1
|
Khan S, Drabiak K. Eight Strategies to Engineer Acceptance of Human Germline Modifications. JOURNAL OF BIOETHICAL INQUIRY 2024; 21:81-94. [PMID: 37523056 DOI: 10.1007/s11673-023-10266-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 05/06/2023] [Indexed: 08/01/2023]
Abstract
Until recently, scientific consensus held firm that genetically manipulated embryos created through methods including Mitochondrial Replacement Therapy or human germline genome editing should not be used to initiate a pregnancy. In countries that have relevant laws pertaining to heritable human germline modifications, the vast majority prohibit or restrict this practice. In the last several years, scholars have observed a transformation of scientific and policy restrictions with insistent calls for creating a regulatory pathway. Multiple stakeholders highlight the role of social consensus and public engagement for governance of heritable human germline modifications. However, in the drive to gain public acceptance and lift restrictions, some proponents provide distorted or misleading narratives designed to influence public perception and incrementally shift the consensus. This article describes eight discrete strategies that proponents employ to influence framing, sway public opinion, and revise policymaking of human germline modifications in a manner that undermines honest engagement.
Collapse
Affiliation(s)
- Shoaib Khan
- Morsani College of Medicine, University of South Florida, Tampa, USA
| | | |
Collapse
|
2
|
Žebrauskienė D, Sadauskienė E, Masiulienė R, Aidietienė S, Šiaudinienė A, Pečeliūnas V, Žukauskaitė G, Žurauskas E, Valevičienė N, Barysienė J, Preikšaitienė E. Rare c.302C>T TTR Variant Associated with Transthyretin Amyloidosis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:237. [PMID: 38399526 PMCID: PMC10890320 DOI: 10.3390/medicina60020237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/19/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
Background and Objectives: Hereditary transthyretin amyloidosis (ATTRv) is a rare disease caused by pathogenic variants in the transthyretin (TTR) gene. More than 140 different disease-causing variants in TTR have been reported. Only a few individuals with a rare TTR variant, c.302C>T, p.(Ala101Val) (historically known as p.(Ala81Val)), primarily associated with cardiac ATTRv, have been described. Therefore, our aim was to analyze the clinical characteristics of individuals with the identified c.302C>T TTR variant at our center. Materials and Methods: We analyzed data from individuals with ATTRv who were diagnosed and treated at Vilnius University Hospital Santaros Klinikos. ATTRv was confirmed by negative hematological analysis for monoclonal protein, positive tissue biopsy or bone scintigraphy and a pathogenic TTR variant. Results: During 2018-2021, the TTR NM_000371.3:c.302C>T, NP_000362.1:p.(Ala101Val) variant was found in one individual in a homozygous state and in three individuals in a heterozygous state. The age of onset of symptoms ranged from 44 to 74 years. The earliest onset of symptoms was in the individual with the homozygous variant. A history of carpal tunnel syndrome was identified in two individuals. On ECG, three individuals had low QRS voltage in limb leads. All individuals had elevated NT-proBNP and hsTroponine I levels on baseline laboratory tests and concentric left ventricular hypertrophy on transthoracic echocardiography. The individual with the homozygous c.302C>T TTR variant had the most pronounced polyneuropathy with tetraparesis. Other patients with the heterozygous variant had more significant amyloid cardiomyopathy. When screening family members, the c.302C>T TTR variant was identified in two phenotypically negative relatives at the ages of 33 and 47 years. Conclusions: c.302C>T is a rare TTR variant associated with ATTRv cardiomyopathy. The homozygous state of this variant was not reported before, and is associated with earlier disease onset and neurological involvement compared to the heterozygote state.
Collapse
Affiliation(s)
- Dovilė Žebrauskienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Eglė Sadauskienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Rūta Masiulienė
- Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Sigita Aidietienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Agnė Šiaudinienė
- Center of Haematology, Oncology and Transfusion Medicine, Vilnius University Hospital Santaros Klinikos, LT-08661 Vilnius, Lithuania
| | - Valdas Pečeliūnas
- Center of Haematology, Oncology and Transfusion Medicine, Vilnius University Hospital Santaros Klinikos, LT-08661 Vilnius, Lithuania
- Clinic of Internal Medicine, Family Medicine and Oncology, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Gabrielė Žukauskaitė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Edvardas Žurauskas
- National Center of Pathology, Vilnius University Hospital Santaros Klinikos, LT-08406 Vilnius, Lithuania
| | - Nomeda Valevičienė
- Department of Radiology, Nuclear Medicine and Medical Physics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Jūratė Barysienė
- Clinic of Cardiac and Vascular Diseases, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| | - Eglė Preikšaitienė
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania
| |
Collapse
|
3
|
Akther Z, Amee SS, Masum MM, Nishat L, Yesmin ZA. Pedigree Analysis of Polycystic Kidney Disease Patients: Bangladeshi Perspective. Indian J Nephrol 2023; 33:440-443. [PMID: 38174302 PMCID: PMC10752401 DOI: 10.4103/ijn.ijn_234_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/23/2022] [Accepted: 11/29/2022] [Indexed: 01/05/2024] Open
Abstract
Background Polycystic kidney disease (PKD), an inheritance disorder which is the fourth leading cause of the end-stage renal disease. The inheritance pattern can be diagnosed and confirmed by pedigree analysis. The aim of the present research was to determine the type and frequency of PKD using pedigree analysis. Materials and Methods The present research was designed as a cross-sectional descriptive study. Thirty-eight adult Bangladeshi PKD patients were recruited using a selection checklist from the Department of Nephrology, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh. Data were collected using a data collection sheet after taking informed written consent. The pedigree was drawn using the genetic pedigree chart creation software f-tree V4.0.6. The percentage frequencies of different types of pedigree were calculated using the Statistical Package for the Social Sciences software, version 23. Results A total of 24 (63.20%) had a positive family history and 36.80% (14) had no positive family history. All of the patients with a positive family history had vertical transmission; male and female were equally inheriting the gene. Out of these 24 patients, 4.17% (one), 8.33% (two), and 16.67% (four) had a homozygous/heterozygous state, skip generation, and male to male transmission, respectively. Conclusions Pedigree analysis of PKD patients showed an increased value in early diagnosis and better management and prognosis of the disease.
