1
|
Shirai K, Aoki S, Endo M, Takahashi Y, Fukuda Y, Akahane K, Musha A, Sato H, Wakatsuki M, Ishikawa H, Sasaki R. Recent developments in the field of radiotherapy for the management of lung cancer. Jpn J Radiol 2025; 43:186-199. [PMID: 39316285 PMCID: PMC11790782 DOI: 10.1007/s11604-024-01663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
Lung cancer has a poor prognosis, and further improvements in outcomes are needed. Radiotherapy plays an important role in the treatment of unresectable lung cancer, and there have been recent developments in the field of radiotherapy for the management of lung cancer. However, to date, there have been few reviews on the improvement in treatment outcomes associated with high precision radiotherapy for lung cancer. Thus, this review aimed to summarize the recent developments in radiotherapy techniques and indicate the future directions in the use of radiotherapy for lung cancer. Stereotactic body radiotherapy (SBRT) for unresectable stage I lung cancer has been reported to improve local control rates without severe adverse events, such as radiation pneumonitis. For locally advanced lung cancer, a combination of chemoradiotherapy and adjuvant immune checkpoint inhibitors dramatically improves treatment outcomes, and intensity-modulated radiotherapy (IMRT) enables safer radiation therapy with less frequent pneumonitis. Particle beam therapy, such as carbon-ion radiotherapy and proton beam therapy, has been administered as advanced medical care for patients with lung cancer. Since 2024, it has been covered under insurance for early stage lung cancer with tumors ≤ 5 cm in size in Japan. In addition to chemotherapy, local ablative radiotherapy improves treatment outcomes in patients with oligometastatic stage IV lung cancer. A particular problem with radiotherapy for lung cancer is that the target location changes with respiratory motion, and various physical methods have been used to control respiratory motion. Recently, coronavirus disease has had a major impact on lung cancer treatment, and cancer treatment during situations, such as the coronavirus pandemic, must be performed carefully. To improve treatment outcomes for lung cancer, it is necessary to fully utilize evolving radiotherapy modalities, and the role of radiotherapy in lung cancer treatment is expected to increase.
Collapse
Affiliation(s)
- Katsuyuki Shirai
- Department of Radiology, Jichi Medical University Hospital, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan.
- Department of Radiology, Jichi Medical University Saitama Medical Center, Saitama, Saitama, Japan.
| | - Shuri Aoki
- QST Hospital, National Institutes for Quantum Science and Technology, Anagawa, Chiba, Japan
| | - Masashi Endo
- Department of Radiology, Jichi Medical University Hospital, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Yuta Takahashi
- Department of Radiology, Jichi Medical University Saitama Medical Center, Saitama, Saitama, Japan
| | - Yukiko Fukuda
- Department of Radiology, Jichi Medical University Hospital, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
- Department of Radiology, Jichi Medical University Saitama Medical Center, Saitama, Saitama, Japan
| | - Keiko Akahane
- Department of Radiology, Jichi Medical University Saitama Medical Center, Saitama, Saitama, Japan
| | - Atsushi Musha
- Gunma University Heavy Ion Medical Center, Maebashi, Gunma, Japan
| | - Harutoshi Sato
- Department of Radiology, Jichi Medical University Hospital, 3311-1, Yakushiji, Shimotsuke-shi, Tochigi, 329-0498, Japan
| | - Masaru Wakatsuki
- QST Hospital, National Institutes for Quantum Science and Technology, Anagawa, Chiba, Japan
| | - Hitoshi Ishikawa
- QST Hospital, National Institutes for Quantum Science and Technology, Anagawa, Chiba, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
2
|
Fullarton R, Simard M, Volz L, Toltz A, Chung S, Schuy C, Robertson DG, Royle G, Beddar S, Baker C, Graeff C, Collins‐Fekete C. Imaging lung tumor motion using integrated-mode proton radiography-A phantom study towards tumor tracking in proton radiotherapy. Med Phys 2025; 52:1146-1158. [PMID: 39530503 PMCID: PMC11788258 DOI: 10.1002/mp.17508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/10/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Motion of lung tumors during radiotherapy leads to decreased accuracy of the delivered dose distribution. This is especially true for proton radiotherapy due to the finite range of the proton beam. Methods for mitigating motion rely on knowing the position of the tumor during treatment. PURPOSE Proton radiography uses the treatment beam, at an energy high enough to traverse the patient, to produce a radiograph. This work shows the first results of using an integrated-mode proton radiography system to track the position of moving objects in an experimental phantom study; demonstrating the potential of using this method for measuring tumor motion. METHODS Proton radiographs of an anthropomorphic lung phantom, with a motor-driven tumor insert, were acquired approximately every 1 s, using tumor inserts of 10, 20, and 30 mm undergoing a known periodic motion. The proton radiography system used a monolithic scintillator block and digital cameras to capture the residual range of each pencil beam passing through the phantom. These ranges were then used to produce a water equivalent thickness map of the phantom. The centroid of the tumor insert in the radiographs was used to determine its position. This measured position was then compared to the known motion of the phantom to determine the accuracy. RESULTS Submillimeter accuracy on the measurement of the tumor insert was achieved when using a 30 mm tumor insert with a period of 24 s and was found to be improved for decreasing motion amplitudes with a mean absolute error (MAE) of 1.0, 0.9, and 0.7 mm for 20, 15, and 10 mm respectively. Using smaller tumor inserts reduced the accuracy with a MAE of 1.8 and 1.9 mm for a 20 and 10 mm insert respectively undergoing a periodic motion with an amplitude of 20 mm and a period of 24 s. Using a shorter period resulted in significant motion artifacts reducing the accuracy to a MAE of 2.2 mm for a 12 s period and 3.1 mm for a 6 s period for the 30 mm insert with an amplitude of 20 mm. CONCLUSIONS This work demonstrates that the position of a lung tumor insert in a realistic anthropomorphic phantom can be measured with high accuracy using proton radiographs. Results show that the accuracy of the position measurement is the highest for slower tumor motions due to a reduction in motion artifacts. This indicates that the primary obstacle to accurate measurement is the speed of the radiograph acquisition. Although the slower tumor motions used in this study are not clinically realistic, this work demonstrates the potential for using proton radiography for measuring tumor motion with an increased scanning speed that results in a decreased acquisition time.
Collapse
Affiliation(s)
- Ryan Fullarton
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Mikaël Simard
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Lennart Volz
- BiophysicsGSI Helmholtz Centre for Heavy Ion Research GmbHDarmstadtGermany
| | - Allison Toltz
- Department of Radiotherapy PhysicsUniversity College London HospitalNHS Foundation TrustLondonUK
| | - Savanna Chung
- Department of Radiotherapy PhysicsUniversity College London HospitalNHS Foundation TrustLondonUK
| | - Christoph Schuy
- BiophysicsGSI Helmholtz Centre for Heavy Ion Research GmbHDarmstadtGermany
| | - Daniel G. Robertson
- Division of Medical PhysicsDepartment of Radiation OncologyMayo Clinic ArizonaPhoenixArizonaUSA
| | - Gary Royle
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonUK
| | - Sam Beddar
- Department of Radiation PhysicsThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Colin Baker
- Department of Radiotherapy PhysicsUniversity College London HospitalNHS Foundation TrustLondonUK
| | - Christian Graeff
- BiophysicsGSI Helmholtz Centre for Heavy Ion Research GmbHDarmstadtGermany
| | | |
Collapse
|
3
|
Brunner TB, Boda-Heggemann J, Bürgy D, Corradini S, Dieckmann UK, Gawish A, Gerum S, Gkika E, Grohmann M, Hörner-Rieber J, Kirste S, Klement RJ, Moustakis C, Nestle U, Niyazi M, Rühle A, Lang ST, Winkler P, Zurl B, Wittig-Sauerwein A, Blanck O. Dose prescription for stereotactic body radiotherapy: general and organ-specific consensus statement from the DEGRO/DGMP Working Group Stereotactic Radiotherapy and Radiosurgery. Strahlenther Onkol 2024; 200:737-750. [PMID: 38997440 PMCID: PMC11343978 DOI: 10.1007/s00066-024-02254-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 07/14/2024]
Abstract
PURPOSE AND OBJECTIVE To develop expert consensus statements on multiparametric dose prescriptions for stereotactic body radiotherapy (SBRT) aligning with ICRU report 91. These statements serve as a foundational step towards harmonizing current SBRT practices and refining dose prescription and documentation requirements for clinical trial designs. MATERIALS AND METHODS Based on the results of a literature review by the working group, a two-tier Delphi consensus process was conducted among 24 physicians and physics experts from three European countries. The degree of consensus was predefined for overarching (OA) and organ-specific (OS) statements (≥ 80%, 60-79%, < 60% for high, intermediate, and poor consensus, respectively). Post-first round statements were refined in a live discussion for the second round of the Delphi process. RESULTS Experts consented on a total of 14 OA and 17 OS statements regarding SBRT of primary and secondary lung, liver, pancreatic, adrenal, and kidney tumors regarding dose prescription, target coverage, and organ at risk dose limitations. Degree of consent was ≥ 80% in 79% and 41% of OA and OS statements, respectively, with higher consensus for lung compared to the upper abdomen. In round 2, the degree of consent was ≥ 80 to 100% for OA and 88% in OS statements. No consensus was reached for dose escalation to liver metastases after chemotherapy (47%) or single-fraction SBRT for kidney primaries (13%). In round 2, no statement had 60-79% consensus. CONCLUSION In 29 of 31 statements a high consensus was achieved after a two-tier Delphi process and one statement (kidney) was clearly refused. The Delphi process was able to achieve a high degree of consensus for SBRT dose prescription. In summary, clear recommendations for both OA and OS could be defined. This contributes significantly to harmonization of SBRT practice and facilitates dose prescription and reporting in clinical trials investigating SBRT.
Collapse
Affiliation(s)
- Thomas B Brunner
- Department of Radiation Oncology, Medical University of Graz, Auenbruggerplatz 32, 8036, Graz, Austria.
- Department of Therapeutic Radiology and Oncology, Comprehensive Cancer Center, Medical University of Graz, 8036, Graz, Austria.
| | - Judit Boda-Heggemann
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Daniel Bürgy
- Department of Radiation Oncology, University Medicine Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Ute Karin Dieckmann
- Department of Radiation Oncology, Medical University of Graz, Auenbruggerplatz 32, 8036, Graz, Austria
| | - Ahmed Gawish
- Department of Radiotherapy, University Medical Center Giessen-Marburg, Marburg, Germany
| | - Sabine Gerum
- Department of Radiation Oncology, Paracelsus University Salzburg, Salzburg, Austria
| | - Eleni Gkika
- Department of Radiation Oncology, University Hospital Bonn, 53127, Bonn, Germany
| | - Maximilian Grohmann
- Department of Radiotherapy and Radiation Oncology, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
| | - Juliane Hörner-Rieber
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Simon Kirste
- Department of Radiation Oncology, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Rainer J Klement
- Department of Radiotherapy and Radiation Oncology, Leopoldina Hospital Schweinfurt, Robert-Koch-Straße 10, 97422, Schweinfurt, Germany
| | - Christos Moustakis
- Department of Radiation Oncology, University Hospital Leipzig, Stephanstraße 9a, 04103, Leipzig, Germany
| | - Ursula Nestle
- Department of Radiation Oncology, Kliniken Maria Hilf, Moenchengladbach, Germany
| | - Maximilian Niyazi
- Department of Radiation Oncology, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Alexander Rühle
- Department of Radiation Oncology, University Hospital Leipzig, Stephanstraße 9a, 04103, Leipzig, Germany
| | - Stephanie-Tanadini Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Rämistrasse 100, 8091, Zurich, Switzerland
| | - Peter Winkler
- Department of Radiation Oncology, Medical University of Graz, Auenbruggerplatz 32, 8036, Graz, Austria
- Department of Therapeutic Radiology and Oncology, Comprehensive Cancer Center, Medical University of Graz, 8036, Graz, Austria
| | - Brigitte Zurl
- Department of Therapeutic Radiology and Oncology, Comprehensive Cancer Center, Medical University of Graz, 8036, Graz, Austria
| | | | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Arnold-Heller-Straße 3, 24105, Kiel, Germany
| |
Collapse
|
4
|
Braschi EL, Morris CG, Yeung AR, De Leo AN. Impact of Maximum Point Dose Within the Planning Target Volume on Local Control of Nonsmall Cell Lung Cancer Treated With Stereotactic Body Radiotherapy. Am J Clin Oncol 2024; 47:217-222. [PMID: 38148589 DOI: 10.1097/coc.0000000000001081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
BACKGROUND No consensus exists on the maximum dose delivered to the planning target volume (PTV) in the delivery of stereotactic body radiotherapy (SBRT) for primary lung cancer. We investigated whether higher biologically effective doses (BED) within the PTV were associated with improved tumor control. METHODS We reviewed patients with early-stage, node-negative nonsmall cell lung cancer who received curative-intent SBRT between 2005 and 2018. We calculated the maximum BED (maxBED) within the PTV for all patients, analyzing outcomes using the cumulative incidence method and Fine-Gray test statistics to assess prognostic impact. RESULTS We analyzed 171 patients (median age, 70.2; range, 43 to 90 y) with 181 lung nodules. Median follow-up was 2.7 years (range, 0.1 to 12 y) for all patients and 4.2 years (range, 0.2 to 8.4 y) for living patients. Median maximum tumor diameter was 1.9 cm (range, 0.7 to 5.6 cm). Patients received a prescription of 48 or 50 Gy in 4 or 5 fractions, respectively, except for one who received 60 Gy in 5 fractions. Median maxBED was 120 Gy (range, 101 to 171 Gy). There was no difference in the 3-year local control (LC) rate among patients treated with a maxBED<120 Gy versus ≥120 Gy ( P =0.83). CONCLUSIONS No significant differences in LC were observed between patients with early-stage nonsmall cell lung cancer treated with SBRT in 4 or 5 fractions with a maxBED≥120 Gy. However, a higher maxBED trended toward improved LC rates, suggesting a maxBED threshold greater than 120 Gy may be needed to improve LC rates.
