie Lippa
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
7
|
van der Geest MA, Maeckelberghe ELM, van Gijn ME, Lucassen AM, Swertz MA, van Langen IM, Plantinga M. Systematic reanalysis of genomic data by diagnostic laboratories: a scoping review of ethical, economic, legal and (psycho)social implications. Eur J Hum Genet 2024; 32:489-497. [PMID: 38480795 PMCID: PMC11061183 DOI: 10.1038/s41431-023-01529-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 05/02/2024] Open
Abstract
With the introduction of Next Generation Sequencing (NGS) techniques increasing numbers of disease-associated variants are being identified. This ongoing progress might lead to diagnoses in formerly undiagnosed patients and novel insights in already solved cases. Therefore, many studies suggest introducing systematic reanalysis of NGS data in routine diagnostics. Introduction will, however, also have ethical, economic, legal and (psycho)social (ELSI) implications that Genetic Health Professionals (GHPs) from laboratories should consider before possible implementation of systematic reanalysis. To get a first impression we performed a scoping literature review. Our findings show that for the vast majority of included articles ELSI aspects were not mentioned as such. However, often these issues were raised implicitly. In total, we identified nine ELSI aspects, such as (perceived) professional responsibilities, implications for consent and cost-effectiveness. The identified ELSI aspects brought forward necessary trade-offs for GHPs to consciously take into account when considering responsible implementation of systematic reanalysis of NGS data in routine diagnostics, balancing the various strains on their laboratories and personnel while creating optimal results for new and former patients. Some important aspects are not well explored yet. For example, our study shows GHPs see the values of systematic reanalysis but also experience barriers, often mentioned as being practical or financial only, but in fact also being ethical or psychosocial. Engagement of these GHPs in further research on ELSI aspects is important for sustainable implementation.
Collapse
Affiliation(s)
- Marije A van der Geest
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| | - Els L M Maeckelberghe
- Institute for Medical Education, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marielle E van Gijn
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Anneke M Lucassen
- Faculty of Medicine, Clinical Ethics and Law, University of Southampton, Southampton, UK
- Centre for Personalised Medicine, Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Morris A Swertz
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Irene M van Langen
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Mirjam Plantinga
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
8
|
Gaillard JR, Whitt Z, Selwa LM, Harris D, Lee KN. Pearls & Oy-sters: Whole-Genome Sequencing in Critically Ill Neurologic Patient Leads to Diagnosis With Treatment Implications. Neurology 2023; 101:588-592. [PMID: 37460236 PMCID: PMC10558174 DOI: 10.1212/wnl.0000000000207552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/08/2023] [Indexed: 09/27/2023] Open
Abstract
Many adult patients with a history of seizures and global developmental delay do not have an identified etiology for their epilepsy. Rapid whole-genome sequencing (rWGS) can be used to identify a genetic etiology in critically ill patients to provide actionable interventions. In this case, a 27-year-old patient with a history of epilepsy, global developmental delay, and intellectual disability presented with altered mental status and new abnormal movements. The patient acutely declined over the course of 24-48 hours of presentation, including nonconvulsive status epilepticus leading to intubation for airway protection, 2 episodes of ventricular tachycardia requiring synchronized cardioversion, and 1 episode of supraventricular tachycardia. The patient was found to be in metabolic crisis. Metabolic workup and rapid whole-genome sequencing were sent. Patient was treated with 10% dextrose in normal saline and a mitochondrial cocktail. She received treatment with ammonia scavengers and hemodialysis with resolution of metabolic crisis. rWGS found a homozygous pathogenic variant in TANGO2 and a de novo pathogenic variant in KCNQ1, ultimately leading to the creation of a metabolic emergency protocol and implantable cardioverter defibrillator placement. This case highlights the use of rWGS in an acutely ill patient leading to actionable interventions. It also highlights the utility and importance of genetic sequencing in reevaluation of adult neurologic patients.