Collapse
Affiliation(s)
- Zohora Akther
- Department of Anatomy, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Samira Sultana Amee
- Department of Anatomy, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Md. Mohiuddin Masum
- Department of Anatomy, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Latifa Nishat
- Department of Anatomy, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| | - Zinnat Ara Yesmin
- Department of Anatomy, Bangabandhu Sheikh Mujib Medical University, Dhaka, Bangladesh
| |
Collapse
|
4
|
Tan L, Guo Y, Zhong MM, Zhao YQ, Zhao J, Aimee DM, Feng Y, Ye Q, Hu J, Ou-Yang ZY, Chen NX, Su XL, Zhang Q, Liu Q, Yuan H, Wang MY, Feng YZ, Zhang FY. Tooth ultrastructure changes induced by a nonsense mutation in the FAM83H gene: insights into the diversity of amelogenesis imperfecta. Clin Oral Investig 2023; 27:6111-6123. [PMID: 37615776 DOI: 10.1007/s00784-023-05228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVES The current research on single-nucleotide polymorphism (SNP) mutation sites at different positions of the FAM83H gene and their phenotypic changes leading to amelogenesis imperfecta (AI) is inconsistent. We identified a previously reported heterozygous nonsense mutation c.1192C>T (p.Q398*) in the FAM83H gene and conducted a comprehensive analysis of the dental ultrastructure and chemical composition changes induced by this mutation. Additionally, we predicted the protein feature affected by this mutation site. The aim was to further deepen our understanding of the diversity of AI caused by different mutation sites in the FAM83H gene. METHODS Whole-exome sequencing (WES) and Sanger sequencing were used to confirm the mutation sites. Physical features of the patient's teeth were investigated using various methods including cone beam computer tomography (CBCT), scanning electron microscopy (SEM), contact profilometry (roughness measurement), and a nanomechanical tester (nanoindentation measurement). The protein features of wild-type and mutant FAM83H were predicted using bioinformatics methods. RESULTS One previously discovered FAM83H heterozygous nonsense mutation c.1192C>T (p.Q398*) was detected in the patient. SEM revealed inconsistent dentinal tubules, and EDS showed that calcium and phosphorus were lower in the patient's dentin but higher in the enamel compared to the control tooth. Roughness measurements showed that AI patients' teeth had rougher occlusal surfaces than those of the control tooth. Nanoindentation measurements showed that the enamel and dentin hardness values of the AI patients' teeth were both significantly reduced compared to those of the control tooth. Compared to the wild-type FAM83H protein, the mutant FAM83H protein shows alterations in stability, hydrophobicity, secondary structure, and tertiary structure. These changes could underlie functional differences and AI phenotype variations caused by this mutation site. CONCLUSIONS This study expands the understanding of the effects of FAM83H mutations on tooth structure. CLINICAL RELEVANCE Our study enhances our understanding of the genetic basis of AI and may contribute to improved diagnostics and personalized treatment strategies for patients with FAM83H-related AI.
Collapse
Affiliation(s)
- Li Tan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yue Guo
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Meng-Mei Zhong
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Ya-Qiong Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Jie Zhao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Dusenge Marie Aimee
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yao Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Qin Ye
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Jing Hu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Ze-Yue Ou-Yang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Ning-Xin Chen
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Xiao-Lin Su
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Qian Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Qiong Liu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Hui Yuan
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Min-Yuan Wang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Yun-Zhi Feng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Feng-Yi Zhang
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
| |
Collapse
|
5
|
Einson J, Glinos D, Boerwinkle E, Castaldi P, Darbar D, de Andrade M, Ellinor P, Fornage M, Gabriel S, Germer S, Gibbs R, Hersh CP, Johnsen J, Kaplan R, Konkle BA, Kooperberg C, Nassir R, Loos RJF, Meyers DA, Mitchell BD, Psaty B, Vasan RS, Rich SS, Rienstra M, Rotter JI, Saferali A, Shoemaker MB, Silverman E, Smith AV, Mohammadi P, Castel SE, Iossifov I, Lappalainen T. Genetic control of mRNA splicing as a potential mechanism for incomplete penetrance of rare coding variants. Genetics 2023; 224:iyad115. [PMID: 37348055 PMCID: PMC10411602 DOI: 10.1093/genetics/iyad115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/02/2023] [Accepted: 04/18/2023] [Indexed: 06/24/2023] Open
Abstract
Exonic variants present some of the strongest links between genotype and phenotype. However, these variants can have significant inter-individual pathogenicity differences, known as variable penetrance. In this study, we propose a model where genetically controlled mRNA splicing modulates the pathogenicity of exonic variants. By first cataloging exonic inclusion from RNA-sequencing data in GTEx V8, we find that pathogenic alleles are depleted on highly included exons. Using a large-scale phased whole genome sequencing data from the TOPMed consortium, we observe that this effect may be driven by common splice-regulatory genetic variants, and that natural selection acts on haplotype configurations that reduce the transcript inclusion of putatively pathogenic variants, especially when limiting to haploinsufficient genes. Finally, we test if this effect may be relevant for autism risk using families from the Simons Simplex Collection, but find that splicing of pathogenic alleles has a penetrance reducing effect here as well. Overall, our results indicate that common splice-regulatory variants may play a role in reducing the damaging effects of rare exonic variants.
Collapse
Affiliation(s)
- Jonah Einson
- Department of Biomedical Informatics, Columbia University, New York, NY 10027, USA
- New York Genome Center, New York, NY 10013, USA
| | | | - Eric Boerwinkle
- School of Public Health, University of Texas Health at Houston, Houston, TX 77030, USA
| | - Peter Castaldi
- Department of Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Dawood Darbar
- Department of Cardiology, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Mariza de Andrade
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Patrick Ellinor
- Corrigan Minehan Heart Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health at Houston, Houston, TX 77030, USA
| | | | | | - Richard Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine Human Genome Sequencing Center, Houston, TX 77030, USA
| | - Craig P Hersh
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jill Johnsen
- Department of Hematology, University of Washington, Seattle, WA 98195, USA
| | - Robert Kaplan
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Barbara A Konkle
- Department of Hematology, University of Washington, Seattle, WA 98195, USA
| | | | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura University, Mecca 24382, Saudi Arabia
| | - Ruth J F Loos
- Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Deborah A Meyers
- Department of Medicine, University of Arizona, Tucson, AZ 85721, USA
| | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA
| | - Bruce Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington, Seattle, WA 98195, USA
| | | | - Stephen S Rich
- Public Health Sciences, University of Virginia, Charlottesville, VA 22903, USA
| | - Michael Rienstra
- Clinical Cardiology, UMCG Cardiology, Groningen 09713, the Netherlands
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Aabida Saferali
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | - Edwin Silverman
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital, Boston, MA 02115, USA
| | - Albert Vernon Smith
- Department of Biostatistics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Pejman Mohammadi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stephane E Castel
- New York Genome Center, New York, NY 10013, USA
- Variant Bio, Seattle, WA 98102, USA
| | - Ivan Iossifov
- New York Genome Center, New York, NY 10013, USA
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, NY 10013, USA
- Department of Systems Biology, Columbia University, New York, NY 10027, USA
- Department of Gene Technology, KTH Royal Institute of Technology, Stockholm 114 28, Sweden
| |
Collapse
|
6
|
Sun YH, Wu YL, Liao BY. Phenotypic heterogeneity in human genetic diseases: ultrasensitivity-mediated threshold effects as a unifying molecular mechanism. J Biomed Sci 2023; 30:58. [PMID: 37525275 PMCID: PMC10388531 DOI: 10.1186/s12929-023-00959-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023] Open
Abstract
Phenotypic heterogeneity is very common in genetic systems and in human diseases and has important consequences for disease diagnosis and treatment. In addition to the many genetic and non-genetic (e.g., epigenetic, environmental) factors reported to account for part of the heterogeneity, we stress the importance of stochastic fluctuation and regulatory network topology in contributing to phenotypic heterogeneity. We argue that a threshold effect is a unifying principle to explain the phenomenon; that ultrasensitivity is the molecular mechanism for this threshold effect; and discuss the three conditions for phenotypic heterogeneity to occur. We suggest that threshold effects occur not only at the cellular level, but also at the organ level. We stress the importance of context-dependence and its relationship to pleiotropy and edgetic mutations. Based on this model, we provide practical strategies to study human genetic diseases. By understanding the network mechanism for ultrasensitivity and identifying the critical factor, we may manipulate the weak spot to gently nudge the system from an ultrasensitive state to a stable non-disease state. Our analysis provides a new insight into the prevention and treatment of genetic diseases.
