1
|
Jacob Y, Hart NH, Cochrane JL, Spiteri T, Laws SM, Jones A, Rogalski B, Kenna J, Anderton RS. ACTN3 (R577X) Genotype Is Associated With Australian Football League Players. J Strength Cond Res 2022; 36:573-576. [DOI: 10.1519/jsc.0000000000003458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
2
|
Nissar K, Rauf I, Hussain A, Shah PA, Ganai BA. Association of Angiotensin-Converting Enzyme gene polymorphism and Alzheimer's risk in Kashmiri population. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Al-Thani HF, Ahmad MN, Younes S, Zayed H. Genetic Variants Associated With Alzheimer Disease in the 22 Arab Countries: A Systematic Review. Alzheimer Dis Assoc Disord 2021; 35:178-186. [PMID: 33769987 DOI: 10.1097/wad.0000000000000447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Alzheimer disease (AD) is a progressive and complex neurodegenerative disease. Approximately 70% of AD risk is attributed to genetic risk factors, including variants in amyloid precursor protein (APP), presenilin 1 (PSEN1), and presenilin 2 (PSEN2) genes. Several studies have revealed a considerable number of candidate loci and genes for AD among different ethnic populations. However, the outcomes of these studies have been inconsistent. In this study, we aimed to investigate the spectrum of variants that are associated with the onset and development of AD among 22 Arab countries. METHODOLOGY We systematically searched 4 literature databases (Science Direct, Scopus, PubMed, and Web of Science) from the date of inception until July 2020 using various search terms to obtain all the reported genetic data on Arab AD cases. RESULTS In total, 18 studies were included, comprising a total of 2173 individuals, of whom 888 were clinically diagnosed AD patients and were genetically tested for genes and variants associated with AD. A total of 27 variants in 8 genes were found to be associated with AD. Of these variants, 17 were unique to the Arab population and 10 were shared with other ethnic groups. CONCLUSIONS There is a dearth of studies on the genetics of AD in the Arab world. There seems to be distinctive genetic and clinical susceptibility profiles for Arab patients with AD.
Collapse
Affiliation(s)
- Hissa F Al-Thani
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | | | | | | |
Collapse
|
4
|
Jacob Y, Anderton RS, Cochrane Wilkie JL, Rogalski B, Laws SM, Jones A, Spiteri T, Hart NH. Association of Genetic Variances in ADRB1 and PPARGC1a with Two-Kilometre Running Time-Trial Performance in Australian Football League Players: A Preliminary Study. Sports (Basel) 2021; 9:22. [PMID: 33572708 PMCID: PMC7912285 DOI: 10.3390/sports9020022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 01/09/2023] Open
Abstract
Genetic variants in the angiotensin-converting enzyme (ACE) (rs4343), alpha-actinin-3 (ACTN3) (rs1815739), adrenoceptor-beta-1 (ADRB1) (rs1801253), and peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PPARGC1A) (rs8192678) genes have previously been associated with elite athletic performance. This study assessed the influence of polymorphisms in these candidate genes towards endurance test performance in 46 players from a single Australian Football League (AFL) team. Each player provided saliva buccal swab samples for DNA analysis and genotyping and were required to perform two independent two-kilometre running time-trials, six weeks apart. Linear mixed models were created to account for repeated measures over time and to determine whether player genotypes are associated with overall performance in the two-kilometre time-trial. The results showed that the ADRB1 Arg389Gly CC (p = 0.034) and PPARGC1A Gly482Ser GG (p = 0.031) genotypes were significantly associated with a faster two-kilometre time-trial. This is the first study to link genetic polymorphism to an assessment of endurance performance in Australian Football and provides justification for further exploratory or confirmatory studies.
Collapse
Affiliation(s)
- Ysabel Jacob
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
| | - Ryan S. Anderton
- Institute for Health Research, University of Notre Dame Australia, Perth 6160, Australia
- School of Health Science, University of Notre Dame Australia, Perth 6160, Australia
- Perron Institute for Neurological and Translational Science, Perth 6009, Australia
| | - Jodie L. Cochrane Wilkie
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Centre for Exercise and Sport Science Research, Edith Cowan University, Perth 6027, Australia
| | - Brent Rogalski
- West Coast Eagles Football Club, Perth 6100, Australia; (B.R.); (A.J.)
| | - Simon M. Laws
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Collaborative Genomics Group, School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia
- Faculty of Health Sciences, School of Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth 6102, Australia
| | - Anthony Jones
- West Coast Eagles Football Club, Perth 6100, Australia; (B.R.); (A.J.)
| | - Tania Spiteri
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Centre for Exercise and Sport Science Research, Edith Cowan University, Perth 6027, Australia
| | - Nicolas H. Hart
- School of Medical and Health Sciences, Edith Cowan University, Perth 6027, Australia; (Y.J.); (J.L.C.W.); (S.M.L.); (T.S.)