Collapse
Affiliation(s)
- Erica L Braschi
- Department of Radiation Oncology, University of Florida College of Medicine, Gainesville, FL
| | | | | | | |
Collapse
|
5
|
Meng YJ, Mankuzhy NP, Chawla M, Lee RP, Yorke ED, Zhang Z, Gelb E, Lim SB, Cuaron JJ, Wu AJ, Simone CB, Gelblum DY, Lovelock DM, Harris W, Rimner A. A Prospective Study on Deep Inspiration Breath Hold Thoracic Radiation Therapy Guided by Bronchoscopically Implanted Electromagnetic Transponders. Cancers (Basel) 2024; 16:1534. [PMID: 38672616 PMCID: PMC11048337 DOI: 10.3390/cancers16081534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/03/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Electromagnetic transponders bronchoscopically implanted near the tumor can be used to monitor deep inspiration breath hold (DIBH) for thoracic radiation therapy (RT). The feasibility and safety of this approach require further study. METHODS We enrolled patients with primary lung cancer or lung metastases. Three transponders were implanted near the tumor, followed by simulation with DIBH, free breathing, and 4D-CT as backup. The initial gating window for treatment was ±5 mm; in a second cohort, the window was incrementally reduced to determine the smallest feasible gating window. The primary endpoint was feasibility, defined as completion of RT using transponder-guided DIBH. Patients were followed for assessment of transponder- and RT-related toxicity. RESULTS We enrolled 48 patients (35 with primary lung cancer and 13 with lung metastases). The median distance of transponders to tumor was 1.6 cm (IQR 0.6-2.8 cm). RT delivery ranged from 3 to 35 fractions. Transponder-guided DIBH was feasible in all but two patients (96% feasible), where it failed because the distance between the transponders and the antenna was >19 cm. Among the remaining 46 patients, 6 were treated prone to keep the transponders within 19 cm of the antenna, and 40 were treated supine. The smallest feasible gating window was identified as ±3 mm. Thirty-nine (85%) patients completed one year of follow-up. Toxicities at least possibly related to transponders or the implantation procedure were grade 2 in six patients (six incidences, cough and hemoptysis), grade 3 in three patients (five incidences, cough, dyspnea, pneumonia, and supraventricular tachycardia), and grade 4 pneumonia in one patient (occurring a few days after implantation but recovered fully and completed RT). Toxicities at least possibly related to RT were grade 2 in 18 patients (41 incidences, most commonly cough, fatigue, and pneumonitis) and grade 3 in four patients (seven incidences, most commonly pneumonia), and no patients had grade 4 or higher toxicity. CONCLUSIONS Bronchoscopically implanted electromagnetic transponder-guided DIBH lung RT is feasible and safe, allowing for precise tumor targeting and reduced normal tissue exposure. Transponder-antenna distance was the most common challenge due to a limited antenna range, which could sometimes be circumvented by prone positioning.
Collapse
Affiliation(s)
- Yuzhong Jeff Meng
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Nikhil P. Mankuzhy
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Mohit Chawla
- Department of Medicine, Pulmonary Service, Section of Interventional Pulmonology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (M.C.); (R.P.L.)
| | - Robert P. Lee
- Department of Medicine, Pulmonary Service, Section of Interventional Pulmonology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (M.C.); (R.P.L.)
| | - Ellen D. Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - Zhigang Zhang
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA;
| | - Emily Gelb
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Seng Boh Lim
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - John J. Cuaron
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Abraham J. Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Charles B. Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
- New York Proton Center, New York, NY 10035, USA; (C.B.S.II)
| | - Daphna Y. Gelblum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
| | - Dale Michael Lovelock
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - Wendy Harris
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (E.D.Y.); (S.B.L.); (D.M.L.); (W.H.)
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA; (Y.J.M.); (N.P.M.); (E.G.); (J.J.C.); (A.J.W.); (C.B.S.II); (D.Y.G.)
- Department of Radiation Oncology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), Partner Site DKTK-Freiburg, Robert-Koch-Strasse 3, 79106 Freiburg, Germany
| |
Collapse
|
6
|
Kito S, Mukumoto N, Nakamura M, Tanabe H, Karasawa K, Kokubo M, Sakamoto T, Iizuka Y, Yoshimura M, Matsuo Y, Hiraoka M, Mizowaki T. Population-based asymmetric margins for moving targets in real-time tumor tracking. Med Phys 2024; 51:1561-1570. [PMID: 37466995 DOI: 10.1002/mp.16614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/25/2023] [Accepted: 06/17/2023] [Indexed: 07/20/2023] Open
Abstract
BACKGROUND Both geometric and dosimetric components are commonly considered when determining the margin for planning target volume (PTV). As dose distribution is shaped by controlling beam aperture in peripheral dose prescription and dose-escalated simultaneously integrated boost techniques, adjusting the margin by incorporating the variable dosimetric component into the PTV margin is inappropriate; therefore, geometric components should be accurately estimated for margin calculations. PURPOSE We introduced an asymmetric margin-calculation theory using the guide to the expression of uncertainty in measurement (GUM) and intra-fractional motion. The margins in fiducial marker-based real-time tumor tracking (RTTT) for lung, liver, and pancreatic cancers were calculated and were then evaluated using Monte Carlo (MC) simulations. METHODS A total of 74 705, 73 235, and 164 968 sets of intra- and inter-fractional positional data were analyzed for 48 lung, 48 liver, and 25 pancreatic cancer patients, respectively, in RTTT clinical trials. The 2.5th and 97.5th percentiles of the positional error were considered representative values of each fraction of the disease site. The population-based statistics of the probability distributions of these representative positional errors (PD-RPEs) were calculated in six directions. A margin covering 95% of the population was calculated using the proposed formula. The content rate in which the clinical target volume (CTV) was included in the PTV was calculated through MC simulations using the PD-RPEs. RESULTS The margins required for RTTT were at most 6.2, 4.6, and 3.9 mm for lung, liver, and pancreatic cancer, respectively. MC simulations revealed that the median content rates using the proposed margins satisfied 95% for lung and liver cancers and 93% for pancreatic cancer, closer to the expected rates than the margins according to van Herk's formula. CONCLUSIONS Our proposed formula based on the GUM and motion probability distributions (MPD) accurately calculated the practical margin size for fiducial marker-based RTTT. This was verified through MC simulations.
Collapse
Affiliation(s)
- Satoshi Kito
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Division of Radiation Oncology, Department of Radiology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo, Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mitsuhiro Nakamura
- Department of Advanced Medical Physics, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Hiroaki Tanabe
- Department of Radiological Technology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Katsuyuki Karasawa
- Division of Radiation Oncology, Department of Radiology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Bunkyo-ku, Tokyo, Japan
| | - Masaki Kokubo
- Department of Radiation Oncology, Kobe City Medical Center General Hospital, Kobe, Hyogo, Japan
| | - Takashi Sakamoto
- Department of Radiation Oncology, Kyoto-Katsura Hospital, Nishikyo-ku, Kyoto, Japan
| | - Yusuke Iizuka
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Michio Yoshimura
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Yukinori Matsuo
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology, Japanese Red Cross Society Wakayama Medical Center, Wakayama, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
7
|
Sohn J, Polizzi M, McDonagh PR, Guy C, Datsang R, Weiss E, Kim S. Shallow kinetics induced by a metronome (SKIM): A novel contactless respiratory motion management. J Appl Clin Med Phys 2023; 24:e14147. [PMID: 37672210 PMCID: PMC10691643 DOI: 10.1002/acm2.14147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/26/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
OBJECTIVES As an alternative to conventional compression amidst the COVID-19 pandemic, we developed a contactless motion management strategy. By increasing the patient's breathing rate to induce shallow breathing with the aid of a metronome, our hypothesis is that the motion magnitude of the target may be minimized without physical contact or compression. METHODS Fourteen lung stereotactic body radiation therapy (SBRT) patients treated under fast shallow-breathing (FSB) were selected for inclusion in this retrospective study. Our proposed method is called shallow kinetics induced by a metronome (SKIM). We induce FSB by setting the beats-per-minute (BPM) high (typically in the range of 50-60). This corresponded to a patient breathing rate of 25-30 (breathing) cycles per minute. The magnitude of target motion in 3D under SKIM was evaluated using 4DCT datasets. Comparison with free breathing (FB) 4DCT was also made for a subset for which FB data available. RESULTS The overall effectiveness of SKIM was evaluated with 18 targets (14 patients). Direct comparison with FB was performed with 12 targets (10 patients). The vector norm mean ± SD value of motion magnitude under SKIM for 18 targets was 8.2 ± 4.1 mm. The mean ± SD metronome BPM was 54.9 ± 4.0 in this group. The vector norm means ± SD values of target motion for FB and SKIM in the 12 target sub-group were 14.6 ± 8.5 mm and 9.3 ± 3.7 mm, respectively. The mean ± SD metronome BPM for this sub-group was 56.3 ± 2.5. CONCLUSION Compared with FB, SKIM can significantly reduce respiratory motion magnitude of thoracic targets. The difference in maximum motion reduction in the overall vector norm, S-I, and A-P directions was significant (p = 0.033, 0.042, 0.011). Our proposed method can be an excellent practical alternative to conventional compression due to its flexibility and ease of implementation.
Collapse
Affiliation(s)
- James Sohn
- Department of Radiation OncologyNorthwestern Memorial HospitalNorthwestern University Feinberg School of MedicineChicagoIllinoisUSA
| | - Mitchell Polizzi
- Department of Radiation OncologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Philip Reed McDonagh
- Department of Radiation OncologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Christopher Guy
- Department of Radiation OncologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Rabten Datsang
- Department of Radiation OncologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Elisabeth Weiss
- Department of Radiation OncologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Siyong Kim
- Department of Radiation OncologyVirginia Commonwealth UniversityRichmondVirginiaUSA
| |
Collapse
|
8
|
Mannerberg A, Nilsson MP, Edvardsson A, Karlsson K, Ceberg S. Abdominal compression as motion management for stereotactic radiotherapy of ventricular tachycardia. Phys Imaging Radiat Oncol 2023; 28:100499. [PMID: 37869475 PMCID: PMC10585386 DOI: 10.1016/j.phro.2023.100499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/24/2023] Open
Abstract
Background and purpose Stereotactic body radiotherapy (SBRT) has emerged as a promising treatment for patients with ventricular tachycardia (VT) who do not respond to standard treatments. However, the management of respiratory motion during treatment remains a challenge. This study aimed to investigate the effect of abdominal compression (AC) on respiratory induced motion in the heart. Materials and methods A patient cohort of 18 lung cancer patients was utilized, where two four-dimensional computed tomography (4DCT) scans were performed for each patient, one with and one without AC. The patient setup consisted of an AC plate together with a stereotactic body frame. The left coronary artery, the left anterior descending artery, the lateral wall of the left ventricle, the heart apex, the carina, and the right and left diaphragm were delineated in max expiration and max inspiration phases in both 4DCT scans. The center of mass shift from expiration to inspiration phase was determined to assess the AC's impact on respiratory motion. Results A significant reduction in motion in the superior-inferior direction was found for all heart structures when AC was used. The median respiratory motion of the heart structures decreased by approximately 1-3 mm with AC in the superior-inferior direction, and approximately 60% of the patients had a motion reduction ≥3 mm in the left ventricle wall. Conclusion These findings suggest that AC has the potential to improve the motion management of SBRT for VT patients, by reducing the respiratory induced motion in the heart.