Collapse
Affiliation(s)
- Y Henry Sun
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Zhunan, Miaoli, Taiwan.
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
| | - Yueh-Lin Wu
- Institute of Molecular and Genomic Medicine, National Health Research Institute, Zhunan, Miaoli, Taiwan
- Division of Nephrology, Department of Internal Medicine, Wei-Gong Memorial Hospital, Miaoli, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- TMU Research Center of Urology and Kidney, Taipei Medical University, Taipei, Taiwan
- Division of Nephrology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei City, Taiwan
| | - Ben-Yang Liao
- Institute of Population Health Sciences, National Health Research Institute, Zhunan, Miaoli, Taiwan
| |
Collapse
|
7
|
Mishra-Gorur K, Barak T, Kaulen LD, Henegariu O, Jin SC, Aguilera SM, Yalbir E, Goles G, Nishimura S, Miyagishima D, Djenoune L, Altinok S, Rai DK, Viviano S, Prendergast A, Zerillo C, Ozcan K, Baran B, Sencar L, Goc N, Yarman Y, Ercan-Sencicek AG, Bilguvar K, Lifton RP, Moliterno J, Louvi A, Yuan S, Deniz E, Brueckner M, Gunel M. Pleiotropic role of TRAF7 in skull-base meningiomas and congenital heart disease. Proc Natl Acad Sci U S A 2023; 120:e2214997120. [PMID: 37043537 PMCID: PMC10120005 DOI: 10.1073/pnas.2214997120] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/27/2023] [Indexed: 04/13/2023] Open
Abstract
While somatic variants of TRAF7 (Tumor necrosis factor receptor-associated factor 7) underlie anterior skull-base meningiomas, here we report the inherited mutations of TRAF7 that cause congenital heart defects. We show that TRAF7 mutants operate in a dominant manner, inhibiting protein function via heterodimerization with wild-type protein. Further, the shared genetics of the two disparate pathologies can be traced to the common origin of forebrain meninges and cardiac outflow tract from the TRAF7-expressing neural crest. Somatic and inherited mutations disrupt TRAF7-IFT57 interactions leading to cilia degradation. TRAF7-mutant meningioma primary cultures lack cilia, and TRAF7 knockdown causes cardiac, craniofacial, and ciliary defects in Xenopus and zebrafish, suggesting a mechanistic convergence for TRAF7-driven meningiomas and developmental heart defects.
Collapse
Affiliation(s)
- Ketu Mishra-Gorur
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Leon D. Kaulen
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Sheng Chih Jin
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
| | | | - Ezgi Yalbir
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Gizem Goles
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Sayoko Nishimura
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Lydia Djenoune
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Selin Altinok
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Devendra K. Rai
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Stephen Viviano
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Andrew Prendergast
- Department of Internal Medicine, Section of Cardiology, Yale Cardiovascular Research Center, Yale School of Medicine, New Haven, CT06510
| | - Cynthia Zerillo
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Kent Ozcan
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Burcin Baran
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Leman Sencar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Nukte Goc
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | - Yanki Yarman
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
| | | | - Kaya Bilguvar
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
| | - Richard P. Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY10065
| | - Jennifer Moliterno
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT06510
| | - Angeliki Louvi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT06510
| | - Shiaulou Yuan
- Cardiology Division, Department of Medicine, Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA02129
| | - Engin Deniz
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Martina Brueckner
- Department of Pediatrics, Yale School of Medicine, New Haven, CT06510
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT06510
- Department of Genetics, Yale School of Medicine, New Haven, CT06510
- Yale Program in Brain Tumor Research, Yale School of Medicine, New Haven, CT06510
- Department of Neuroscience, Yale School of Medicine, New Haven, CT06510
| |
Collapse
|
8
|
Einson J, Glinos D, Boerwinkle E, Castaldi P, Darbar D, de Andrade M, Ellinor P, Fornage M, Gabriel S, Germer S, Gibbs R, Hersh CP, Johnsen J, Kaplan R, Konkle BA, Kooperberg C, Nassir R, Loos RJF, Meyers DA, Mitchell BD, Psaty B, Vasan RS, Rich SS, Rienstra M, Rotter JI, Saferali A, Shoemaker MB, Silverman E, Smith AV, Mohammadi P, Castel SE, Iossifov I, Lappalainen T. Genetic control of mRNA splicing as a potential mechanism for incomplete penetrance of rare coding variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526505. [PMID: 36778406 PMCID: PMC9915611 DOI: 10.1101/2023.01.31.526505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Exonic variants present some of the strongest links between genotype and phenotype. However, these variants can have significant inter-individual pathogenicity differences, known as variable penetrance. In this study, we propose a model where genetically controlled mRNA splicing modulates the pathogenicity of exonic variants. By first cataloging exonic inclusion from RNA-seq data in GTEx v8, we find that pathogenic alleles are depleted on highly included exons. Using a large-scale phased WGS data from the TOPMed consortium, we observe that this effect may be driven by common splice-regulatory genetic variants, and that natural selection acts on haplotype configurations that reduce the transcript inclusion of putatively pathogenic variants, especially when limiting to haploinsufficient genes. Finally, we test if this effect may be relevant for autism risk using families from the Simons Simplex Collection, but find that splicing of pathogenic alleles has a penetrance reducing effect here as well. Overall, our results indicate that common splice-regulatory variants may play a role in reducing the damaging effects of rare exonic variants.