- Institute for Health Research, University of Notre Dame Australia, Perth 6160, Australia
- Exercise Medicine Research Institute, Edith Cowan University, Perth 6027, Australia
- Faculty of Health, Queensland University of Technology, Brisbane 4059, Australia
| |
Collapse
|
5
|
El Ezzi AA, Clawson JM, El-Saidi MA, Zaidan WR, Kovash A, Orellana J, Thornock A, Kuddus RH. Association of Angiotensin I Converting Enzyme Insertion/287 bp Deletion Polymorphisms and Proliferative Prostatic Diseases among Lebanese Men. Prostate Cancer 2020; 2020:5959134. [PMID: 32089890 PMCID: PMC7029258 DOI: 10.1155/2020/5959134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Angiotensin I converting enzyme (ACE) insertion (I) and 287 bp Alu repeat DNA fragment deletion (D) polymorphisms have been indicated in various cancers. Here, we investigated I/D polymorphisms in prostate cancer (PCa) and benign prostate hyperplasia (BPH) among Lebanese men. METHODS Blood DNA extracted from 69 control subjects, 69 subjects with clinically confirmed PCa, and 69 subjects with clinical BPH, all the subjects were aged 50 years or older, was subjected to the polymerase chain reaction. The PCR products were resolved in polyacrylamide gels to determine II, ID, and DD genotypes. The odds ratios (OR), 95% confidence intervals (CI), and p values of the allele frequencies and genotype ratios were calculated for establishing possible association of the alleles and/or genotypes and PCa and/or BPH. RESULTS The proportions of II, ID, and DD genotypes were significantly different from Hardy-Weinberg equilibrium for BPH and PCa groups (but not the control group), mostly due to overabundance of the ID genotypes. There was no significant difference in the I and D allele frequencies between the control groups and the affected groups. The ratio of (DD + ID)/II is significantly lower among the control group compared to the BPH group (RR = 8.92, p values of the allele frequencies and genotype ratios were calculated for establishing possible association of the alleles and/or genotypes and PCa and/or BPH. p values of the allele frequencies and genotype ratios were calculated for establishing possible association of the alleles and/or genotypes and PCa and/or BPH. CONCLUSIONS Our data indicate that the D allele of the I/D polymorphisms of the ACE gene is associated with increased risk of BPH, and the ID genotype is a risk factor for both BPH and PCa among Lebanese males.
Collapse
Affiliation(s)
- Asmahan A. El Ezzi
- Radioimmunoassay Laboratory, Lebanese Atomic Energy Commission, Beirut, Lebanon
- Department of Chemistry and Biochemistry, Lebanese University, Hadath, Lebanon
| | | | - Mohammed A. El-Saidi
- Department of Strategic Management and Operations, Utah Valley University, Orem, UT, USA
| | - Wissam R. Zaidan
- Radioimmunoassay Laboratory, Lebanese Atomic Energy Commission, Beirut, Lebanon
| | - Abigail Kovash
- Department of Biology, Utah Valley University, Orem, UT, USA
| | - Jeremy Orellana
- Department of Biology, Utah Valley University, Orem, UT, USA
| | | | - Ruhul H. Kuddus
- Department of Biology, Utah Valley University, Orem, UT, USA
| |
Collapse
|
6
|
Identification of intermediate-sized deletions and inference of their impact on gene expression in a human population. Genome Med 2019; 11:44. [PMID: 31340865 PMCID: PMC6657090 DOI: 10.1186/s13073-019-0656-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023] Open
Abstract
Background Next-generation sequencing has allowed for the identification of different genetic variations, which are known to contribute to diseases. Of these, insertions and deletions are the second most abundant type of variations in the genome, but their biological importance or disease association is not well-studied, especially for deletions of intermediate sizes. Methods We identified intermediate-sized deletions from whole-genome sequencing (WGS) data of Japanese samples (n = 174) with a novel deletion calling method which considered multiple samples. These deletions were used to construct a reference panel for use in imputation. Imputation was then conducted using the reference panel and data from 82 publically available Japanese samples with gene expression data. The accuracy of the deletion calling and imputation was examined with Nanopore long-read sequencing technology. We also conducted an expression quantitative trait loci (eQTL) association analysis using the deletions to infer their functional impacts on genes, before characterizing the deletions causal for gene expression level changes. Results We obtained a set of polymorphic 4378 high-confidence deletions and constructed a reference panel. The deletions were successfully imputed into the Japanese samples with high accuracy (97.3%). The eQTL analysis identified 181 deletions (4.1%) suggested as causal for gene expression level changes. The causal deletion candidates were significantly enriched in promoters, super-enhancers, and transcription elongation chromatin states. Generation of deletions in a cell line with the CRISPR-Cas9 system confirmed that they were indeed causative variants for gene expression change. Furthermore, one of the deletions was observed to affect the gene expression levels of a gene it was not located in. Conclusions This paper reports an accurate deletion calling method for genotype imputation at the whole genome level and shows the importance of intermediate-sized deletions in the human population. Electronic supplementary material The online version of this article (10.1186/s13073-019-0656-4) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