Collapse
Affiliation(s)
- Jonathan Read Gaillard
- From the Division of Pediatric Neurology (J.R.G.) and Division of Pediatric Genetics, Metabolism, and Genomic Medicine (Z.W., K.N.L.), Department of Pediatrics, Division of Epilepsy (L.M.S., D.H.), Department of Neurology, and Division of Genetic Medicine (K.N.L.), Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Zachary Whitt
- From the Division of Pediatric Neurology (J.R.G.) and Division of Pediatric Genetics, Metabolism, and Genomic Medicine (Z.W., K.N.L.), Department of Pediatrics, Division of Epilepsy (L.M.S., D.H.), Department of Neurology, and Division of Genetic Medicine (K.N.L.), Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Linda M Selwa
- From the Division of Pediatric Neurology (J.R.G.) and Division of Pediatric Genetics, Metabolism, and Genomic Medicine (Z.W., K.N.L.), Department of Pediatrics, Division of Epilepsy (L.M.S., D.H.), Department of Neurology, and Division of Genetic Medicine (K.N.L.), Department of Internal Medicine, University of Michigan, Ann Arbor
| | - David Harris
- From the Division of Pediatric Neurology (J.R.G.) and Division of Pediatric Genetics, Metabolism, and Genomic Medicine (Z.W., K.N.L.), Department of Pediatrics, Division of Epilepsy (L.M.S., D.H.), Department of Neurology, and Division of Genetic Medicine (K.N.L.), Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Kristen N Lee
- From the Division of Pediatric Neurology (J.R.G.) and Division of Pediatric Genetics, Metabolism, and Genomic Medicine (Z.W., K.N.L.), Department of Pediatrics, Division of Epilepsy (L.M.S., D.H.), Department of Neurology, and Division of Genetic Medicine (K.N.L.), Department of Internal Medicine, University of Michigan, Ann Arbor.
| |
Collapse
|
9
|
Arslan A. Pathogenic variants of human GABRA1 gene associated with epilepsy: A computational approach. Heliyon 2023; 9:e20218. [PMID: 37809401 PMCID: PMC10559982 DOI: 10.1016/j.heliyon.2023.e20218] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/17/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023] Open
Abstract
Critical for brain development, neurodevelopmental and network disorders, the GABRA1 gene encodes for the α1 subunit, an abundantly and developmentally expressed subunit of heteropentameric gamma-aminobutyric acid A receptors (GABAARs) mediating primary inhibition in the brain. Mutations of the GABAAR subunit genes including GABRA1 gene are associated with epilepsy, a group of syndromes, characterized by unprovoked seizures and diagnosed by integrative approach, that involves genetic testing. Despite the diagnostic use of genetic testing, a large fraction of the GABAAR subunit gene variants including the variants of GABRA1 gene is not known in terms of their molecular consequence, a challenge for precision and personalized medicine. Addressing this, one hundred thirty-seven GABRA1 gene variants of unknown clinical significance have been extracted from the ClinVar database and computationally analyzed for pathogenicity. Eight variants (L49H, P59L, W97R, D99G, G152S, V270G, T294R, P305L) are predicted as pathogenic and mapped to the α1 subunit's extracellular domain (ECD), transmembrane domains (TMDs) and extracellular linker. This is followed by the integration with relevant data for cellular pathology and severity of the epilepsy syndromes retrieved from the literature. Our results suggest that the pathogenic variants in the ECD of GABRA1 (L49H, P59L, W97R, D99G, G152S) will probably manifest decreased surface expression and reduced current with mild epilepsy phenotypes while V270G, T294R in the TMDs and P305L in the linker between the second and the third TMDs will likely cause reduced cell current with severe epilepsy phenotypes. The results presented in this study provides insights for clinical genetics and wet lab experimentation.
Collapse
Affiliation(s)
- Ayla Arslan
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Turkey
| |
Collapse
|
10
|
Kaya Özçora GD, Söbü E, Gümüş U. Genetic and clinical variations of developmental epileptic encephalopathies. Neurol Res 2023; 45:226-233. [PMID: 36731496 DOI: 10.1080/01616412.2023.2170917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE The concept of 'developmental and epileptic encephalopathy (DEE)' recognises that in infants presenting with severe early-onset epilepsy, neurodevelopmental comorbidity may be attributable to both the underlying cause and to adverse effects of uncontrolled epileptic activity. There is no direct genotype - phenotype correlation in DEEs. This study aimed to report the genetic and phenotypic differences in patients with DEE. METHODS Genetic evaluations of the patients were performed due to epilepsy combined with developmental delay, epileptic encephalopathy, motor deficits, autistic features, or cognitive impairment. Patients were assessed for demographic characteristics, medical history, family history, psychomotor development, seizure control interventions, electroencephalogram (EEG) and magnetic resonance imaging (MRI) findings. RESULTS This study included 20 children aged 0-16 years who were diagnosed as having DEE.The types of DEE detected in our study were DEE 2, 4, 6B, 7, 11, 26, 30, 33, 35, 42, 58, 62, and 67.Status epilepticus was recorded in only DEE7. The most common EEG abnormality was multifocal epileptic discharges (35%,) followed by burst-suppression patterns in patients with neonatal-onset seizures. Thirteen of the children were aged over 2 years, two (15%) were non-ambulatory and six (46%) were non-verbal. MRI scans were normal in 80% of the patients. Refractory epilepsy seen in 33% of cases.De-novo mutation, microcephaly and dysmorphic findings accompany resistant seizures and are associated with poor prognosis. DISCUSSION For patients with movement disorders, developmental delay, autism, and ID with or without epilepsy in any period of their life, next-generation sequencing is the only diagnostic technique available, with genetic analysis often being the only diagnostic method.