Collapse
Affiliation(s)
- Annika Mannerberg
- Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Martin P. Nilsson
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
- Division of Oncology and Pathology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Anneli Edvardsson
- Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Radiation Physics, Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| | - Kristin Karlsson
- Karolinska University Hospital, Section of Radiotherapy Physics and Engineering, Department of Medical Radiation Physics and Nuclear Medicine, Stockholm, Sweden
- Karolinska Institutet, Department of Oncology-Pathology, Stockholm, Sweden
| | - Sofie Ceberg
- Medical Radiation Physics, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Cheng JC, Buduhan G, Venkataraman S, Tan L, Sasaki D, Bashir B, Ahmed N, Kidane B, Sivananthan G, Koul R, Leylek A, Butler J, McCurdy B, Wong R, Kim JO. Endobronchially Implanted Real-Time Electromagnetic Transponder Beacon-Guided, Respiratory-Gated SABR for Moving Lung Tumors: A Prospective Phase 1/2 Cohort Study. Adv Radiat Oncol 2023; 8:101243. [PMID: 37408673 PMCID: PMC10318214 DOI: 10.1016/j.adro.2023.101243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/03/2023] [Indexed: 07/07/2023] Open
Abstract
Purpose Endobronchial electromagnetic transponder beacons (EMT) provide real-time, precise positional data of moving lung tumors. We report results of a phase 1/2, prospective, single-arm cohort study evaluating the treatment planning effects of EMT-guided SABR for moving lung tumors. Methods and Materials Eligible patients were adults, Eastern Cooperative Oncology Group 0 to 2, with T1-T2N0 non-small cell lung cancer or pulmonary metastasis ≤4 cm with motion amplitude ≥5 mm. Three EMTs were endobronchially implanted using navigational bronchoscopy. Four-dimensional free-breathing computed tomography simulation scans were obtained, and end-exhalation phases were used to define the gating window internal target volume. A 3-mm expansion of gating window internal target volume defined the planning target volume (PTV). EMT-guided, respiratory-gated (RG) SABR was delivered (54 Gy/3 fractions or 48 Gy/4 fractions) using volumetric modulated arc therapy. For each RG-SABR plan, a 10-phase image-guided SABR plan was generated for dosimetric comparison. PTV/organ-at-risk (OAR) metrics were tabulated and analyzed using the Wilcoxon signed-rank pair test. Treatment outcomes were evaluated using RECIST (Response Evaluation Criteria in Solid Tumours; version 1.1). Results Of 41 patients screened, 17 were enrolled and 2 withdrew from the study. Median age was 73 years, with 7 women. Sixty percent had T1/T2 non-small cell lung cancer and 40% had M1 disease. Median tumor diameter was 1.9 cm with 73% of targets located peripherally. Mean respiratory tumor motion was 1.25 cm (range, 0.53-4.04 cm). Thirteen tumors were treated with EMT-guided SABR and 47% of patients received 48 Gy in 4 fractions while 53% received 54 Gy in 3 fractions. RG-SABR yielded an average PTV reduction of 46.9% (P < .005). Lung V5, V10, V20, and mean lung dose had mean relative reductions of 11.3%, 20.3%, 31.1%, and 20.3%, respectively (P < .005). Dose to OARs was significantly reduced (P < .05) except for spinal cord. At 6 months, mean radiographic tumor volume reduction was 53.5% (P < .005). Conclusions EMT-guided RG-SABR significantly reduced PTVs of moving lung tumors compared with image-guided SABR. EMT-guided RG-SABR should be considered for tumors with large respiratory motion amplitudes or those located in close proximity to OARs.
Collapse
Affiliation(s)
- Jui Chih Cheng
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gordon Buduhan
- Thoracic Surgery, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | - Lawrence Tan
- Thoracic Surgery, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David Sasaki
- Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Bashir Bashir
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Naseer Ahmed
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Biniam Kidane
- Thoracic Surgery, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gokulan Sivananthan
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rashmi Koul
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ahmet Leylek
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James Butler
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Boyd McCurdy
- Medical Physics, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Ralph Wong
- Medical Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Julian O. Kim
- Radiation Oncology, Max Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- CancerCare Manitoba Research Institute, Winnipeg, Manitoba, Canada
| |
Collapse
|
10
|
Li W, Zhu X, Bu L, He Y, Xu J, Yao G, Lu Z, Zhao F, Yan S. Alternating Expiration and Inspiration Breath-Hold Spares the Chest Wall During Stereotactic Body Radiation Therapy for Peripheral Lung Malignancies. Pract Radiat Oncol 2023:S1879-8500(23)00045-0. [PMID: 36822550 DOI: 10.1016/j.prro.2023.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE The proximity of tumors to the chest wall brings additional risks of chest wall pain during stereotactic body radiation therapy. Herein, we dosimetrically compared alternated breath-hold (ABH) plans with single BH plans and determined the common characteristics of eligible patients who may obtain better chest wall sparing using this technique. METHODS AND MATERIALS Twenty patients with lung lesions adjacent to the chest wall were enrolled and received respiratory training. Their half-fraction end expiration BH and deep inspiration BH plans were summed to generate the ABH plans. Dosimetric parameters of the chest wall were compared between single and alternated BH plans, and the correlation between tumor location and the outcome of chest wall sparing was quantitatively evaluated. Pretreatment cone beam computed tomography variations in eligible patients were recorded as well. RESULTS Compared with the end expiration BH and deep inspiration BH plans, the ABH plans reduced chest wall dosimetric results with median reductions of 2.0% and 3.9% (Dmax: maximum point dose), 15.4% and 14.8% (D1cc: dose to a volume of 1 cm3), and 48.8% and 63% (V30: volume receiving 30 Gy or more), respectively. Relative tumor displacements (ratio of tumor displacement in the superior-inferior direction to planning target volume diameter) were greater in the lower lobe than in the upper and middle lobes (1.17 vs 0.18). Meanwhile, better median reductions of 44% (Dmax), 46% (D1cc), and 98% (V30) were obtained in the lower lobe cohort using the ABH technique. Pretreatment variations for all BHs met the 5-mm threshold. CONCLUSIONS The ABH technique can significantly spare the adjacent chest wall without compromising planning target volume coverage in comparison with the single BH, and patients with tumors in the lower lobes can obtain better chest wall sparing than in the upper and middle lobes. Further investigation is warranted to validate these findings.
Collapse
Affiliation(s)
- Wenxiang Li
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Xinli Zhu
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Luyi Bu
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Yu He
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Jiayi Xu
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Guorong Yao
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Zhongjie Lu
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, China
| | - Feng Zhao
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
| | - Senxiang Yan
- Department of Radiation Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Zhejiang University Cancer Center, Hangzhou, Zhejiang, China.
| |
Collapse
|
11
|
Jeong S, Cheon W, Cho S, Han Y. Clinical applicability of deep learning-based respiratory signal prediction models for four-dimensional radiation therapy. PLoS One 2022; 17:e0275719. [PMID: 36256632 PMCID: PMC9578620 DOI: 10.1371/journal.pone.0275719] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/21/2022] [Indexed: 11/07/2022] Open
Abstract
For accurate respiration gated radiation therapy, compensation for the beam latency of the beam control system is necessary. Therefore, we evaluate deep learning models for predicting patient respiration signals and investigate their clinical feasibility. Herein, long short-term memory (LSTM), bidirectional LSTM (Bi-LSTM), and the Transformer are evaluated. Among the 540 respiration signals, 60 signals are used as test data. Each of the remaining 480 signals was spilt into training and validation data in a 7:3 ratio. A total of 1000 ms of the signal sequence (Ts) is entered to the models, and the signal at 500 ms afterward (Pt) is predicted (standard training condition). The accuracy measures are: (1) root mean square error (RMSE) and Pearson correlation coefficient (CC), (2) accuracy dependency on Ts and Pt, (3) respiratory pattern dependency, and (4) error for 30% and 70% of the respiration gating for a 5 mm tumor motion for latencies of 300, 500, and 700 ms. Under standard conditions, the Transformer model exhibits the highest accuracy with an RMSE and CC of 0.1554 and 0.9768, respectively. An increase in Ts improves accuracy, whereas an increase in Pt decreases accuracy. An evaluation of the regularity of the respiratory signals reveals that the lowest predictive accuracy is achieved with irregular amplitude patterns. For 30% and 70% of the phases, the average error of the three models is <1.4 mm for a latency of 500 ms and >2.0 mm for a latency of 700 ms. The prediction accuracy of the Transformer is superior to LSTM and Bi-LSTM. Thus, the three models have clinically applicable accuracies for a latency <500 ms for 10 mm of regular tumor motion. The clinical acceptability of the deep learning models depends on the inherent latency and the strategy for reducing the irregularity of respiration.
Collapse
Affiliation(s)
- Sangwoon Jeong
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| | - Wonjoong Cheon
- Proton Therapy Center, National Cancer Center, Goyang, Korea
| | - Sungkoo Cho
- Department of Radiation Oncology, Samsung Medical Center, Seoul, Korea
| | - Youngyih Han
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
- * E-mail:
| |
Collapse
|
12
|
Practical usefulness of partial-range 4-dimensional computed tomography in the simulation process of lung stereotactic body radiation therapy. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Prado A, Zucca D, De la Casa MÁ, Martí J, Alonso L, de Acilu PG, García J, Hernando O, Fernández-Letón P, Rubio C. Intrafraction target shift comparison using two breath-hold systems in lung stereotactic body radiotherapy. Phys Imaging Radiat Oncol 2022; 22:57-62. [PMID: 35514526 PMCID: PMC9065403 DOI: 10.1016/j.phro.2022.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 04/13/2022] [Accepted: 04/20/2022] [Indexed: 12/25/2022] Open
Abstract
Background and purpose In lung Stereotactic Body Radiotherapy (SBRT) respiratory management is used to reduce target motion due to respiration. This study aimed (1) to estimate intrafraction shifts through a Cone Beam Computed Tomography (CBCT) acquired during the first treatment arc when deep inspiration breath-hold (DIBH) was performed using spirometry-based (SB) or surface-guidance (SG) systems and (2) to analyze the obtained results depending on lesion localization. Material and methods A sample of 157 patients with 243 lesions was analyzed. A total of 860 and 410 fractions were treated using SB and SG. Averaged intrafraction shifts were estimated by the offsets obtained when registering a CBCT acquired during the first treatment arc with the planning CT. Offsets were recorded in superior-inferior (SI), left-right (LR) and anterior-posterior (AP). Significance tests were applied to account for differences in average offsets and variances between DIBH systems. Systematic and random errors were computed. Results Average offset moduli were 2.4 ± 2.2 mm and 3.5 ± 2.6 mm for SB and SG treatments (p < 0.001). When comparing SB and SG offset distributions in each direction no differences were found in average values (p > 0.3). However, variances were statistically smaller for SB than for SG (p < 0.001). The number of vector moduli offsets greater than 5 mm was 2.1 times higher for SG. Compared to other locations, lower lobe lesions moduli were at least 2.3 times higher. Conclusions Both systems were accuracy-equivalent but not precision-equivalent systems. Furthermore, the SB system was more precise than the SG one. Despite DIBH, patients with lower lobe lesions had larger offsets than superior lobe ones, mainly in SI.
Collapse
Affiliation(s)
- Alejandro Prado
- Medical Physics and Radiation Protection Department, HU HM Sanchinarro, HM Hospitales, c\ Oña n°10, 28050 Madrid, Spain
| | - Daniel Zucca
- Medical Physics and Radiation Protection Department, HU HM Sanchinarro, HM Hospitales, c\ Oña n°10, 28050 Madrid, Spain
| | - Miguel Ángel De la Casa
- Medical Physics and Radiation Protection Department, HU HM Sanchinarro, HM Hospitales, c\ Oña n°10, 28050 Madrid, Spain
| | - Jaime Martí
- Medical Physics and Radiation Protection Department, HU HM Sanchinarro, HM Hospitales, c\ Oña n°10, 28050 Madrid, Spain
| | - Leyre Alonso
- Medical Physics and Radiation Protection Department, HU HM Sanchinarro, HM Hospitales, c\ Oña n°10, 28050 Madrid, Spain
| | - Paz García de Acilu
- Medical Physics and Radiation Protection Department, HU HM Puerta del Sur, HM Hospitales, Av. Carlos V n° 70, 28938 Móstoles, Madrid, Spain
| | - Juan García
- Medical Physics and Radiation Protection Department, HU HM Puerta del Sur, HM Hospitales, Av. Carlos V n° 70, 28938 Móstoles, Madrid, Spain
| | - Ovidio Hernando
- Radiation Oncology Department, HU HM Puerta del Sur, HM Hospitales, Av. Carlos V n° 70, 28938 Móstoles, Madrid, Spain
| | - Pedro Fernández-Letón
- Medical Physics and Radiation Protection Department, HU HM Sanchinarro, HM Hospitales, c\ Oña n°10, 28050 Madrid, Spain
- Medical Physics and Radiation Protection Department, HU HM Puerta del Sur, HM Hospitales, Av. Carlos V n° 70, 28938 Móstoles, Madrid, Spain
| | - Carmen Rubio
- Radiation Oncology Department, HU HM Sanchinarro, HM Hospitales, c\ Oña n°10, 28050 Madrid, Spain
- Radiation Oncology Department, HU HM Puerta del Sur, HM Hospitales, Av. Carlos V n° 70, 28938 Móstoles, Madrid, Spain
| |
Collapse
|
14
|
Savanović M, Allali S, Jaroš D, Foulquier JN. Does irregular breathing impact on respiratory gated radiation therapy of lung stereotactic body radiation therapy treatments? Med Dosim 2022; 47:151-157. [PMID: 35093268 DOI: 10.1016/j.meddos.2022.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 11/29/2022]
Abstract
The impact of irregular breathing on respiratory gated radiation therapy (RGRT) was evaluated for lung stereotactic body radiation therapy (SBRT) treatments. Measurements in the static mode were performed with different field sizes, depths of the measurements, breathing periods and duty cycles, using the Farmer ion chamber, PinPoint ion chamber, and microDiamond detector. The output constancy (OC) was evaluated between gated and nongated beams. Measurements in the dynamic mode for regular and irregular breathing in phase- and amplitude-gated modes, were performed with the amplitude of target motion from 5 mm to 25 mm, and breathing period from 3 to 6 s, for ion chamber, and film inserts. The dose discrepancy was evaluated for the ion chamber insert. The gamma passing rate was evaluated with film dosimetry. In the static mode, the maximum obtained OC was 0.8% using the Farmer ion chamber, 1% (p < 0.001) using the microDiamond detector, and 1.4% (p < 0.001) using the PinPoint ion chamber. In the dynamic mode, good agreement between planned and measured doses was obtained for regular breathing, 2.08 ± 0.48% (1.57 to 2.74%), which increased to 3.42 ± 1.24% (1.58 to 6.69%) for irregular breathing. The gamma passing rate of 3mm/3%, 3mm/2%, 3mm/1% and 2mm/2% was 99.4% ± 0.3, 98.2 ± 0.8%, 88.2 ± 3.0% and 96.4 ± 1.0% for regular and 97.2% ± 1.6%, 95.1 ± 2.6%, 85.6 ± 3.0% and 92.9 ± 2.9% for irregular breathing patterns (p < 0.01), respectively. For a slightly irregular breathing amplitude, lung SBRT cancer patients can be treated in the phase-gated mode.