El Shamieh S, Saleh F, Masri N, Fakhoury HM, Fakhoury R. The association between ACE I/D polymorphism and the risk of Alzheimer's disease in Lebanon. Meta Gene 2018. [DOI: 10.1016/j.mgene.2018.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
8
|
The Potential Role of Genetic Markers in Talent Identification and Athlete Assessment in Elite Sport. Sports (Basel) 2018; 6:sports6030088. [PMID: 30200182 PMCID: PMC6162373 DOI: 10.3390/sports6030088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/25/2018] [Accepted: 08/27/2018] [Indexed: 01/05/2023] Open
Abstract
In elite sporting codes, the identification and promotion of future athletes into specialised talent pathways is heavily reliant upon objective physical, technical, and tactical characteristics, in addition to subjective coach assessments. Despite the availability of a plethora of assessments, the dependence on subjective forms of identification remain commonplace in most sporting codes. More recently, genetic markers, including several single nucleotide polymorphisms (SNPs), have been correlated with enhanced aerobic capacity, strength, and an overall increase in athletic ability. In this review, we discuss the effects of a number of candidate genes on athletic performance, across single-skilled and multifaceted sporting codes, and propose additional markers for the identification of motor skill acquisition and learning. While displaying some inconsistencies, both the ACE and ACTN3 polymorphisms appear to be more prevalent in strength and endurance sporting teams, and have been found to correlate to physical assessments. More recently, a number of polymorphisms reportedly correlating to athlete performance have gained attention, however inconsistent research design and varying sports make it difficult to ascertain the relevance to the wider sporting population. In elucidating the role of genetic markers in athleticism, existing talent identification protocols may significantly improve—and ultimately enable—targeted resourcing in junior talent pathways.
Collapse
|
9
|
Widodo, Wisnasari S, Saifur Rohman M, Yunita L, Lukitasari M, Nuril M, Holil K, Purwaningroom DL. Alu insertion/deletion of ACE gene polymorphism might not affect significantly the serum bradykinin level in hypertensive patients taking ACE inhibitors. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2017. [DOI: 10.1016/j.ejmhg.2016.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
10
|
Fekih-Mrissa N, Bedoui I, Sayeh A, Derbali H, Mrad M, Mrissa R, Nsiri B. Association between an angiotensin-converting enzyme gene polymorphism and Alzheimer's disease in a Tunisian population. Ann Gen Psychiatry 2017; 16:41. [PMID: 29176997 PMCID: PMC5693601 DOI: 10.1186/s12991-017-0164-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 11/08/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The angiotensin-converting enzyme gene (ACE) insertion/deletion (I/D or indel) polymorphism has long been linked to Alzheimer's disease (AD), but the interpretation of established data remains controversial. The aim of this study was to determine whether the angiotensin-converting enzyme is associated with the risk of Alzheimer's disease in Tunisian patients. METHODS We analyzed the genotype and allele frequency distribution of the ACE I/D gene polymorphism in 60 Tunisian AD patients and 120 healthy controls. RESULTS There is a significantly increased risk of AD in carriers of the D/D genotype (51.67% in patients vs. 31.67% in controls; p = .008, OR = 2.32). The D allele was also more frequently found in patients compared with controls (71.67% vs. 56.25%; p = .003, OR = 2.0). Moreover, as assessed by the Mini-Mental State Examination, patient D/D carriers were more frequently found to score in the severe category of dementia (65%) as compared to the moderate category (32%) or mild category (3%). CONCLUSIONS The D/D genotype and D allele of the ACE I/D polymorphism were associated with an increased risk in the development of AD in a Tunisian population. Furthermore, at the time of patient evaluation (average age 75 years), patients suffering with severe dementia were found predominantly in D/D carriers and, conversely, the D/D genotype and D allele were more frequently found in AD patients with severe dementia. These preliminary exploratory results should be confirmed in larger studies and further work is required to explore and interpret possible alternative findings in diverse populations.