Collapse
Affiliation(s)
- Jonah Einson
- Department of Biomedical Informatics, Columbia University
- New York Genome Center
| | | | | | | | - Dawood Darbar
- Department of Cardiology, University of Illinois at Chicago
| | | | - Patrick Ellinor
- Corrigan Minehan Heart Center, Massachusetts General Hospital
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health at Houston
| | | | | | - Richard Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine Human Genome Sequencing Center
| | - Craig P Hersh
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital
| | - Jill Johnsen
- Department of Hematology, University of Washington
| | - Robert Kaplan
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine
| | | | | | - Rami Nassir
- Department of Pathology, School of Medicine, Umm Al-Qura University
| | - Ruth J F Loos
- Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai
| | | | - Braxton D Mitchell
- Department of Medicine, University of Maryland School of Medicine
- Geriatrics Research and Education Clinical Center, Baltimore Veterans Administration Medical Center
| | - Bruce Psaty
- Cardiovascular Health Research Unit, Departments of Medicine, Epidemiology, and Health Systems and Population Health, University of Washington
| | | | | | | | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center
| | - Aabida Saferali
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital
| | | | - Edwin Silverman
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham & Women's Hospital
| | | | - Pejman Mohammadi
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute
| | | | | | - Tuuli Lappalainen
- Department of Systems Biology, Columbia University
- Department of Gene Technology, KTH Royal Institute of Technology
- New York Genome Center
| |
Collapse
|
9
|
El Atiallah I, Bonsi P, Tassone A, Martella G, Biella G, Castagno AN, Pisani A, Ponterio G. Synaptic Dysfunction in Dystonia: Update From Experimental Models. Curr Neuropharmacol 2023; 21:2310-2322. [PMID: 37464831 PMCID: PMC10556390 DOI: 10.2174/1570159x21666230718100156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 07/20/2023] Open
Abstract
Dystonia, the third most common movement disorder, refers to a heterogeneous group of neurological diseases characterized by involuntary, sustained or intermittent muscle contractions resulting in repetitive twisting movements and abnormal postures. In the last few years, several studies on animal models helped expand our knowledge of the molecular mechanisms underlying dystonia. These findings have reinforced the notion that the synaptic alterations found mainly in the basal ganglia and cerebellum, including the abnormal neurotransmitters signalling, receptor trafficking and synaptic plasticity, are a common hallmark of different forms of dystonia. In this review, we focus on the major contribution provided by rodent models of DYT-TOR1A, DYT-THAP1, DYT-GNAL, DYT/ PARK-GCH1, DYT/PARK-TH and DYT-SGCE dystonia, which reveal that an abnormal motor network and synaptic dysfunction represent key elements in the pathophysiology of dystonia.
Collapse
Affiliation(s)
- Ilham El Atiallah
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of System Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Annalisa Tassone
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Gerardo Biella
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Antonio N. Castagno
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Fondazione Mondino, Pavia, Italy
| | - Antonio Pisani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- IRCCS Fondazione Mondino, Pavia, Italy
| | - Giulia Ponterio
- Laboratory of Neurophysiology and Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
10
|
Kingdom R, Wright CF. Incomplete Penetrance and Variable Expressivity: From Clinical Studies to Population Cohorts. Front Genet 2022; 13:920390. [PMID: 35983412 PMCID: PMC9380816 DOI: 10.3389/fgene.2022.920390] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/09/2022] [Indexed: 12/20/2022] Open
Abstract
The same genetic variant found in different individuals can cause a range of diverse phenotypes, from no discernible clinical phenotype to severe disease, even among related individuals. Such variants can be said to display incomplete penetrance, a binary phenomenon where the genotype either causes the expected clinical phenotype or it does not, or they can be said to display variable expressivity, in which the same genotype can cause a wide range of clinical symptoms across a spectrum. Both incomplete penetrance and variable expressivity are thought to be caused by a range of factors, including common variants, variants in regulatory regions, epigenetics, environmental factors, and lifestyle. Many thousands of genetic variants have been identified as the cause of monogenic disorders, mostly determined through small clinical studies, and thus, the penetrance and expressivity of these variants may be overestimated when compared to their effect on the general population. With the wealth of population cohort data currently available, the penetrance and expressivity of such genetic variants can be investigated across a much wider contingent, potentially helping to reclassify variants that were previously thought to be completely penetrant. Research into the penetrance and expressivity of such genetic variants is important for clinical classification, both for determining causative mechanisms of disease in the affected population and for providing accurate risk information through genetic counseling. A genotype-based definition of the causes of rare diseases incorporating information from population cohorts and clinical studies is critical for our understanding of incomplete penetrance and variable expressivity. This review examines our current knowledge of the penetrance and expressivity of genetic variants in rare disease and across populations, as well as looking into the potential causes of the variation seen, including genetic modifiers, mosaicism, and polygenic factors, among others. We also considered the challenges that come with investigating penetrance and expressivity.
Collapse
Affiliation(s)
| | - Caroline F. Wright
- Institute of Biomedical and Clinical Science, Royal Devon & Exeter Hospital, University of Exeter Medical School, Exeter, United Kingdom
| |
Collapse
|
11
|
Yu Y, Alvarado R, Petty LE, Bohlender RJ, Shaw DM, Below JE, Bejar N, Ruiz OE, Tandon B, Eisenhoffer GT, Kiss DL, Huff CD, Letra A, Hecht JT. Polygenic risk impacts PDGFRA mutation penetrance in non-syndromic cleft lip and palate. Hum Mol Genet 2022; 31:2348-2357. [PMID: 35147171 PMCID: PMC9307317 DOI: 10.1093/hmg/ddac037] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 11/12/2022] Open
Abstract
Non-syndromic cleft lip with or without cleft palate (NSCL/P) is a common, severe craniofacial malformation that imposes significant medical, psychosocial and financial burdens. NSCL/P is a multifactorial disorder with genetic and environmental factors playing etiologic roles. Currently, only 25% of the genetic variation underlying NSCL/P has been identified by linkage, candidate gene and genome-wide association studies. In this study, whole-genome sequencing and genome-wide genotyping followed by polygenic risk score (PRS) and linkage analyses were used to identify the genetic etiology of NSCL/P in a large three-generation family. We identified a rare missense variant in PDGFRA (c.C2740T; p.R914W) as potentially etiologic in a gene-based association test using pVAAST (P = 1.78 × 10-4) and showed decreased penetrance. PRS analysis suggested that variant penetrance was likely modified by common NSCL/P risk variants, with lower scores found among unaffected carriers. Linkage analysis provided additional support for PRS-modified penetrance, with a 7.4-fold increase in likelihood after conditioning on PRS. Functional characterization experiments showed that the putatively causal variant was null for signaling activity in vitro; further, perturbation of pdgfra in zebrafish embryos resulted in unilateral orofacial clefting. Our findings show that a rare PDGFRA variant, modified by additional common NSCL/P risk variants, have a profound effect on NSCL/P risk. These data provide compelling evidence for multifactorial inheritance long postulated to underlie NSCL/P and may explain some unusual familial patterns.