Collapse
Affiliation(s)
- Milovan Savanović
- Faculty of Medicine, University of Paris-Saclay, Le Kremlin-Bicêtre, 94276, France; Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, Paris, 75020, France.
| | - Sophiane Allali
- Faculty of Medicine, University of Paris, Paris, 75006, France
| | - Dražan Jaroš
- Affidea, International Medical Centers, Center for Radiotherapy, Banja Luka, 78000, Bosnia and Herzegovina; Faculty of Medicine, University of Banja Luka, Banja Luka, 78000, Bosnia and Herzegovina
| | - Jean-Noël Foulquier
- Department of Radiation Oncology, Tenon Hospital, APHP, Sorbonne University, Paris, 75020, France
| |
Collapse
|
15
|
Hwang JM, Hung JY, Chang YK, Chang SM, Wang YN, Lin CS, Chang CS. Dynamic hybrid-phase computed tomography simulation in lung stereotactic body radiotherapy: A feasibility study. Med Dosim 2022; 47:136-141. [PMID: 34987001 DOI: 10.1016/j.meddos.2021.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/06/2021] [Accepted: 11/30/2021] [Indexed: 10/19/2022]
Abstract
To assess the feasibility of dynamic hybrid-phase computed tomography (CTDHP) simulation when patients undergo lung stereotactic body radiation therapy (SBRT). Eighteen non-small-cell lung-cancer patients were immobilised in a stereotactic body frame with abdominal compression. All underwent dynamic hybrid-phase CT scans that were compared with cone-beam CT (CBCT). We also determined the internal target volume (ITV) and evaluated the following four metrics: the "AND" function in the Boolean module of Eclipse, volume overlap (VO), Dice similarity coefficient (DSC), and dose-volume histogram. The average ITV values of 4DCTDHP and 3D-CBCT were respectively 12.82±10.42 and 14.6±12.18 cm3 (n=72, p<0.001), and the average ITV value of AND was 11.7±10.1 cm3. The average planning target volume (PTV) of 4DCTDHP and 3D-CBCT was 25.63±18.04 and 28.00±19.82 cm3 (n=72, p<0.001). The median AND difference between ITV and PTV was significant (p<0.01) and had a significantly linear distribution (R2=0.991 for ITV, R2=0.972 for PTV). The average VO of PTV was greater than that of ITV (0.81±0.096; 0.78±0.11). We also observed that the average DSC in PTV (0.83±0.066) was greater than that in ITV (0.81±0.084). The average results indicated that 97.9%±3.44 of ITVCBCT was covered by 95% of the prescribed dose. The average minimum, maximum and mean percentage doses of ITVCBCT were 87.9%±9.46, 107.3%±1.57, and 101.3%±1.12, respectively. This paper has demonstrated that dynamic hybrid-phase CT simulation for patients undergoing lung SBRT and also published evaluation metrics in scientific analysis. Our approach also has the advantage of adequate margin and fewer phases in CT simulation.
Collapse
Affiliation(s)
- Jing-Min Hwang
- Department of Radiation Oncology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan; College of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Jing-Yin Hung
- Department of Radiation Oncology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - You-Kang Chang
- Department of Radiation Oncology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan; College of Medicine, Tzu Chi University, Hualien City, Taiwan
| | - Shih-Miao Chang
- Department of Radiation Oncology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Yu-Nong Wang
- Department of Radiation Oncology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chiou-Shiung Chang
- Department of Radiation Oncology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei, Taiwan; Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
16
|
Goddard L, Jeong K, Tomé WA. Commissioning and routine quality assurance of the radixact synchrony system. Med Phys 2021; 49:1181-1195. [PMID: 34914846 DOI: 10.1002/mp.15410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 11/22/2021] [Accepted: 12/03/2021] [Indexed: 11/09/2022] Open
Abstract
PURPOSE The Radixact Synchrony system allows for target motion correction when tracking either fiducials in/around the target or a dense lesion in the lung. As such evaluation testing and Quality Assurance (QA) tests are required. METHODS To allow for QA procedures to be performed with a range of available phantoms evaluation of the dosimetric delivery accuracy was performed for a range of motions, phantoms and motion platforms. A CIRS 1D motion platform and Accuray Tomotherapy "cheese" phantom was utilized to perform absolute dose and EBT3 film measurements. A HexaMotion platform and Delta4 phantom were utilized to quantify the effects of 1D and 3D motions. Inter-device comparison was performed with the ArcCHECK and Delta4 phantoms and GafChromic film, five patient plans were delivered to each phantom when static and with two different motion types both with and without Synchrony motion correction. RESULTS A range of QA tests are described. A phantom was designed to allow for daily verification of system functionality. This test allows for detection of either fiducials or a dense silicone target with a stationary phantom. Monthly testing procedures are described that allow the user to verify the dosimetric improvement when utilizing synchrony delivery motion compensation vs. uncorrected motions. These can be performed utilizing a 1D motion stage with an ion-chamber and GafChromic film to allow for a 2D dosimetric validation. Alternatively, a 3D motion platform can be utilized where available. Monthly and annual imaging tests are described. Finally, annual test procedures designed to verify the coincidence of the imaging system and treatment isocenter are described. Evaluation of the Synchrony system using a range of QA devices shows consistently high dosimetric accuracy with similar trends in passing criteria found with GafChromic film, ArcCHECK and Delta4 phantoms for density based respiratory model compensation. CONCLUSION These results highlight the large improvements in the dose distribution when motion is accounted for with the Synchrony system as measured with a range of phantoms and motion platforms that the majority of users will have available. The testing methods and QA procedures described provide guidance for new users of the Radixact Synchrony system as they implement their own quality assurance programs for this system, until such time as an AAPM task group report is made available. QA procedures including kV imaging quality metrics and imaging dose parameters, dose deposition accuracy, target detection coincidence and target position detection accuracy are described. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Lee Goddard
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, 10467, USA.,Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Kyoungkeun Jeong
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, 10467, USA.,Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Wolfgang A Tomé
- Department of Radiation Oncology, Montefiore Medical Center, Bronx, NY, 10467, USA.,Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
17
|
Vander Veken L, Dechambre D, Sterpin E, Souris K, Van Ooteghem G, Aldo Lee J, Geets X. Incorporation of tumor motion directionality in margin recipe: The directional MidP strategy. Phys Med 2021; 91:43-53. [PMID: 34710790 DOI: 10.1016/j.ejmp.2021.10.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/03/2021] [Accepted: 10/09/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE Planning target volume (PTV) definition based on Mid-Position (Mid-P) strategy typically integrates breathing motion from tumor positions variances along the conventional axes of the DICOM coordinate system. Tumor motion directionality is thus neglected even though it is one of its stable characteristics in time. We therefore propose the directional MidP approach (MidP dir), which allows motion directionality to be incorporated into PTV margins. A second objective consists in assessing the ability of the proposed method to better take care of respiratory motion uncertainty. METHODS 11 lung tumors from 10 patients with supra-centimetric motion were included. PTV were generated according to the MidP and MidP dir strategies starting from planning 4D CT. RESULTS PTVMidP dir volume didn't differ from the PTVMidP volume: 31351 mm3 IC95% [17242-45459] vs. 31003 mm3 IC95% [ 17347-44659], p = 0.477 respectively. PTVMidP dir morphology was different and appeared more oblong along the main motion axis. The relative difference between 3D and 4D doses was on average 1.09%, p = 0.011 and 0.74%, p = 0.032 improved with directional MidP for D99% and D95%. D2% was not significantly different between both approaches. The improvement in dosimetric coverage fluctuated substantially from one lesion to another and was all the more important as motion showed a large amplitude, some obliquity with respect to conventional axes and small hysteresis. CONCLUSIONS Directional MidP method allows tumor motion to be taken into account more tightly as a geometrical uncertainty without increasing the irradiation volume.
Collapse
Affiliation(s)
- Loïc Vander Veken
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology(MIRO), 1200 Brussels, Belgium.
| | - David Dechambre
- Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - Edmond Sterpin
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology(MIRO), 1200 Brussels, Belgium; KULeuven Department of Oncology, Laboratory of Experimental Radiotherapy, 3000 Leuven, Belgium
| | - Kevin Souris
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology(MIRO), 1200 Brussels, Belgium
| | - Geneviève Van Ooteghem
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology(MIRO), 1200 Brussels, Belgium; Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| | - John Aldo Lee
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology(MIRO), 1200 Brussels, Belgium
| | - Xavier Geets
- UCLouvain, Institut de Recherche Experimentale et Clinique (IREC), Center of Molecular Imaging, Radiotherapy and Oncology(MIRO), 1200 Brussels, Belgium; Radiation Oncology Department, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium
| |
Collapse
|
18
|
Qi Y, Li J, Zhang Y, Shao Q, Liu X, Li F, Wang J, Li Z, Wang W. Effect of abdominal compression on target movement and extension of the external boundary of peripheral lung tumours treated with stereotactic radiotherapy based on four-dimensional computed tomography. Radiat Oncol 2021; 16:173. [PMID: 34493303 PMCID: PMC8425044 DOI: 10.1186/s13014-021-01889-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND This study aimed to investigate the effect of abdominal compression on tumour motion and target volume and to determine suitable planning target volume (PTV) margins for patients treated with lung stereotactic body radiotherapy (SBRT) based on four-dimensional computed tomography (4DCT). METHODS Twenty-three patients diagnosed to have a peripheral pulmonary tumour were selected and divided into an all lesions group (group A), an upper middle lobe lesions group (group B), and a lower lobe lesions group (group C). Two 4DCT scans were performed in each patient, one with and one without abdominal compression. Cone beam computed tomography (CBCT) was performed before starting treatment. The gross target volumes (GTVs) were delineated and internal gross target volumes (IGTVs) were defined. IGTVs were generated using two methods: (1) the maximum intensity projections (MIPs) based on the 4DCT were reconstructed to form a single volume and defined as the IGTVMIP and (2) GTVs from all 10 phases were combined to form a single volume and defined as the IGTV10. A 5-mm, 4-mm, and 3-mm margin was added in all directions on the IGTVMIP and the volume was constructed as PTVMIP5mm, PTVMIP4mm, and PTVMIP3mm. RESULTS There was no significant difference in the amplitude of tumour motion in the left-right, anterior-posterior, or superior-inferior direction according to whether or not abdominal compression was applied (group A, p = 0.43, 0.27, and 0.29, respectively; group B, p = 0.46, 0.15, and 0.45; group C, p = 0.79, 0.86, and 0.37; Wilcoxon test). However, the median IGTVMIP without abdominal compression was 33.67% higher than that with compression (p = 0.00), and the median IGTV10 without compression was 16.08% higher than that with compression (p = 0.00). The median proportion of the degree of inclusion of the IGTVCBCT in PTVMIP5mm, PTVMIP4mm, and PTVMIP3mm ≥ 95% was 100%, 100%, and 83.33%, respectively. CONCLUSIONS Abdominal compression was useful for reducing the size of the IGTVMIP and IGTV10 and for decreasing the PTV margins based on 4DCT. In IGTVMIP with abdominal compression, adding a 4-mm margin to account for respiration is feasible in SBRT based on 4DCT.
Collapse
Affiliation(s)
- Yuanjun Qi
- Shandong First Medical University and Shandong Academy of Medical Sciences and Now Studies at Shandong Cancer Hospital and Institute , Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jianbin Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China.
| | - Yingjie Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China.
| | - Qian Shao
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Xijun Liu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Fengxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Jinzhi Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Zhenxiang Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| | - Wei Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong Province, China
| |
Collapse
|
19
|
Pratoomchart C, Klunklin P, Wanwilairat S, Nobnop W, Kittidachanan K, Chitapanarux I. The advantages of abdominal compression with shallow breathing during left-sided postmastectomy radiotherapy by Helical TomoTherapy. PLoS One 2021; 16:e0254934. [PMID: 34270624 PMCID: PMC8284651 DOI: 10.1371/journal.pone.0254934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/06/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Left-sided post-mastectomy radiotherapy (PMRT) certainly precedes some radiation dose to the cardiopulmonary organs causing many side effects. To reduce the cardiopulmonary dose, we created a new option of the breathing adapted technique by using abdominal compression applied with a patient in deep inspiration phase utilizing shallow breathing. This study aimed to compare the use of abdominal compression with shallow breathing (ACSB) with the free breathing (FB) technique in the left-sided PMRT. MATERIALS AND METHODS Twenty left-sided breast cancer patients scheduled for PMRT were enrolled. CT simulation was performed with ACSB and FB technique in each patient. All treatment plans were created on a TomoTherapy planning station. The target volume and dose, cardiopulmonary organ volume and dose were analyzed. A linear correlation between cardiopulmonary organ volumes and doses were also tested. RESULTS Regarding the target volumes and dose coverage, there were no significant differences between ACSB and FB technique. For organs at risk, using ACSB resulted in a significant decrease in mean (9.17 vs 9.81 Gy, p<0.0001) and maximum heart dose (43.79 vs 45.45 Gy, p = 0.0144) along with significant reductions in most of the evaluated volumetric parameters. LAD doses were also significantly reduced by ACSB with mean dose 19.24 vs 21.85 Gy (p = 0.0036) and the dose to 2% of the volume (D2%) 34.46 vs 37.33 Gy (p = 0.0174) for ACSB and FB technique, respectively. On the contrary, the lung dose metrics did not show any differences except the mean V5 of ipsilateral lung. The positive correlations were found between increasing the whole lung volume and mean heart dose (p = 0.05) as well as mean LAD dose (p = 0.041) reduction. CONCLUSIONS The ACSB technique significantly reduced the cardiac dose compared with the FB technique in left-sided PMRT treated by Helical TomoTherapy. Our technique is uncomplicated, well-tolerated, and can be applied in limited resource center.