Collapse
Affiliation(s)
- Gül Demet Kaya Özçora
- Faculty of Medical Sciences Pediatric Neurology Dept, Gaziantep Hasan Kalyoncu University, Gaziantep, Turkey
| | - Elif Söbü
- Kartal Dr.Lütfi Kırdar City Hospital, Department of Pediatric Endocrinology, Istanbul, Turkey
| | - Uğur Gümüş
- Dr. Ersin Arslan Education and Research Hospital, Medical Genetics Department, Gaziantep, Turkey
| |
Collapse
|
11
|
Goodspeed K, Mosca LR, Weitzel NC, Horning K, Simon EW, Pfalzer AC, Xia M, Langer K, Freed A, Bone M, Picone M, Bichell TJV. A draft conceptual model of SLC6A1 neurodevelopmental disorder. Front Neurosci 2023; 16:1026065. [PMID: 36741059 PMCID: PMC9893116 DOI: 10.3389/fnins.2022.1026065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/05/2022] [Indexed: 01/21/2023] Open
Abstract
Introduction SLC6A1 Neurodevelopmental Disorder (SLC6A1-NDD), first described in 2015, is a rare syndrome caused by a mutation in the SLC6A1 gene which encodes for the GABA Transporter 1 (GAT-1) protein. Epilepsy is one of the most common symptoms in patients and is often the primary treatment target, though the severity of epilepsy is variable. The impact of seizures and other symptoms of SLC6A1-NDD on patients and caregivers is wide-ranging and has not been described in a formal disease concept study. Methods A literature search was performed using the simple search term, "SLC6A1." Papers published before 2015, and those which did not describe the human neurodevelopmental disorder were removed from analysis. Open-ended interviews on lived experiences were conducted with two patient advocate key opinion leaders. An analysis of de-identified conversations between families of people with SLC6A1-NDD on social media was performed to quantify topics of concern. Results Published literature described symptoms in all of the following domains: neurological, visual, motor, cognitive, communication, behavior, gastrointestinal, sleep, musculo-skeletal, and emotional in addition to epilepsy. Key opinion leaders noted two unpublished features: altered hand use in infants, and developmental regression with onset of epilepsy. Analysis of social media interactions confirmed that the core symptoms of epilepsy and autistic traits were prominent concerns, but also demonstrated that other symptoms have a large impact on family life. Discussion For rare diseases, analysis of published literature is important, but may not be as comprehensive as that which can be gleaned from spontaneous interactions between families and through qualitative interviews. This report reflects our current understanding of the lived experience of SLC6A1-NDD. The discrepancy between the domains of disease reported in the literature and those discussed in patient conversations suggests that a formal qualitative interview-based disease concept study of SLC6A1-NDD is warranted.
Collapse
Affiliation(s)
- Kimberly Goodspeed
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Lindsay R. Mosca
- College of Arts and Sciences, Vanderbilt University, Nashville, TN, United States
| | - Nicole C. Weitzel
- College of Arts and Sciences, Vanderbilt University, Nashville, TN, United States
| | | | - Elijah W. Simon
- College of Arts and Sciences, Vanderbilt University, Nashville, TN, United States
| | | | - Maya Xia
- COMBINEDBrain, Brentwood, TN, United States
| | - Katherine Langer
- College of Arts and Sciences, Vanderbilt University, Nashville, TN, United States
| | | | - Megan Bone
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Maria Picone
- TREND Community, Philadelphia, PA, United States
| | | |
Collapse
|
12
|
Blazekovic A, Gotovac Jercic K, Meglaj S, Duranovic V, Prpic I, Lozic B, Malenica M, Markovic S, Lujic L, Petelin Gadze Z, Juraski RG, Barišic N, Baric I, Borovecki F. Genetics of Pediatric Epilepsy: Next-Generation Sequencing in Clinical Practice. Genes (Basel) 2022; 13:genes13081466. [PMID: 36011376 PMCID: PMC9407986 DOI: 10.3390/genes13081466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
Epilepsy is one of the most common neurological disorders with diverse phenotypic characteristics and high genetic heterogeneity. Epilepsy often occurs in childhood, so timely diagnosis and adequate therapy are crucial for preserving quality of life and unhindered development of a child. Next-generation-sequencing (NGS)-based tools have shown potential in increasing diagnostic yield. The primary objective of this study was to evaluate the impact of genetic testing and to investigate the diagnostic utility of targeted gene panel sequencing. This retrospective cohort study included 277 patients aged 6 months to 17 years undergoing NGS with an epilepsy panel covering 142 genes. Of 118 variants detected, 38 (32.2%) were not described in the literature. We identified 64 pathogenic or likely pathogenic variants with an overall diagnostic yield of 23.1%. We showed a significantly higher diagnostic yield in patients with developmental delay (28.9%). Furthermore, we showed that patients with variants reported as pathogenic presented with seizures at a younger age, which led to the conclusion that such children should be included in genomic diagnostic procedures as soon as possible to achieve a correct diagnosis in a timely manner, potentially leading to better treatment and avoidance of unnecessary procedures. Describing and discovering the genetic background of the disease not only leads to a better understanding of the mechanisms of the disorder but also opens the possibility of more precise and individualized treatment based on stratified medicine.