Collapse
Affiliation(s)
- Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rolando Alvarado
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Lauren E Petty
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ryan J Bohlender
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Douglas M Shaw
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jennifer E Below
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Nada Bejar
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Oscar E Ruiz
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bhavna Tandon
- Department of Pediatrics and Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - George T Eisenhoffer
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daniel L Kiss
- Center for RNA Therapeutics, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Chad D Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ariadne Letra
- Department of Diagnostic and Biomedical Sciences, UTHealth School of Dentistry at Houston, Houston, TX 77054, USA
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston 77054, TX, USA
| | - Jacqueline T Hecht
- Department of Pediatrics and Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
- Center for Craniofacial Research, UTHealth School of Dentistry at Houston, Houston 77054, TX, USA
| |
Collapse
|
12
|
Bai RQ, He WB, Peng Q, Shen SH, Yu QQ, Du J, Tan YQ, Wang YH, Liu BJ. A novel FAM83H variant causes familial amelogenesis imperfecta with incomplete penetrance. Mol Genet Genomic Med 2022; 10:e1902. [PMID: 35212465 PMCID: PMC9000937 DOI: 10.1002/mgg3.1902] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 11/26/2022] Open
Abstract
Background Amelogenesis imperfecta (AI) is known to be a monogenic genetic disease caused by a variety of genes demonstrating a wide spectrum of penetrance. FAM83H is reported to be involved in AI: however, whether FAM83H causes AI with incomplete penetrance is unclear. Methods Whole‐exome sequencing was performed on two patients with AI, and putative disease‐related variants were validated by Sanger sequencing. Bioinformatic and in vitro functional analyses were performed to functionally characterize the identified disease‐causing variants. Results We identified a novel heterozygous nonsense variant of FAM83H (NM_198488: c.1975G > T, p.Glu659Ter); in vitro functional analysis showed that this mutant produced mislocalized proteins and was deleterious. Surprisingly, the clinical manifestations of each of the six individuals carrying this variant were different, with one carrier appearing to be completely asymptomatic for AI. Conclusion Our findings expand the variant spectrum for FAM83H and the phenotypic spectrum for FAM83H‐associated AI and suggest that FAM83H‐mediated AI exhibits incomplete penetrance.
Collapse
Affiliation(s)
- Rui-Qi Bai
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, People's Republic of China
| | - Wen-Bin He
- National Engineering and Research Center of Human Stem Cells, Changsha Hunan, People's Republic of China.,Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China.,Hunan International Scientific and Technological Cooperation base of Development and carcinogenesis, Changsha, China
| | - Qian Peng
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, People's Republic of China
| | - Su-Hui Shen
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, People's Republic of China
| | - Qian-Qian Yu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, People's Republic of China
| | - Juan Du
- National Engineering and Research Center of Human Stem Cells, Changsha Hunan, People's Republic of China.,Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China.,Hunan International Scientific and Technological Cooperation base of Development and carcinogenesis, Changsha, China
| | - Yue-Qiu Tan
- National Engineering and Research Center of Human Stem Cells, Changsha Hunan, People's Republic of China.,Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, China.,Hunan International Scientific and Technological Cooperation base of Development and carcinogenesis, Changsha, China
| | - Yue-Hong Wang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, People's Republic of China
| | - Bin-Jie Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha, Hunan, People's Republic of China
| |
Collapse
|
13
|
Vickers A, Tewary M, Laddach A, Poletti M, Salameti V, Fraternali F, Danovi D, Watt FM. Plating human iPSC lines on micropatterned substrates reveals role for ITGB1 nsSNV in endoderm formation. Stem Cell Reports 2021; 16:2628-2641. [PMID: 34678211 PMCID: PMC8581167 DOI: 10.1016/j.stemcr.2021.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
Quantitative analysis of human induced pluripotent stem cell (iPSC) lines from healthy donors is a powerful tool for uncovering the relationship between genetic variants and cellular behavior. We previously identified rare, deleterious non-synonymous single nucleotide variants (nsSNVs) in cell adhesion genes that are associated with outlier iPSC phenotypes in the pluripotent state. Here, we generated micropatterned colonies of iPSCs to test whether nsSNVs influence patterning of radially ordered germ layers. Using a custom-built image analysis pipeline, we quantified the differentiation phenotypes of 13 iPSC lines that harbor nsSNVs in genes related to cell adhesion or germ layer development. All iPSC lines differentiated into the three germ layers; however, there was donor-specific variation in germ layer patterning. We identified one line that presented an outlier phenotype of expanded endodermal differentiation, which was associated with a nsSNV in ITGB1. Our study establishes a platform for investigating the impact of nsSNVs on differentiation.
Collapse
Affiliation(s)
- Alice Vickers
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Mukul Tewary
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Anna Laddach
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Great Maze Pond, London SE1 9RT, UK; Development and Homeostasis of the Nervous System Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Martina Poletti
- Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK; Quadram Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | - Vasiliki Salameti
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King's College London, New Hunt's House, Great Maze Pond, London SE1 9RT, UK
| | - Davide Danovi
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK; bit.bio, Babraham Research Campus, The Dorothy Hodgkin Building, Cambridge CB22 3FH, UK
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, Floor 28, Tower Wing, Great Maze Pond, London SE1 9RT, UK.
| |
Collapse
|
14
|
Abstract
Causation has multiple distinct meanings in genetics. One reason for this is meaning slippage between two concepts of the gene: Mendelian and molecular. Another reason is that a variety of genetic methods address different kinds of causal relationships. Some genetic studies address causes of traits in individuals, which can only be assessed when single genes follow predictable inheritance patterns that reliably cause a trait. A second sense concerns the causes of trait differences within a population. Whereas some single genes can be said to cause population-level differences, most often these claims concern the effects of many genes. Polygenic traits can be understood using heritability estimates, which estimate the relative influences of genetic and environmental differences to trait differences within a population. Attempts to understand the molecular mechanisms underlying polygenic traits have been developed, although causal inference based on these results remains controversial. Genetic variation has also recently been leveraged as a randomizing factor to identify environmental causes of trait differences. This technique-Mendelian randomization-offers some solutions to traditional epidemiological challenges, although it is limited to the study of environments with known genetic influences.