Collapse
Affiliation(s)
| | - Pitchayaponne Klunklin
- Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiangmai, Thailand
- Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Somsak Wanwilairat
- Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiangmai, Thailand
| | - Wannapha Nobnop
- Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiangmai, Thailand
- Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kittikun Kittidachanan
- Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiangmai, Thailand
| | - Imjai Chitapanarux
- Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiangmai, Thailand
- Northern Thai Research Group of Radiation Oncology (NTRG-RO), Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
20
|
Evaluation of Motion Compensation Methods for Noninvasive Cardiac Radioablation of Ventricular Tachycardia. Int J Radiat Oncol Biol Phys 2021; 111:1023-1032. [PMID: 34217790 DOI: 10.1016/j.ijrobp.2021.06.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 06/14/2021] [Accepted: 06/23/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Noninvasive cardiac radioablation is increasingly used for treatment of refractory ventricular tachycardia. Attempts to limit normal tissue exposure are important, including managing motion of the target. An interplay between cardiac and respiratory motion exists for cardiac radioablation, which has not been studied in depth. The objectives of this study were to estimate target motion during abdominal compression free breathing (ACFB) and respiratory gated (RG) deliveries and to investigate the quality of either implanted cardioverter defibrillator lead tip or the diaphragm as a gating surrogate. METHODS AND MATERIALS Eleven patients underwent computed tomography (CT) simulation with an ACFB 4-dimensional CT (r4DCT) and an exhale breath-hold cardiac 4D-CT (c4DCT). The target, implanted cardioverter defibrillator lead tip and diaphragm trajectories were measured for each patient on the r4DCT and c4DCT using rigid registration of each 4D phase to the reference (0%) phase. Motion ranges for ACFB and exhale (40%-60%) RG delivery were estimated from the target trajectories. Surrogate quality was estimated as the correlation with the target motion magnitudes. RESULTS Mean (range) target motion across patients from r4DCT was as follows: left/right (LR), 3.9 (1.7-6.9); anteroposterior (AP), 4.1 (2.2-5.4); and superoinferior (SI), 4.7 (2.2-7.9) mm. Mean (range) target motion from c4DCT was as follows: LR, 3.4 (1.0-4.8); AP, 4.3 (2.6-6.5); and SI, 4.1 (1.4-8.0) mm. For an ACFB, treatment required mean (range) margins to be 4.5 (3.1-6.9) LR, 4.8 (3-6.5) AP, and 5.5 (2.3-8.0) mm SI. For RG, mean (range) internal target volume motion would be 3.6 (1.1-4.8) mm LR, 4.3 (2.6-6.5) mm AP, and 4.2 (2.2-8.0) mm SI. The motion correlations between the surrogates and target showed a high level of interpatient variability. CONCLUSIONS In ACFB patients, a simulated exhale-gated approach did not lead to large projected improvements in margin reduction. Furthermore, the variable correlation between readily available gating surrogates could mitigate any potential advantage to gating and should be evaluated on a patient-specific basis.
Collapse
|
21
|
Miura H, Ozawa S, Nakao M, Doi Y, Adachi Y, Kenjo M, Nagata Y. Investigation of interfractional variation in lung tumor position under expiratory-phase breath hold using cone-beam computed tomography in stereotactic body radiation therapy. Med Dosim 2021; 46:370-373. [PMID: 33994080 DOI: 10.1016/j.meddos.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/03/2021] [Accepted: 04/04/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE We investigated the interfractional variation in the tumor position during lung stereotactic body radiotherapy (SBRT) under expiratory-phase breath hold (BH) using cone-beam computed tomography (CBCT). METHODS A total of 79 patients with lung cancer were treated with lung SBRT, wherein the Abches system under expiratory-phase BH was used to study interfractional variation. The tumors were located in the upper lobe in 31 cases, in the middle lobe in 11 cases, and in the lower lobe in 37 cases. Planning CTs were scanned under expiratory-phase BH with the Abches system. The 3-degrees-of-freedom (DOF) tumor-based setup using CBCT images under expiratory-phase BH was performed after a 6-DOF bony vertebrae-based setup using an ExacTrac X-ray system. Interfractional variation in the lung tumor position was defined as the difference in the position of the lung tumor relative to the bone anatomy in the left-right (LR), antero-posterior (AP), and craniocaudal (CC) directions represented as absolute values. RESULTS The interfractional variation in the lung tumor position was very similar in all the lung regions, and its mean ± standard deviation values in all patients were 1.0 ± 1.1, 1.6 ± 1.9, and 1.6 ± 1.9 mm in the LR, AP, and CC directions, respectively. Further, 99.1%, 92.4%, and 92.7% of all the fractions for the interfractional tumor positional variation in the LR, AP, and CC directions were less than 5 mm, respectively. CONCLUSION The interfractional variation in the tumor position was small for lung cancer patients treated with the Abches system under expiratory-phase BH.
Collapse
Affiliation(s)
- Hideharu Miura
- Hiroshima High-Precision Radiotherapy Cancer Center,3-2-2, Futabanosato, Higashi-ku Hiroshima, 732-0057, Japan; Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku Hiroshima-shi, Hiroshima 734-8553, Japan.
| | - Shuichi Ozawa
- Hiroshima High-Precision Radiotherapy Cancer Center,3-2-2, Futabanosato, Higashi-ku Hiroshima, 732-0057, Japan; Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku Hiroshima-shi, Hiroshima 734-8553, Japan
| | - Minoru Nakao
- Hiroshima High-Precision Radiotherapy Cancer Center,3-2-2, Futabanosato, Higashi-ku Hiroshima, 732-0057, Japan; Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku Hiroshima-shi, Hiroshima 734-8553, Japan
| | - Yoshiko Doi
- Hiroshima High-Precision Radiotherapy Cancer Center,3-2-2, Futabanosato, Higashi-ku Hiroshima, 732-0057, Japan; Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku Hiroshima-shi, Hiroshima 734-8553, Japan
| | - Yoshinori Adachi
- Hiroshima High-Precision Radiotherapy Cancer Center,3-2-2, Futabanosato, Higashi-ku Hiroshima, 732-0057, Japan
| | - Masahiko Kenjo
- Hiroshima High-Precision Radiotherapy Cancer Center,3-2-2, Futabanosato, Higashi-ku Hiroshima, 732-0057, Japan; Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku Hiroshima-shi, Hiroshima 734-8553, Japan
| | - Yasushi Nagata
- Hiroshima High-Precision Radiotherapy Cancer Center,3-2-2, Futabanosato, Higashi-ku Hiroshima, 732-0057, Japan; Department of Radiation Oncology, Institute of Biomedical & Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-ku Hiroshima-shi, Hiroshima 734-8553, Japan
| |
Collapse
|
22
|
Lee P, Loo BW, Biswas T, Ding GX, El Naqa IM, Jackson A, Kong FM, LaCouture T, Miften M, Solberg T, Tome WA, Tai A, Yorke E, Li XA. Local Control After Stereotactic Body Radiation Therapy for Stage I Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2021; 110:160-171. [PMID: 30954520 PMCID: PMC9446070 DOI: 10.1016/j.ijrobp.2019.03.045] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 02/06/2019] [Accepted: 03/27/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Numerous dose and fractionation schedules have been used to treat medically inoperable stage I non-small cell lung cancer (NSCLC) with stereotactic body radiation therapy (SBRT) or stereotactic ablative radiation therapy. We evaluated published experiences with SBRT to determine local control (LC) rates as a function of SBRT dose. METHODS AND MATERIALS One hundred sixty published articles reporting LC rates after SBRT for stage I NSCLC were identified. Quality of the series was assessed by evaluating the number of patients in the study, homogeneity of the dose regimen, length of follow-up time, and reporting of LC. Clinical data including 1, 2, 3, and 5-year tumor control probabilities for stages T1, T2, and combined T1 and T2 as a function of the biological effective dose were fitted to the linear quadratic, universal survival curve, and regrowth models. RESULTS Forty-six studies met inclusion criteria. As measured by the goodness of fit χ2/ndf, with ndf as the number of degrees of freedom, none of the models were ideal fits for the data. Of the 3 models, the regrowth model provides the best fit to the clinical data. For the regrowth model, the fitting yielded an α-to-β ratio of approximately 25 Gy for T1 tumors, 19 Gy for T2 tumors, and 21 Gy for T1 and T2 combined. To achieve the maximal LC rate, the predicted physical dose schemes when prescribed at the periphery of the planning target volume are 43 ± 1 Gy in 3 fractions, 47 ± 1 Gy in 4 fractions, and 50 ± 1 Gy in 5 fractions for combined T1 and T2 tumors. CONCLUSIONS Early-stage NSCLC is radioresponsive when treated with SBRT or stereotactic ablative radiation therapy. A steep dose-response relationship exists with high rates of durable LC when physical doses of 43-50 Gy are delivered in 3 to 5 fractions.
Collapse
Affiliation(s)
- Percy Lee
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, California.
| | - Billy W Loo
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Tithi Biswas
- Department of Radiation Oncology, University Hospitals Case Medical Center, Cleveland, Ohio
| | - George X Ding
- Department of Radiation Oncology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Issam M El Naqa
- Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Andrew Jackson
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Feng-Ming Kong
- Department of Radiation Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio
| | - Tamara LaCouture
- Department of Radiation Oncology, Jefferson Health New Jersey, Sewell, New Jersey
| | - Moyed Miften
- Department of Radiation Oncology, Colorado University School of Medicine, Aurora, Colorado
| | - Timothy Solberg
- Department of Radiation Oncology, University of California at San Francisco, San Francisco, California
| | - Wolfgang A Tome
- Department of Radiation Oncology, Albert Einstein College of Medicine, New York, New York
| | - An Tai
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ellen Yorke
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - X Allen Li
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
23
|
Naumann P, Batista V, Farnia B, Fischer J, Liermann J, Tonndorf-Martini E, Rhein B, Debus J. Feasibility of Optical Surface-Guidance for Position Verification and Monitoring of Stereotactic Body Radiotherapy in Deep-Inspiration Breath-Hold. Front Oncol 2020; 10:573279. [PMID: 33102232 PMCID: PMC7546313 DOI: 10.3389/fonc.2020.573279] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/08/2020] [Indexed: 12/25/2022] Open
Abstract
Background Reductions in tumor movement allow for more precise and accurate radiotherapy with decreased dose delivery to adjacent normal tissue that is crucial in stereotactic body radiotherapy (SBRT). Deep inspiration breath-hold (DIBH) is an established approach to mitigate respiratory motion during radiotherapy. We assessed the feasibility of combining modern optical surface-guided radiotherapy (SGRT) and image-guided radiotherapy (IGRT) to ensure and monitor reproducibility of DIBH and to ensure accurate tumor localization for SBRT as an imaging-guided precision medicine. Methods We defined a new workflow for delivering SBRT in DIBH for lung and liver tumors incorporating SGRT and IGRT with cone beam computed tomography (CBCT) twice per treatment fraction. Daily position corrections were analyzed and for every patient two points retrospectively characterized: an anatomically stable landmark (predominately Schmorl's nodes or spinal enostosis) and a respiratory-dependent landmark (predominately surgical clips or branching vessel). The spatial distance of these points was compared for each CBCT and used as surrogate for intra- and interfractional variability. Differences between the lung and liver targets were assessed using the Welch t-test. Finally, the planning target volumes were compared to those of free-breathing plans, prepared as a precautionary measure in case of technical or patient-related problems with DIBH. Results Ten patients were treated with SBRT according this workflow (7 liver, 3 lung). Planning target volumes could be reduced significantly from an average of 148 ml in free breathing to 110 ml utilizing DIBH (p < 0.001, paired t-test). After SGRT-based patient set-up, subsequent IGRT in DIBH yielded significantly higher mean corrections for liver targets compared to lung targets (9 mm vs. 5 mm, p = 0.017). Analysis of spatial distance between the fixed and moveable landmarks confirmed higher interfractional variability (interquartile range (IQR) 6.8 mm) than intrafractional variability (IQR 2.8 mm). In contrast, lung target variability was low, indicating a better correlation of patients' surface to lung targets (intrafractional IQR 2.5 mm and interfractional IQR 1.7 mm). Conclusion SBRT in DIBH utilizing SGRT and IGRT is feasible and results in significantly lower irradiated volumes. Nevertheless, IGRT is of paramount importance given that interfractional variability was high, particularly for liver tumors.