Collapse
Affiliation(s)
- Najiba Fekih-Mrissa
- Laboratory of Molecular Biology, Department of Hematology, Military Hospital of Tunisia, Mont Fleury, 1008 Tunis, Tunisia
| | - Ines Bedoui
- Department of Neurology, Military Hospital of Tunisia, Montfleury, Tunis, 1008 Tunisia
| | - Aycha Sayeh
- Laboratory of Molecular Biology, Department of Hematology, Military Hospital of Tunisia, Mont Fleury, 1008 Tunis, Tunisia
| | - Hajer Derbali
- Department of Neurology, Military Hospital of Tunisia, Montfleury, Tunis, 1008 Tunisia
| | - Meriem Mrad
- Laboratory of Molecular Biology, Department of Hematology, Military Hospital of Tunisia, Mont Fleury, 1008 Tunis, Tunisia
| | - Ridha Mrissa
- Department of Neurology, Military Hospital of Tunisia, Montfleury, Tunis, 1008 Tunisia
| | - Brahim Nsiri
- Laboratory of Molecular Biology, Department of Hematology, Military Hospital of Tunisia, Mont Fleury, 1008 Tunis, Tunisia
| |
Collapse
|
11
|
Carpenter AM, Singh IP, Gandhi CD, Prestigiacomo CJ. Genetic risk factors for spontaneous intracerebral haemorrhage. Nat Rev Neurol 2015; 12:40-9. [PMID: 26670299 DOI: 10.1038/nrneurol.2015.226] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intracerebral haemorrhage (ICH) is associated with the greatest morbidity and mortality of all stroke subtypes. Established risk factors for ICH include hypertension, alcohol use, current cigarette smoking, and use of oral anticoagulants and/or antiplatelet agents. Familial aggregation of ICH has been observed, and the heritability of ICH risk has been estimated at 44%. Few genes have been found to be associated with ICH at the population level, and much of the evidence for genetic risk factors for ICH comes from single studies conducted in relatively small and homogenous populations. In this Review, we summarize the current knowledge of genetic variants associated with primary spontaneous ICH. Two variants of the gene encoding apolipoprotein E (APOE) - which also contributes to the pathogenesis of cerebral amyloid angiopathy - are the most likely candidates for variants that increase the risk of ICH. Other promising candidates for risk alleles in ICH include variants of the genes ACE, PMF1/SLC25A44, COL4A2, and MTHFR. Other genetic variants, related to haemostasis, lipid metabolism, inflammation, and the CNS microenvironment, have been linked to ICH in single candidate gene studies. Although evidence for genetic contributions to the risk of ICH exists, we do not yet fully understand how and to what extent this information can be utilized to prevent and treat ICH.
Collapse
Affiliation(s)
- Amanda M Carpenter
- St. George's University, 3500 Sunrise Highway, Great River, NY 11739, USA
| | - Inder P Singh
- Department of Neurological Surgery, Neurological Institute of New Jersey, Rutgers New Jersey Medical School, 90 Bergen Street Suite 8100, Newark, New Jersey 07103, USA
| | - Chirag D Gandhi
- Department of Neurological Surgery, Neurological Institute of New Jersey, Rutgers New Jersey Medical School, 90 Bergen Street Suite 8100, Newark, New Jersey 07103, USA
| | - Charles J Prestigiacomo
- Department of Neurological Surgery, Neurological Institute of New Jersey, Rutgers New Jersey Medical School, 90 Bergen Street Suite 8100, Newark, New Jersey 07103, USA
| |
Collapse
|
12
|
Hassanin OM. Hardy–Weinberg disequilibrium and association study of insertion/deletion polymorphism of ACE gene and Alzheimer’s disease in Egyptian patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2015. [DOI: 10.1016/j.ejmhg.2014.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
13
|
Saadat M. Hardy–Weinberg equilibrium and association study of insertion/deletion polymorphism of ACE gene and Alzheimer’s disease in Egyptian patients. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2014. [DOI: 10.1016/j.ejmhg.2014.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|