Collapse
Affiliation(s)
- Kate E Lynch
- Department of Philosophy, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
15
|
Seaby EG, Ennis S. Challenges in the diagnosis and discovery of rare genetic disorders using contemporary sequencing technologies. Brief Funct Genomics 2021; 19:243-258. [PMID: 32393978 DOI: 10.1093/bfgp/elaa009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Next generation sequencing (NGS) has revolutionised rare disease diagnostics. Concomitant with advancing technologies has been a rise in the number of new gene disorders discovered and diagnoses made for patients and their families. However, despite the trend towards whole exome and whole genome sequencing, diagnostic rates remain suboptimal. On average, only ~30% of patients receive a molecular diagnosis. National sequencing projects launched in the last 5 years are integrating clinical diagnostic testing with research avenues to widen the spectrum of known genetic disorders. Consequently, efforts to diagnose genetic disorders in a clinical setting are now often shared with efforts to prioritise candidate variants for the detection of new disease genes. Herein we discuss some of the biggest obstacles precluding molecular diagnosis and discovery of new gene disorders. We consider bioinformatic and analytical challenges faced when interpreting next generation sequencing data and showcase some of the newest tools available to mitigate these issues. We consider how incomplete penetrance, non-coding variation and structural variants are likely to impact diagnostic rates, and we further discuss methods for uplifting novel gene discovery by adopting a gene-to-patient-based approach.
Collapse
|
16
|
Thompson B, Katsanis N, Apostolopoulos N, Thompson DC, Nebert DW, Vasiliou V. Genetics and functions of the retinoic acid pathway, with special emphasis on the eye. Hum Genomics 2019; 13:61. [PMID: 31796115 PMCID: PMC6892198 DOI: 10.1186/s40246-019-0248-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/12/2019] [Indexed: 02/07/2023] Open
Abstract
Retinoic acid (RA) is a potent morphogen required for embryonic development. RA is formed in a multistep process from vitamin A (retinol); RA acts in a paracrine fashion to shape the developing eye and is essential for normal optic vesicle and anterior segment formation. Perturbation in RA-signaling can result in severe ocular developmental diseases—including microphthalmia, anophthalmia, and coloboma. RA-signaling is also essential for embryonic development and life, as indicated by the significant consequences of mutations in genes involved in RA-signaling. The requirement of RA-signaling for normal development is further supported by the manifestation of severe pathologies in animal models of RA deficiency—such as ventral lens rotation, failure of optic cup formation, and embryonic and postnatal lethality. In this review, we summarize RA-signaling, recent advances in our understanding of this pathway in eye development, and the requirement of RA-signaling for embryonic development (e.g., organogenesis and limb bud development) and life.
Collapse
Affiliation(s)
- Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA
| | - Nicholas Katsanis
- Stanley Manne Research Institute, Lurie Children's Hospital, Chicago, IL, 60611, USA.,Departments of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Nicholas Apostolopoulos
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA
| | - David C Thompson
- Department of Clinical Pharmacy, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Daniel W Nebert
- Department of Environmental Health and Center for Environmental Genetics, University Cincinnati Medical Center, Cincinnati, OH, 45267-0056, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College St, New Haven, CT, 06520, USA.
| |
Collapse
|
17
|
Shroff N, Ander BP, Zhan X, Stamova B, Liu D, Hull H, Hamade FR, Dykstra-Aiello C, Ng K, Sharp FR, Jickling GC. HDAC9 Polymorphism Alters Blood Gene Expression in Patients with Large Vessel Atherosclerotic Stroke. Transl Stroke Res 2019; 10:19-25. [PMID: 29651704 PMCID: PMC6186202 DOI: 10.1007/s12975-018-0619-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/06/2018] [Accepted: 03/06/2018] [Indexed: 12/20/2022]
Abstract
The histone deacetylase 9 (HDAC9) polymorphism rs2107595 is associated with an increased risk for large vessel atherosclerotic stroke (LVAS). In humans, there remains a need to better understand this HDAC9 polymorphism's contribution to large vessel stroke. In this pilot study, we evaluated whether the HDAC9 polymorphism rs2107595 is associated with differences in leukocyte gene expression in patients with LVAS. HDAC9 SNP rs2107595 was genotyped in 155 patients (43 LVAS and 112 vascular risk factor controls). RNA isolated from blood was processed on whole genome microarrays. Gene expression was compared between HDAC9 risk allele-positive and risk allele-negative LVAS patients and controls. Functional analysis identified canonical pathways and molecular functions associated with rs2107595 in LVAS. In HDAC9 SNP rs2107595 risk allele-positive LVAS patients, there were 155 genes differentially expressed compared to risk allele-negative patients (fold change > |1.2|, p < 0.05). The 155 genes separated the risk allele-positive and risk allele-negative LVAS patients on a principal component analysis. Pathways associated with HDAC9 risk allele-positive status involved IL-6 signaling, cholesterol efflux, and platelet aggregation. These preliminary data suggest an association with the HDAC9 rs2107595 risk allele and peripheral immune, lipid, and clotting systems in LVAS. Further study is required to evaluate whether these differences are related to large vessel atherosclerosis and stroke risk.
Collapse
Affiliation(s)
- Natasha Shroff
- Department of Neurology, University of California at Davis School of Medicine, Sacramento, CA, 95817, USA.
- MIND Institute Wet Labs, Room 2415, 2805 50th Street, Sacramento, CA, 95817, USA.
| | - Bradley P Ander
- Department of Neurology, University of California at Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Xinhua Zhan
- Department of Neurology, University of California at Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Boryana Stamova
- Department of Neurology, University of California at Davis School of Medicine, Sacramento, CA, 95817, USA
| | - DaZhi Liu
- Department of Neurology, University of California at Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Heather Hull
- Department of Neurology, University of California at Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Farah R Hamade
- Department of Neurology, University of California at Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Cheryl Dykstra-Aiello
- Department of Neurology, University of California at Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Kwan Ng
- Department of Neurology, University of California at Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Frank R Sharp
- Department of Neurology, University of California at Davis School of Medicine, Sacramento, CA, 95817, USA
| | - Glen C Jickling
- Department of Neurology, University of California at Davis School of Medicine, Sacramento, CA, 95817, USA
| |
Collapse
|
18
|
Taeubner J, Wieczorek D, Yasin L, Brozou T, Borkhardt A, Kuhlen M. Penetrance and Expressivity in Inherited Cancer Predisposing Syndromes. Trends Cancer 2018; 4:718-728. [PMID: 30352675 DOI: 10.1016/j.trecan.2018.09.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/01/2018] [Accepted: 09/06/2018] [Indexed: 02/07/2023]
Abstract
Inherited diseases are not always expressed in the same way in every individual that carries the same variant in a disease-causing gene. This phenomenon is known as reduced or incomplete penetrance. Variable and incomplete penetrance may explain why inherited diseases are occasionally transmitted through unaffected parents, but also why clinically healthy individuals can carry potentially pathogenic variants without expressing features of the disease. Here, we will provide an overview of factors that play a fundamental role in the concept of penetrance and expressivity of cancer predisposing genes in children with malignancies. These findings are important to understand the complexity of inherited diseases and cancer development and to improve genetic counselling for the affected families.