Collapse
Affiliation(s)
- Patrick Naumann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Vania Batista
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Benjamin Farnia
- Department of Radiation Oncology, University of Miami, Miami, FL, United States
| | - Jann Fischer
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Jakob Liermann
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Eric Tonndorf-Martini
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany
| | - Bernhard Rhein
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,Heidelberg Institute of Radiation Oncology (HIRO), Heidelberg, Germany.,National Center for Tumor diseases (NCT), Heidelberg, Germany.,Heidelberg Ion-Beam Therapy Center (HIT), Department of Radiation Oncology, Heidelberg University Hospital, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
24
|
Vergalasova I, Cai J. A modern review of the uncertainties in volumetric imaging of respiratory-induced target motion in lung radiotherapy. Med Phys 2020; 47:e988-e1008. [PMID: 32506452 DOI: 10.1002/mp.14312] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/15/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy has become a critical component for the treatment of all stages and types of lung cancer, often times being the primary gateway to a cure. However, given that radiation can cause harmful side effects depending on how much surrounding healthy tissue is exposed, treatment of the lung can be particularly challenging due to the presence of moving targets. Careful implementation of every step in the radiotherapy process is absolutely integral for attaining optimal clinical outcomes. With the advent and now widespread use of stereotactic body radiation therapy (SBRT), where extremely large doses are delivered, accurate, and precise dose targeting is especially vital to achieve an optimal risk to benefit ratio. This has largely become possible due to the rapid development of image-guided technology. Although imaging is critical to the success of radiotherapy, it can often be plagued with uncertainties due to respiratory-induced target motion. There has and continues to be an immense research effort aimed at acknowledging and addressing these uncertainties to further our abilities to more precisely target radiation treatment. Thus, the goal of this article is to provide a detailed review of the prevailing uncertainties that remain to be investigated across the different imaging modalities, as well as to highlight the more modern solutions to imaging motion and their role in addressing the current challenges.
Collapse
Affiliation(s)
- Irina Vergalasova
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| |
Collapse
|
25
|
Sevillano D, Núñez LM, Chevalier M, García‐Vicente F. Definition of internal target volumes based on planar X-ray fluoroscopic images for lung and hepatic stereotactic body radiation therapy. Comparison to inhale/exhale CT technique. J Appl Clin Med Phys 2020; 21:56-64. [PMID: 32472618 PMCID: PMC7484833 DOI: 10.1002/acm2.12914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 11/07/2022] Open
Abstract
PURPOSE To compare tumor motion amplitudes measured with 2D fluoroscopic images (FI) and with an inhale/exhale CT (IECT) technique MATERIALS AND METHODS: Tumor motion of 52 patients (39 lung patients and 13 liver patients) was obtained with both FI and IECT. For FI, tumor detection and tracking was performed by means of a software developed by the authors. Motion amplitude and, thus, internal target volume (ITV), were defined to cover the positions where the tumor spends 95% of the time. The algorithm was validated against two different respiratory motion phantoms. Motion amplitude in IECT was defined as the difference in the position of the centroid of the gross tumor volume in the image sets of both treatments. RESULTS Important differences exist when defining ITVs with FI and IECT. Overall, differences larger than 5 mm were obtained for 49%, 31%, and 9.6% of the patients in Superior-Inferior (SI), Anterior-Posterior (AP), and Lateral (LAT) directions, respectively. For tumor location, larger differences were found for tumors in the liver (73.6% SI, 27.3% AP, and 6.7% in LAT had differences larger than 5 mm), while tumors in the upper lobe benefitted less using FI (differences larger than 5 mm were only present in 27.6% (SI), 36.7% (AP), and 0% (LAT) of the patients). CONCLUSIONS Use of FI with the linac built-in CBCT system is feasible for ITV definition. Large differences between motion amplitudes detected with FI and IECT methods were found. The method presented in this work based on FI could represent an improvement in ITV definition compared to the method based on IECT due to FI permits tumor motion acquisition in a more realistic situation than IECT.
Collapse
Affiliation(s)
- David Sevillano
- Department of Medical PhysicsHospital Universitario Ramón y CajalMadridSpain
| | - Luis Miguel Núñez
- Biomedical EngineeringETSITUniversidad Politécnica de MadridMadridSpain
| | - Margarita Chevalier
- Department of Radiology, Rehabilitation and PhysiotherapyUniversidad Complutense de MadridMadridSpain
| | | |
Collapse
|
26
|
Han Y. Current status of proton therapy techniques for lung cancer. Radiat Oncol J 2019; 37:232-248. [PMID: 31918460 PMCID: PMC6952710 DOI: 10.3857/roj.2019.00633] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022] Open
Abstract
Proton beams have been used for cancer treatment for more than 28 years, and several technological advancements have been made to achieve improved clinical outcomes by delivering more accurate and conformal doses to the target cancer cells while minimizing the dose to normal tissues. The state-of-the-art intensity modulated proton therapy is now prevailing as a major treatment technique in proton facilities worldwide, but still faces many challenges in being applied to the lung. Thus, in this article, the current status of proton therapy technique is reviewed and issues regarding the relevant uncertainty in proton therapy in the lung are summarized.
Collapse
Affiliation(s)
- Youngyih Han
- Department of Radiation Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea
| |
Collapse
|
27
|
Chen Y, Yin FF, Jiang Z, Ren L. Daily edge deformation prediction using an unsupervised convolutional neural network model for low dose prior contour based total variation CBCT reconstruction (PCTV-CNN). Biomed Phys Eng Express 2019; 5:065013. [PMID: 32587754 PMCID: PMC7316357 DOI: 10.1088/2057-1976/ab446b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
PURPOSE Previously we developed a PCTV method to enhance the edge sharpness for low-dose CBCT reconstruction. However, the iterative deformable registration method used for deforming edges from planning-CT to on-board CBCT is time-consuming and user-dependent. This study aims to automate and accelerate PCTV reconstruction by developing an unsupervised CNN model to bypass the conventional deformable registration. METHODS The new method uses unsupervised CNN model for deformation prediction and PCTV reconstruction. An unsupervised CNN model with a u-net structure was used to predict deformation vector fields (DVF) to generate on-board contours for PCTV reconstruction. Paired 3D image volumes of prior CT and on-board CBCT are inputs and DVF are predicted without the need of ground truths. The model was initially trained on brain MRI images, and then fine-tuned using our lung SBRT data. This method was evaluated using lung SBRT patient data. In the intra-patient study, the first n-1 day's CBCTs are used for CNN training to predict nth day edge information (n = 2, 3, 4, 5). 45 half-fan projections covering 360˚ from nth day CBCT is used for reconstruction. In the inter-patient study, the 10 patient images including CT and first day's CBCT are used for training. Results from Edge-preserving (EPTV), PCTV and PCTV-CNN are compared. RESULTS The cross-correlations of the predicted edge map and the ground truth were on average 0.88 for both intra-patient and inter-patient studies. PCTV-CNN achieved comparable image quality as PCTV while automating the registration process and reducing the registration time from 1-2 min to 1.4 s. CONCLUSION It is feasible to use an unsupervised CNN to predict daily deformation of on-board edge information for PCTV based low-dose CBCT reconstruction. PCTV-CNN has a great potential for enhancing the edge sharpness with high efficiency for low-dose CBCT to improve the precision of on-board target localization and adaptive radiotherapy.
Collapse
Affiliation(s)
- Yingxuan Chen
- Medical Physics Graduate Program, Duke University, 2424 Erwin Road Suite 101, Durham, NC 27705, United States of America
| | - Fang-Fang Yin
- Medical Physics Graduate Program, Duke University, 2424 Erwin Road Suite 101, Durham, NC 27705, United States of America
- Department of Radiation Oncology, Duke University Medical Center, DUMC Box 3295, Durham, North Carolina, 27710, United States of America
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan, Jiangsu, 215316, People's Republic of China
| | - Zhuoran Jiang
- Department of Radiation Oncology, Duke University Medical Center, DUMC Box 3295, Durham, North Carolina, 27710, United States of America
| | - Lei Ren
- Medical Physics Graduate Program, Duke University, 2424 Erwin Road Suite 101, Durham, NC 27705, United States of America
- Department of Radiation Oncology, Duke University Medical Center, DUMC Box 3295, Durham, North Carolina, 27710, United States of America
| |
Collapse
|
28
|
Boggs DH, Popple R, McDonald A, Minnich D, Willey CD, Spencer S, Shen S, Dobelbower MC. Electromagnetic Transponder Based Tracking and Gating in the Radiotherapeutic Treatment of Thoracic Malignancies. Pract Radiat Oncol 2019; 9:456-464. [PMID: 31283991 DOI: 10.1016/j.prro.2019.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/20/2019] [Accepted: 06/18/2019] [Indexed: 01/22/2023]
Abstract
PURPOSE This report details our institutional workflow and technique for use of the Calypso electromagnetic transponder system with respiratory gating for localization and tracking of lung tumors during stereotactic radiation therapy for early stage thoracic malignancies. METHODS AND MATERIALS Sixteen patients underwent bronchoscopic fiducial placement of 3 transponders in small airways in proximity to the primary tumor. Transponders were placed <19 cm from the most anterior skin location of the patient for appropriate tracking functionality. Patients underwent simulation with 4-dimensional assessment and were treated with transponder based positional gating if tumors moved >5 mm in any direction. Tumor motion <5 mm was not gated and treated using an internal target volume approach. A 5 mm uniform planning target volume was used. Before treatment, fiducial placement and tumor location were verified by daily kilovoltage (kV) and cone beam computed tomography image guidance. Tracking limits were placed based on the movement of the transponders from the centroid of the structures on the maximum intensity projection image. The Calypso treatment system paused treatment automatically if beacons shifted beyond the predefined tracking limits. RESULTS All 16 patients underwent successful implantation of the electromagnetic transponders. Eight patients exhibited tumor motion sufficient to require respiratory gating, and the other 8 patients were treated using a free breathing internal target volume technique. Difficulty with transponder sensing was experienced in 3 patients as a result of anatomic interference with the placement of the sensing arrays; each of these cases was successfully treated after making setup modifications. Triggered imaging of fiducials during treatment was consistent with real-time positioning determined by the Calypso tracking system. CONCLUSIONS Respiratory gated electromagnetic based transponder guided stereotactic body radiation therapy using the workflow described is feasible and well tolerated in selected patients with early stage lung malignancies.
Collapse
Affiliation(s)
- Drexell H Boggs
- Department of Radiation Oncology, University of Alabama Birmingham, Birmingham, Alabama.
| | - Richard Popple
- Department of Radiation Oncology, University of Alabama Birmingham, Birmingham, Alabama
| | - Andrew McDonald
- Department of Radiation Oncology, University of Alabama Birmingham, Birmingham, Alabama
| | - Doug Minnich
- Department of Thoracic Surgery, Brookwood Baptist Health, Birmingham, Alabama
| | - Christopher D Willey
- Department of Radiation Oncology, University of Alabama Birmingham, Birmingham, Alabama
| | - Sharon Spencer
- Department of Radiation Oncology, University of Alabama Birmingham, Birmingham, Alabama
| | - Sui Shen
- Department of Radiation Oncology, University of Alabama Birmingham, Birmingham, Alabama
| | - Michael C Dobelbower
- Department of Radiation Oncology, University of Alabama Birmingham, Birmingham, Alabama
| |
Collapse
|
29
|
Sun D, Liang X, Yin F, Cai J. Probability-based 3D k-space sorting for motion robust 4D-MRI. Quant Imaging Med Surg 2019; 9:1326-1336. [PMID: 31448217 DOI: 10.21037/qims.2019.07.06] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Current 4D-MRI techniques are prone to breathing-variation-induced motion artifacts. This study developed a novel method for motion-robust multi-cycle 4D-MRI using probability-based multi-cycle sorting to overcome this deficiency. METHODS The main cycles were first extracted from the breathing signal. 3D k-space data were then sorted using a result-driven method for each main cycle. The new method was tested on a 4D-extended cardiac-torso (XCAT) phantom with a patient and an artificially generated breathing curve. For comparison, the k-space data were sorted using conventional phase sorting to generate single-cycle 4D-MRI images. Signal-to-noise ratio (SNR) of tumor and liver, tumor volume consistency, and average intensity projection (AIP) accuracy were compared between the two methods. The original phantom images were used as references for the evaluation. RESULTS The new method showed improved tumor-to-liver SNR and tumor volume consistency as compared to 3D k-space phase sorting in both the simulated artificial and real patient breathing signals. For the artificial breathing cycles, the average tumor-to-liver SNR and standard deviation (SD) of tumor volume were 2.53 and 3.80% for cycle 1, 2.24 and 6.16% for cycle 2 of probability-based sorting as compared to 1.47 and 21.83% obtained using the phase sorting method; for the patient breathing curve, values of 1.99 and 2.71%, 1.97 and 3.29%, 1.88 and 4.16% were observed for cycle 1, cycle 2 and cycle 3 of probability-based sorting, versus 1.44 and 7.20% for phase sorting method. Furthermore, the AIP accuracy was improved in the probability-based sorting approach when compared to phase sorting, with the average intensity difference per voxel reduced from 0.39 to 0.15 for the artificial curve, and from 0.46 to 0.21 for the patient curve. CONCLUSIONS We demonstrated the feasibility of probability-based 3D k-space sorting for motion-robust multi-cycle 4D-MRI reconstruction with breathing variation induced motion artifact reduction compared with conventional 2D image sorting and 3D phase sorting methods. This new technique can potentially improve the accuracy of radiation treatment guidance for mobile targets.