Collapse
Affiliation(s)
- Antonela Blazekovic
- Department for Functional Genomics, Center for Translational and Clinical Research, University Hospital Center Zagreb, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department for Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Correspondence:
| | - Kristina Gotovac Jercic
- Department for Functional Genomics, Center for Translational and Clinical Research, University Hospital Center Zagreb, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Neurology, University Hospital Center Zagreb, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Sarah Meglaj
- Department for Functional Genomics, Center for Translational and Clinical Research, University Hospital Center Zagreb, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| | - Vlasta Duranovic
- Department of Neuropediatrics, Children’s Hospital Zagreb, 10000 Zagreb, Croatia
- Department of Pediatrics, Clinical Hospital Center Rijeka, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Igor Prpic
- Department of Pediatrics, Clinical Hospital Center Rijeka, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Bernarda Lozic
- Department of Pediatrics, University Hospital of Split, University of Split School of Medicine, 21000 Split, Croatia
| | - Masa Malenica
- Department of Pediatrics, University Hospital Center Sestre Milosrdnice, 10000 Zagreb, Croatia
| | - Silvana Markovic
- Dr. Tomislav Bardek General Hospital Koprivnica, 48000 Koprivnica, Croatia
| | - Lucija Lujic
- Department of Neuropediatrics, Children’s Hospital Zagreb, 10000 Zagreb, Croatia
| | - Zeljka Petelin Gadze
- Department of Neurology, University Hospital Center Zagreb, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Referral Centre of the Ministry of Health of the Republic of Croatia for Epilepsy, Affiliated to ERN EpiCARE, 10000 Zagreb, Croatia
| | | | - Nina Barišic
- Department of Pediatrics, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Ivo Baric
- Department of Pediatrics, University Hospital Center Zagreb, 10000 Zagreb, Croatia
| | - Fran Borovecki
- Department for Functional Genomics, Center for Translational and Clinical Research, University Hospital Center Zagreb, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
- Department of Neurology, University Hospital Center Zagreb, University of Zagreb School of Medicine, 10000 Zagreb, Croatia
| |
Collapse
|
13
|
The Genetic Diagnosis of Ultrarare DEEs: An Ongoing Challenge. Genes (Basel) 2022; 13:genes13030500. [PMID: 35328054 PMCID: PMC8953579 DOI: 10.3390/genes13030500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 02/06/2023] Open
Abstract
Epileptic encephalopathies (EEs) and developmental and epileptic encephalopathies (DEEs) are a group of severe early-onset neurodevelopmental disorders (NDDs). In recent years, next-generation equencing (NGS) technologies enabled the discovery of numerous genes involved in these conditions. However, more than 50% of patients remained undiagnosed. A major obstacle lies in the high degree of genetic heterogeneity and the wide phenotypic variability that has characterized these disorders. Interpreting a large amount of NGS data is also a crucial challenge. This study describes a dynamic diagnostic procedure used to investigate 17 patients with DEE or EE with previous negative or inconclusive genetic testing by whole-exome sequencing (WES), leading to a definite diagnosis in about 59% of participants. Biallelic mutations caused most of the diagnosed cases (50%), and a pathogenic somatic mutation resulted in 10% of the subjects. The high diagnostic yield reached highlights the relevance of the scientific approach, the importance of the reverse phenotyping strategy, and the involvement of a dedicated multidisciplinary team. The study emphasizes the role of recessive and somatic variants, new genetic mechanisms, and the complexity of genotype–phenotype associations. In older patients, WES results could end invasive diagnostic procedures and allow a more accurate transition. Finally, an early pursued diagnosis is essential for comprehensive care of patients, precision approach, knowledge of prognosis, patient and family planning, and quality of life.
Collapse
|