Collapse
Affiliation(s)
- Julia Taeubner
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Dagmar Wieczorek
- Institute of Human Genetics, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Layal Yasin
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Triantafyllia Brozou
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Michaela Kuhlen
- Department of Pediatric Oncology, Hematology and Clinical Immunology, University Children's Hospital, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
19
|
Piña-Fuentes D, van Zijl JC, van Dijk JMC, Little S, Tinkhauser G, Oterdoom DLM, Tijssen MAJ, Beudel M. The characteristics of pallidal low-frequency and beta bursts could help implementing adaptive brain stimulation in the parkinsonian and dystonic internal globus pallidus. Neurobiol Dis 2018; 121:47-57. [PMID: 30227227 DOI: 10.1016/j.nbd.2018.09.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/08/2018] [Accepted: 09/13/2018] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Adaptive deep brain stimulation (aDBS) has been applied in Parkinson's disease (PD), based on the presence of brief high-amplitude beta (13-35 Hz) oscillation bursts in the subthalamic nucleus (STN), which correlate with symptom severity. Analogously, average low-frequency (LF) oscillatory power (4-12 Hz) in the internal globus pallidus (GPi) correlates with dystonic symptoms and might be a suitable physiomarker for aDBS in dystonia. Characterization of pallidal bursts could facilitate the implementation of aDBS in the GPi of PD and dystonia patients. OBJECTIVE AND METHODS We aimed to describe the bursting behaviour of LF and beta oscillations in a cohort of five GPi-DBS PD patients and compare their amplitude and length with those of a cohort of seven GPi-DBS dystonia, and six STN-DBS PD patients (n electrodes = 34). Furthermore, we used the information obtained to set up aDBS and test it in the GPi of both a dystonia and a PD patient (n = 2), using either LF (dystonia) or beta oscillations (PD) as feedback signals. RESULTS LF and beta oscillations in the dystonic and parkinsonian GPi occur as phasic, short-lived bursts, similarly to the parkinsonian STN. The amplitude profile of such bursts, however, differed significantly. Dystonia showed higher LF burst amplitudes, while PD presented higher beta burst amplitudes. Burst characteristics in the parkinsonian GPi and STN were similar. Furthermore, aDBS applied in the GPi was feasible and well tolerated in both diseases. CONCLUSION Pallidal LF and beta burst amplitudes have different characteristics in PD and dystonia. The presence of increased burst amplitudes could be employed as feedback for GPi-aDBS.
Collapse
Affiliation(s)
- Dan Piña-Fuentes
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jonathan C van Zijl
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J Marc C van Dijk
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Simon Little
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, Queen Square, London, UK
| | - Gerd Tinkhauser
- Medical Research Council Brain Network Dynamics Unit and Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom; Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - D L Marinus Oterdoom
- Department of Neurosurgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marina A J Tijssen
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martijn Beudel
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Neurology, Isala Clinics, Zwolle, The Netherlands.
| |
Collapse
|
20
|
Suvatha A, Sibin MK, Bhat DI, Narasingarao KVL, Vazhayil V, Chetan GK. Factor XIII polymorphism and risk of aneurysmal subarachnoid haemorrhage in a south Indian population. BMC MEDICAL GENETICS 2018; 19:159. [PMID: 30185149 PMCID: PMC6126001 DOI: 10.1186/s12881-018-0674-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/29/2018] [Indexed: 01/13/2023]
Abstract
BACKGROUND The rupture of a brain aneurysm causes bleeding in the subarachnoid space and is known as aneurysmal subarachnoid haemorrhage (aSAH). In our study, we evaluated the association of factor XIII polymorphism and the risk of Aneurysmal subarachnoid haemorrhage (aSAH) in South Indian population. METHODS The study was performed in 200 subjects with aSAH and 205 healthy control subjects. Genotyping of rs5985(c.103G > T (p.Val35Leu)) and rs5982(c.1694C > T (p.Pro564Leu)) polymorphism was performed by Taqman® allelic discrimination assay. RESULTS In our study, Val/Leu genotype frequency was higher in control subjects (18%) compared to aSAH patients (9%).The Val/Leu genotype was associated with lower risk of aSAH (OR = 0.48, 95%CI = 0.26-0.88, p = 0.02). When compared with Val allele, Leu allele was significantly associated with lower risk of aSAH (OR = 0.55, 95%CI = 0.32-0.95, p = 0.03). In subtyping, we found a significant association of Leu/Leu genotype with the Basilar top aneurysm (OR = 3.59, 95%CI = 1.11-11.64, p = 0.03). In c.1694C > T (p.Pro565Leu) variant, Pro/Pro Vs Pro/Leu genotype (OR = 2.06, 95%CI = 1.10-3.85, p = 0.02) was significantly associated with higher risk of aSAH. The 564Leu allelic frequency in aSAH patients (36%) was higher when compared with that in healthy controls (30%) in our study. When allele frequency (Pro Vs Leu) was compared, 564Leu allele was found to be significantly associated with higher aSAH risk (OR = 1.36, 95%CI = 1.01-1.83, p = 0.04). (OR = 1.36, 95%CI = 1.01-1.83, p = 0.04). Regarding rs5985 and rs5982, significant association was found in the log-additive model (OR = 0.57, 95%CI = 0.33-0.97, p = 0.034; OR = 1.32, 95%CI = 1.00-1.72, p = 0.043). CONCLUSION These results suggest that 34Leu allele was a protective factor for lower risk of aSAH whereas 564Leu allele was associated with higher risk of aSAH in South Indian population.