Collapse
Affiliation(s)
- Duohua Sun
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan 215316, China
| | - Xiao Liang
- Medical Physics Graduate Program, Duke University, Durham, NC, USA
| | - Fangfang Yin
- Medical Physics Graduate Program, Duke Kunshan University, Kunshan 215316, China.,Medical Physics Graduate Program, Duke University, Durham, NC, USA.,Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Jing Cai
- Medical Physics Graduate Program, Duke University, Durham, NC, USA.,Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA.,Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
30
|
Oh SA, Yea JW, Kim SK, Park JW. Optimal Gating Window for Respiratory-Gated Radiotherapy with Real-Time Position Management and Respiration Guiding System for Liver Cancer Treatment. Sci Rep 2019; 9:4384. [PMID: 30867519 PMCID: PMC6416406 DOI: 10.1038/s41598-019-40858-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 02/25/2019] [Indexed: 12/25/2022] Open
Abstract
Respiratory-gated radiotherapy is one of the most effective approaches to minimise radiation dose delivery to normal tissue and maximise delivery to tumours under patient's motion caused by respiration. We propose a respiration guiding system based on real-time position management with suitable gating window for respiratory-gated radiotherapy applied to liver cancer. Between August 2016 and February 2018, 52 patients with liver cancer received training in real-time position management and respiration guiding. Respiration signals were statistically analysed during unguided respiration and when applying the respiration guiding system. Phases of 30-60% and 30-70% retrieved the lowest respiration variability among patients, and 47 patients exhibited significant differences in terms of respiration reproducibility between unguided and guided respiration. The results suggest that either of these phases can establish suitable windows for gated radiotherapy applied to liver cancer, especially regarding respiration reproducibility.
Collapse
Affiliation(s)
- Se An Oh
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu, Korea
| | - Ji Woon Yea
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu, Korea
- Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu, Korea
| | - Sung Kyu Kim
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu, Korea
- Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu, Korea
| | - Jae Won Park
- Department of Radiation Oncology, Yeungnam University Medical Center, Daegu, Korea.
- Department of Radiation Oncology, Yeungnam University College of Medicine, Daegu, Korea.
| |
Collapse
|
31
|
Javadi S, Eckstein J, Ulizio V, Palm R, Reddy K, Pearson D. Evaluation of the use of abdominal compression of the lung in stereotactic radiation therapy. Med Dosim 2019; 44:365-369. [PMID: 30852064 DOI: 10.1016/j.meddos.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/08/2019] [Accepted: 01/22/2019] [Indexed: 12/25/2022]
Abstract
The goal of this retrospective study was to determine the benefit in using abdominal compression to reduce tumor motion for patients treated with lung stereotactic body radiotherapy. Forty-four lung lesions (n = 44) from 37 patients (N = 37) treated at the University of Toledo's Dana Cancer Center were assessed by determining the overall tumor displacement along with possible surrogates such as change in tidal volume and diaphragm displacement, with and without abdominal compression. Measurements of lung capacity were acquired from the 4DCT at maximum and minimum respiration in order to determine the tidal volume, with and without abdominal compression. Tumor centroid and diaphragm apex motion was then assessed in 3 dimensions from phase 0 to phase 50. This was measured in centimeters using the ruler method on MIM software, both with and without the compression belt. Change in overall tumor movement was 0.61 cm ± 0.09 cm with compression, and 0.60 cm ± 0.09 cm without the compression belt. Delta tumor motion was reduced in 5 cases, increased (made worse) in 6 cases, and did not clinically impact the remaining 33 cases. Average tidal volume with abdominal compression was 379.7 mL or 12.0% ± 0.724% of total lung volume while average tidal volume without abdominal compression was 337.7 mL or 10.5% ± 0.649% of total lung volume. Change in diaphragm position throughout the breathing cycle was 1.21 cm ± 0.10 cm with compression, and 1.28 ± 0.13 cm without the compression belt. These findings indicate that abdominal compression may not be an effective method in the reduction of respiratory motion, and can even negatively impact tumor motion by increasing its displacement. Compression decreased tumor motion in 5 out of the 44 cases studied. The 5 cases that benefitted tended to be lesions close to the diaphragm but these 5 corresponded to less than half of the inferior lesions, suggesting that even inferior lung lesions may not be prime candidates for abdominal compression.
Collapse
Affiliation(s)
- Saba Javadi
- Department of Radiation Oncology, University of Toledo, 1325 Conference Drive, Toledo, OH 43614, USA
| | - Jacob Eckstein
- Department of Radiation Oncology, University of Toledo, 1325 Conference Drive, Toledo, OH 43614, USA
| | - Vincent Ulizio
- Department of Radiation Oncology, University of Toledo, 1325 Conference Drive, Toledo, OH 43614, USA.
| | - Russell Palm
- Department of Radiation Oncology, University of Toledo, 1325 Conference Drive, Toledo, OH 43614, USA
| | - Krishna Reddy
- Department of Radiation Oncology, University of Toledo, 1325 Conference Drive, Toledo, OH 43614, USA
| | - David Pearson
- Department of Radiation Oncology, University of Toledo, 1325 Conference Drive, Toledo, OH 43614, USA
| |
Collapse
|
32
|
Sala IM, Nair GB, Maurer B, Guerrero TM. High frequency percussive ventilation for respiratory immobilization in radiotherapy. Tech Innov Patient Support Radiat Oncol 2018; 9:8-12. [PMID: 32095589 PMCID: PMC7033809 DOI: 10.1016/j.tipsro.2018.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 11/30/2022] Open
Abstract
HFPV maybe a tool for immobilizing thoracic targets in radiotherapy. The procedure itself was well tolerated and well complied. Chest wall motion was significantly reduced by greater than 60%. HFPV can be greatly advantageous, particularly for SBRT and PBS proton therapy. Duty cycle under HFPV was significantly higher than conventional methods. The appropriate interface can lead to extensive HFPV prolonged times.
High frequency percussive ventilation (HFPV) employs high frequency low tidal volumes (100–400 bursts/min) to provide respiration in awake patients while simultaneously reducing respiratory motion. The purpose of this study is to evaluate HFPV as a technique for respiratory motion immobilization in radiotherapy. In this study fifteen healthy volunteers (age 30–75 y) underwent HFPV using three different oral interfaces. We evaluated each HFPV oral interface device for compliance, ease of use, comfort, geometric interference, minimal chest wall motion, duty cycle and prolonged percussive time. Their chest wall motion was monitored using an external respiratory motion laser system. The percussive ventilations were delivered via an air driven pneumatic system. All volunteers were monitored for PO2 and tc-CO2 with a pulse oximeter and CO2 Monitoring System. A total of N = 62 percussive sessions were analyzed from the external respiratory motion laser system. Chest-wall motion was well tolerated and drastically reduced using HFPV in each volunteer evaluated. As a result, we believe HFPV may provide thoracic immobilization during radiotherapy, particularly for SBRT and pencil beam scanning proton therapy.
Collapse
Affiliation(s)
- Ina M Sala
- William Beaumont Hospital, Department of Radiation Oncology, Royal Oak, MI, United States.,Wayne State University, Karmanos Cancer Center, Detroit, MI, United States
| | - Girish B Nair
- William Beaumont Hospital, Department of Pulmonary Critical Care, Royal Oak, MI, United States.,Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| | - Beverly Maurer
- William Beaumont Hospital, Department of Pulmonary Physiology, Royal Oak, MI, United States
| | - Thomas M Guerrero
- William Beaumont Hospital, Department of Radiation Oncology, Royal Oak, MI, United States.,Oakland University William Beaumont School of Medicine, Rochester, MI, United States
| |
Collapse
|
33
|
West NS, Parkes MJ, Snowden C, Prentis J, McKenna J, Iqbal MS, Cashmore J, Walker C. Mitigating Respiratory Motion in Radiation Therapy: Rapid, Shallow, Non-invasive Mechanical Ventilation for Internal Thoracic Targets. Int J Radiat Oncol Biol Phys 2018; 103:1004-1010. [PMID: 30496883 DOI: 10.1016/j.ijrobp.2018.11.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/06/2018] [Accepted: 11/19/2018] [Indexed: 12/25/2022]
Abstract
PURPOSE Reducing respiratory motion during the delivery of radiation therapy reduces the volume of healthy tissues irradiated and may decrease radiation-induced toxicity. The purpose of this study was to assess the potential for rapid shallow non-invasive mechanical ventilation to reduce internal anatomy motion for radiation therapy purposes. METHODS AND MATERIALS Ten healthy volunteers (mean age, 38 years; range, 22-54 years; 6 female and 4 male) were scanned using magnetic resonance imaging during normal breathing and at 2 ventilator-induced frequencies: 20 and 25 breaths per minute for 3 minutes. Sagittal and coronal cinematic data sets, centered over the right diaphragm, were used to measure internal motions across the lung-diaphragm interface. Repeated scans assessed reproducibility. Physiologic parameters and participant experiences were recorded to quantify tolerability and comfort. RESULTS Physiologic observations and experience questionnaires demonstrated that rapid shallow non-invasive ventilation technique was tolerable and comfortable. Motion analysis of the lung-diaphragm interface demonstrated respiratory amplitudes and variations reduced in all subjects using rapid shallow non-invasive ventilation compared with spontaneous breathing: mean amplitude reductions of 56% and 62% for 20 and 25 breaths per minute, respectively. The largest mean amplitude reductions were found in the posterior of the right lung; 40.0 mm during normal breathing to 15.5 mm (P < .005) and 15.2 mm (P < .005) when ventilated with 20 and 25 breaths per minute, respectively. Motion variations also reduced with ventilation; standard deviations in the posterior lung reduced from 14.8 mm during normal respiration to 4.6 mm and 3.5 mm at 20 and 25 breaths per minute, respectively. CONCLUSIONS To our knowledge, this study is the first to measure internal anatomic motion using rapid shallow mechanical ventilation to regularize and minimize respiratory motion over a period long enough to image and to deliver radiation therapy. Rapid frequency and shallow, non-invasive ventilation both generate large reductions in internal thoracic and abdominal motions, the clinical application of which could be profound-enabling dose escalation (increasing treatment efficacy) or high-dose ablative radiation therapy.
Collapse
Affiliation(s)
- Nicholas S West
- Department of Radiotherapy Physics, Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom.
| | - Michael J Parkes
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher Snowden
- Departments of Perioperative and Critical Care Medicine, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - James Prentis
- Departments of Perioperative and Critical Care Medicine, Freeman Hospital, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Jill McKenna
- Department of Therapeutic Radiography, Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Muhammad Shahid Iqbal
- Department of Clinical Oncology, Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Jason Cashmore
- Hall Edwards Radiotherapy Group, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Christopher Walker
- Department of Radiotherapy Physics, Northern Centre for Cancer Care, The Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
34
|
Cusumano D, Dhont J, Boldrini L, Chiloiro G, Teodoli S, Massaccesi M, Fionda B, Cellini F, Azario L, Vandemeulebroucke J, De Spirito M, Valentini V, Verellen D. Predicting tumour motion during the whole radiotherapy treatment: a systematic approach for thoracic and abdominal lesions based on real time MR. Radiother Oncol 2018; 129:456-462. [PMID: 30144955 DOI: 10.1016/j.radonc.2018.07.025] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/06/2018] [Accepted: 07/29/2018] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Aim of this study was to investigate the ability of pre-treatment four dimensional computed tomography (4DCT) to capture respiratory-motion observed in thoracic and abdominal lesions during treatment. Treatment motion was acquired using full-treatment cine-MR acquisitions. Results of this analysis were compared to the ability of 30 seconds (s) cine Magnetic Resonance (MR) to estimate the same parameters. METHODS A 4DCT and 30 s cine-MR (ViewRay, USA) were acquired on the simulation day for 7 thoracic and 13 abdominal lesions. Mean amplitude, intra- and inter-fraction amplitude variability, and baseline drift were extracted from the full treatment data acquired by 2D cine-MR, and correlated to the motion on pre-treatment 30 s cine-MR and 4DCT. Using the full treatment data, safety margins on the ITV, necessary to account for all motion variability from 4DCT observed during treatment, were calculated. Mean treatment amplitudes were 2 ± 1 mm and 5 ± 3 mm in the anteroposterior (AP) and craniocaudal (CC) direction, respectively. Differences between mean amplitude during treatment and amplitude on 4DCT or during 30 s cine-MR were not significant, but 30 s cine-MR was more accurate than 4DCT. Intra-fraction amplitude variability was positively correlated with both 30 s cine-MR and 4DCT amplitude. Inter-fraction amplitude variability was minimal. RESULTS Mean baseline drift over all fractions and patients equalled 1 ± 1 mm in both CC and AP direction, but drifts per fraction up to 16 mm (CC) and 12 mm (AP) were observed. Margins necessary on the ITV ranged from 0 to 8 mm in CC and 0 to 5 mm in AP direction. Neither amplitude on 4DCT nor during 30 s cine MR is correlated to the magnitude of drift or the necessary margins in both directions. CONCLUSION Lesions moving with small amplitude show limited amplitude variability throughout treatment, making passive motion management strategies seem adequate. However, other variations such as baseline drifts and shifts still cause significant geometrical uncertainty, favouring real-time monitoring and an active approach for all lesions influenced by respiratory motion.