Collapse
Affiliation(s)
- Arati Suvatha
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, 560029, India
| | - M K Sibin
- Department of Biochemistry, Armed Forces Medical College, Pune, 411040, India
| | - Dhananjaya I Bhat
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - K V L Narasingarao
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - Vikas Vazhayil
- Department of Neurosurgery, National Institute of Mental Health and Neuro Sciences, Bangalore, 560029, India
| | - G K Chetan
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bangalore, Karnataka, 560029, India.
| |
Collapse
|
21
|
Kishk NA, Sharaf-Eldin WE, Saher H, Essawi M. Case report: Homozygous PRRT2 mutation in ICCA Egyptian family with reduced penetrance. Meta Gene 2017. [DOI: 10.1016/j.mgene.2016.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
22
|
Accurate Breakpoint Mapping in Apparently Balanced Translocation Families with Discordant Phenotypes Using Whole Genome Mate-Pair Sequencing. PLoS One 2017; 12:e0169935. [PMID: 28072833 PMCID: PMC5225008 DOI: 10.1371/journal.pone.0169935] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/22/2016] [Indexed: 12/21/2022] Open
Abstract
Familial apparently balanced translocations (ABTs) segregating with discordant phenotypes are extremely challenging for interpretation and counseling due to the scarcity of publications and lack of routine techniques for quick investigation. Recently, next generation sequencing has emerged as an efficacious methodology for precise detection of translocation breakpoints. However, studies so far have mainly focused on de novo translocations. The present study focuses specifically on familial cases in order to shed some light to this diagnostic dilemma. Whole-genome mate-pair sequencing (WG-MPS) was applied to map the breakpoints in nine two-way ABT carriers from four families. Translocation breakpoints and patient-specific structural variants were validated by Sanger sequencing and quantitative Real Time PCR, respectively. Identical sequencing patterns and breakpoints were identified in affected and non-affected members carrying the same translocations. PTCD1, ATP5J2-PTCD1, CADPS2, and STPG1 were disrupted by the translocations in three families, rendering them initially as possible disease candidate genes. However, subsequent mutation screening and structural variant analysis did not reveal any pathogenic mutations or unique variants in the affected individuals that could explain the phenotypic differences between carriers of the same translocations. In conclusion, we suggest that NGS-based methods, such as WG-MPS, can be successfully used for detailed mapping of translocation breakpoints, which can also be used in routine clinical investigation of ABT cases. Unlike de novo translocations, no associations were determined here between familial two-way ABTs and the phenotype of the affected members, in which the presence of cryptic imbalances and complex chromosomal rearrangements has been excluded. Future whole-exome or whole-genome sequencing will potentially reveal unidentified mutations in the patients underlying the discordant phenotypes within each family. In addition, larger studies are needed to determine the exact percentage for phenotypic risk in families with ABTs.
Collapse
|
23
|
Eichstaedt CA, Song J, Benjamin N, Harutyunova S, Fischer C, Grünig E, Hinderhofer K. EIF2AK4 mutation as "second hit" in hereditary pulmonary arterial hypertension. Respir Res 2016; 17:141. [PMID: 27809840 PMCID: PMC5095976 DOI: 10.1186/s12931-016-0457-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 10/24/2016] [Indexed: 01/08/2023] Open
Abstract
Background Mutations in the eukaryotic translation initiation factor 2α kinase 4 (EIF2AK4) gene have recently been identified in recessively inherited veno-occlusive disease. In this study we assessed if EIF2AK4 mutations occur also in a family with autosomal dominantly inherited pulmonary arterial hypertension (HPAH) and incomplete penetrance of bone morphogenic protein receptor 2 (BMPR2) mutations. Methods Clinical examinations in a family with 10 members included physical examination, electrocardiogram, (stress)-echocardiography and lung function. Manifest PAH was confirmed by right heart catheterisation in three affected subjects. Genetic analysis was performed using a new PAH-specific gene panel analysis with next generation sequencing of all known PAH and further candidate genes. Identified variants were confirmed by Sanger sequencing. Results All living family members with manifest HPAH carried two pathogenic heterozygous mutations: a frame shift mutation in the BMPR2 gene and a novel splice site mutation in the EIF2AK4 gene. Two family members who carried the BMPR2 mutation only did not develop manifest HPAH. Conclusions This is the first study suggesting that EIF2AK4 can also contribute to autosomal dominantly inherited HPAH. Up to now it has only been identified in a recessive form of HPAH. Only those family members with a co-occurrence of two mutations developed manifest HPAH. Thus, the EIF2AK4 and BMRPR2 mutations support the “second hit” hypothesis explaining the variable penetrance of HPAH in this family. Hence, the assessment of all known PAH genes in families with a known mutation might assist in predictions about the clinical manifestation in so far non-affected mutation carriers.
Collapse
Affiliation(s)
- Christina A Eichstaedt
- Center for Pulmonary Hypertension at the Thoraxclinic, University Hospital Heidelberg, Heidelberg, 69126, Germany.,Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Jie Song
- Center for Pulmonary Hypertension at the Thoraxclinic, University Hospital Heidelberg, Heidelberg, 69126, Germany.,Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Nicola Benjamin
- Center for Pulmonary Hypertension at the Thoraxclinic, University Hospital Heidelberg, Heidelberg, 69126, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Satenik Harutyunova
- Center for Pulmonary Hypertension at the Thoraxclinic, University Hospital Heidelberg, Heidelberg, 69126, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Christine Fischer
- Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Ekkehard Grünig
- Center for Pulmonary Hypertension at the Thoraxclinic, University Hospital Heidelberg, Heidelberg, 69126, Germany.,Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Katrin Hinderhofer
- Institute of Human Genetics, Heidelberg University, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany.
| |
Collapse
|
24
|
Abstract
Genomic DNA sequencing technologies have been one of the great advances of the 21st century, having decreased in cost by seven orders of magnitude and opening up new fields of investigation throughout research and clinical medicine. Genomics coupled with biochemical investigation has allowed the molecular definition of a growing number of new genetic diseases that reveal new concepts of immune regulation. Also, defining the genetic pathogenesis of these diseases has led to improved diagnosis, prognosis, genetic counseling, and, most importantly, new therapies. We highlight the investigational journey from patient phenotype to treatment using the newly defined XMEN disease, caused by the genetic loss of the MAGT1 magnesium transporter, as an example. This disease illustrates how genomics yields new fundamental immunoregulatory insights as well as how research genomics is integrated into clinical immunology. At the end, we discuss two other recently described diseases, CHAI/LATAIE (CTLA-4 deficiency) and PASLI (PI3K dysregulation), as additional examples of the journey from unknown immunological diseases to new precision medicine treatments using genomics.
Collapse
Affiliation(s)
- Michael Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immunology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;
| | - Bernice Lo
- Molecular Development of the Immune System Section, Laboratory of Immunology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;
| | - Carrie L Lucas
- Molecular Development of the Immune System Section, Laboratory of Immunology, and Clinical Genomics Program, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland;
| |
Collapse
|