Collapse
Affiliation(s)
- Davide Cusumano
- U.O.C. Fisica Sanitaria, Dipartimento di Diagnostica per immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italia; Istituto di Radiologia, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Jennifer Dhont
- Vrije Universiteit Brussel (VUB), Faculty of Medicine and Pharmacy, Pleinlaan 2, B-1050 Brussels, Belgium; Vrije Universiteit Brussel (VUB), Department of Electronics and Informatics (ETRO), Pleinlaan 2, B-1050 Brussels, Belgium; imec, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Luca Boldrini
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Roma, Italia.
| | - Giuditta Chiloiro
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Roma, Italia; U.O.C. Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Roma, Italia
| | - Stefania Teodoli
- U.O.C. Fisica Sanitaria, Dipartimento di Diagnostica per immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italia
| | - Mariangela Massaccesi
- U.O.C. Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Roma, Italia
| | - Bruno Fionda
- U.O.C. Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Roma, Italia
| | - Francesco Cellini
- U.O.C. Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Roma, Italia
| | - Luigi Azario
- U.O.C. Fisica Sanitaria, Dipartimento di Diagnostica per immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italia; Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Jef Vandemeulebroucke
- Vrije Universiteit Brussel (VUB), Department of Electronics and Informatics (ETRO), Pleinlaan 2, B-1050 Brussels, Belgium; imec, Kapeldreef 75, B-3001 Leuven, Belgium
| | - Marco De Spirito
- U.O.C. Fisica Sanitaria, Dipartimento di Diagnostica per immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Roma, Italia; Istituto di Fisica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - Vincenzo Valentini
- Istituto di Radiologia, Università Cattolica del Sacro Cuore, Roma, Italia; U.O.C. Radioterapia Oncologica, Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A.Gemelli" IRCCS, Roma, Italia
| | - Dirk Verellen
- Vrije Universiteit Brussel (VUB), Faculty of Medicine and Pharmacy, Pleinlaan 2, B-1050 Brussels, Belgium; Department of Radiotherapy, GZA Ziekenhuizen - Sint Augustinus, Iridium Kankernetwerk, Antwerp, Belgium
| |
Collapse
|
35
|
|
36
|
Aznar MC, Warren S, Hoogeman M, Josipovic M. The impact of technology on the changing practice of lung SBRT. Phys Med 2018; 47:129-138. [PMID: 29331227 PMCID: PMC5883320 DOI: 10.1016/j.ejmp.2017.12.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 11/20/2017] [Accepted: 12/23/2017] [Indexed: 02/09/2023] Open
Abstract
Stereotactic body radiotherapy (SBRT) for lung tumours has been gaining wide acceptance in lung cancer. Here, we review the technological evolution of SBRT delivery in lung cancer, from the first treatments using the stereotactic body frame in the 1990's to modern developments in image guidance and motion management. Finally, we discuss the impact of current technological approaches on the requirements for quality assurance as well as future technological developments.
Collapse
Affiliation(s)
- Marianne Camille Aznar
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK; Institute for Clinical Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark; Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| | - Samantha Warren
- Hall Edwards Radiotherapy Group, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Mischa Hoogeman
- MC-Daniel den Hoed Cancer Center, Erasmus University, Rotterdam, Netherlands
| | - Mirjana Josipovic
- Niels Bohr Institute, Faculty of Science, University of Copenhagen, Copenhagen, Denmark; Department of Oncology, Section for Radiotherapy, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
37
|
Mancosu P, Nisbet A, Jornet N. Editorial: The role of medical physics in lung SBRT. Phys Med 2018; 45:205-206. [PMID: 29325801 DOI: 10.1016/j.ejmp.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/24/2022] Open
Abstract
Stereotactic body radiation therapy (SBRT) has become a standard treatment for non-operable patients with early stage non-small cell lung cancer (NSCLC). In this context, medical physics community has largely helped in the starting and the growth of this technique. In fact, SBRT requires the convergence of many different features for delivering large doses in few fractions to small moving target in an heterogeneous medium. The special issue of last month, was focused on the different physics challenges in lung SBRT. Eleven reviews were presented, covering: imaging for treatment planning and for treatment assessment; dosimetry and planning optimization; treatment delivery possibilities; image guidance during delivery; radiobiology. The current cutting edge role of medical physics was reported. We aimed to give a complete overview of different aspects of lung SBRT that would be of interest to both physicists implementing this technique in their institutions and more experienced physicists that would be inspired to start research projects in areas that still need further developments. We also feel that the role that medical physicists have played in the development and safe implementation of SBRT, particularly in lung region, can be taken as an excellent example to be translated to other areas, not only in Radiation Oncology but also in other health sectors.
Collapse
Affiliation(s)
- Pietro Mancosu
- Medical Physics service, Radiotherapy department, Humanitas Cancer Center, Rozzano-Milan, Italy.
| | - Andrew Nisbet
- Department of Medical Physics, Royal Surrey County Hospital, United Kingdom; Department of Physics, Faculty of Engineering & Physical Sciences, University of Surrey, United Kingdom
| | - Núria Jornet
- Servei de Radiofísica i Radioprotecció, Hospital Sant Pau, Barcelona, Spain
| |
Collapse
|
38
|
De Ruysscher D, Faivre-Finn C, Moeller D, Nestle U, Hurkmans CW, Le Péchoux C, Belderbos J, Guckenberger M, Senan S. European Organization for Research and Treatment of Cancer (EORTC) recommendations for planning and delivery of high-dose, high precision radiotherapy for lung cancer. Radiother Oncol 2017; 124:1-10. [PMID: 28666551 DOI: 10.1016/j.radonc.2017.06.003] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/25/2017] [Accepted: 06/05/2017] [Indexed: 12/23/2022]
Abstract
PURPOSE To update literature-based recommendations for techniques used in high-precision thoracic radiotherapy for lung cancer, in both routine practice and clinical trials. METHODS A literature search was performed to identify published articles that were considered clinically relevant and practical to use. Recommendations were categorised under the following headings: patient positioning and immobilisation, Tumour and nodal changes, CT and FDG-PET imaging, target volumes definition, radiotherapy treatment planning and treatment delivery. An adapted grading of evidence from the Infectious Disease Society of America, and for models the TRIPOD criteria, were used. RESULTS Recommendations were identified for each of the above categories. CONCLUSION Recommendations for the clinical implementation of high-precision conformal radiotherapy and stereotactic body radiotherapy for lung tumours were identified from the literature. Techniques that were considered investigational at present are highlighted.
Collapse
Affiliation(s)
- Dirk De Ruysscher
- Maastricht University Medical Center+, Department of Radiation Oncology (Maastro Clinic), GROW Research Institute, The Netherlands; KU Leuven, Radiation Oncology, Belgium.
| | - Corinne Faivre-Finn
- Division of Cancer Sciences University of Manchester, Christie NHS Foundation Trust, UK
| | - Ditte Moeller
- Aarhus University Hospital, Department of Oncology, Denmark
| | - Ursula Nestle
- Freiburg University Medical Center (DKTK partner site), Department of Radiation Oncology, Germany; Department of Radiation Oncology, Kliniken Maria Hilf, Moenchengladbach, Germany
| | - Coen W Hurkmans
- Catharina Hospital, Department of Radiation Oncology, Eindhoven, The Netherlands
| | | | - José Belderbos
- Netherlands Cancer Institute, Department of Radiation Oncology, Amsterdam, The Netherlands
| | | | - Suresh Senan
- VU University Medical Center, Department of Radiation Oncology, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Abstract
Patient motion can cause misalignment of the tumour and toxicities to the healthy lung tissue during lung stereotactic body radiation therapy (SBRT). Any deviations from the reference setup can miss the target and have acute toxic effects on the patient with consequences onto its quality of life and survival outcomes. Correction for motion, either immediately prior to treatment or intra-treatment, can be realized with image-guided radiation therapy (IGRT) and motion management devices. The use of these techniques has demonstrated the feasibility of integrating complex technology with clinical linear accelerator to provide a higher standard of care for the patients and increase their quality of life.
Collapse
Affiliation(s)
- Vincent Caillet
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; School of Physics, University of Sydney, Sydney, Australia.
| | - Jeremy T Booth
- Northern Sydney Cancer Centre, Royal North Shore Hospital, Sydney, Australia; School of Physics, University of Sydney, Sydney, Australia
| | - Paul Keall
- School of Medicine, University of Sydney, Sydney, Australia
| |
Collapse
|
40
|
Brandner ED, Chetty IJ, Giaddui TG, Xiao Y, Huq MS. Motion management strategies and technical issues associated with stereotactic body radiotherapy of thoracic and upper abdominal tumors: A review from NRG oncology. Med Phys 2017; 44:2595-2612. [PMID: 28317123 DOI: 10.1002/mp.12227] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/23/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022] Open
Abstract
The efficacy of stereotactic body radiotherapy (SBRT) has been well demonstrated. However, it presents unique challenges for accurate planning and delivery especially in the lungs and upper abdomen where respiratory motion can be significantly confounding accurate targeting and avoidance of normal tissues. In this paper, we review the current literature on SBRT for lung and upper abdominal tumors with particular emphasis on addressing respiratory motion and its affects. We provide recommendations on strategies to manage motion for different, patient-specific situations. Some of the recommendations will potentially be adopted to guide clinical trial protocols.
Collapse
Affiliation(s)
- Edward D Brandner
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute and UPMC CancerCenter, Pittsburgh, PA, 15232, USA
| | - Indrin J Chetty
- Department of Radiation Oncology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Tawfik G Giaddui
- Sidney Kimmel Cancer Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Ying Xiao
- Imaging and Radiation Oncology Core (IROC), University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - M Saiful Huq
- Department of Radiation Oncology, University of Pittsburgh Cancer Institute and UPMC CancerCenter, Pittsburgh, PA, 15232, USA
| |
Collapse
|
41
|
Schwarz M, Cattaneo GM, Marrazzo L. Geometrical and dosimetrical uncertainties in hypofractionated radiotherapy of the lung: A review. Phys Med 2017; 36:126-139. [DOI: 10.1016/j.ejmp.2017.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/23/2016] [Accepted: 02/14/2017] [Indexed: 12/25/2022] Open
|
42
|
Hu Y, Zhou YK, Chen YX, Shi SM, Zeng ZC. 4D-CT scans reveal reduced magnitude of respiratory liver motion achieved by different abdominal compression plate positions in patients with intrahepatic tumors undergoing helical tomotherapy. Med Phys 2017; 43:4335. [PMID: 27370148 DOI: 10.1118/1.4953190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE While abdominal compression (AC) can be used to reduce respiratory liver motion in patients receiving helical tomotherapy for hepatocellular carcinoma, the nature and extent of this effect is not well described. The purpose of this study was to evaluate the changes in magnitude of three-dimensional liver motion with abdominal compression using four-dimensional (4D) computed tomography (CT) images of several plate positions. METHODS From January 2012 to October 2015, 72 patients with intrahepatic carcinoma and divided into four groups underwent 4D-CT scans to assess respiratory liver motion. Of the 72 patients, 19 underwent abdominal compression of the cephalic area between the subxiphoid and umbilicus (group A), 16 underwent abdominal compression of the caudal region between the subxiphoid area and the umbilicus (group B), 11 patients underwent abdominal compression of the caudal umbilicus (group C), and 26 patients remained free breathing (group D). 4D-CT images were sorted into ten-image series, according to the respiratory phase from the end inspiration to the end expiration, and then transferred to treatment planning software. All liver contours were drawn by a single physician and confirmed by a second physician. Liver relative coordinates were automatically generated to calculate the liver respiratory motion in different axial directions to compile the 10 ten contours into a single composite image. Differences in respiratory liver motion were assessed with a one-way analysis of variance test of significance. RESULTS The average respiratory liver motion in the Y axial direction was 4.53 ± 1.16, 7.56 ± 1.30, 9.95 ± 2.32, and 9.53 ± 2.62 mm in groups A, B, C, and D, respectively, with a significant change among the four groups (p < 0.001). Abdominal compression was most effective in group A (compression plate on the subxiphoid area), with liver displacement being 2.53 ± 0.93, 4.53 ± 1.16, and 2.14 ± 0.92 mm on the X-, Y-, and Z-axes, respectively. There was no significant difference in respiratory liver motion between group C (displacement: 3.23 ± 1.47, 9.95 ± 2.32, and 2.92 ± 1.10 mm on the X-, Y-, and Z-axes, respectively) and group D (displacement: 3.35 ± 1.55, 9.53 ± 2.62, and 3.35 ± 1.73 mm on the X-, Y-, and Z-axes, respectively). Abdominal compression was least effective in group C (compression on caudal umbilicus), with liver motion in this group similar to that of free-breathing patients (group D). CONCLUSIONS 4D-CT scans revealed significant liver motion control via abdominal compression of the subxiphoid area; however, this control of liver motion was not observed with compression of the caudal umbilicus. The authors, therefore, recommend compression of the subxiphoid area in patients undergoing external radiotherapy for intrahepatic carcinoma.
Collapse
Affiliation(s)
- Yong Hu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai 200032, China
| | - Yong-Kang Zhou
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai 200032, China
| | - Yi-Xing Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai 200032, China
| | - Shi-Ming Shi
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai 200032, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, 180 Feng Lin Road, Shanghai 200032, China
| |
Collapse
|
43
|
Rasheed A, Jabbour SK, Rosenberg S, Patel A, Goyal S, Haffty BG, Yue NJ, Khan A. Motion and volumetric change as demonstrated by 4DCT: The effects of abdominal compression on the GTV, lungs, and heart in lung cancer patients. Pract Radiat Oncol 2016; 6:352-359. [PMID: 26922698 PMCID: PMC10865427 DOI: 10.1016/j.prro.2015.12.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE Lung tumors move during respiration, complicating radiation therapy. The abdominal compression plate (ACP) is thought to reduce respiratory motion. This study quantifies ACP efficacy on respiratory-induced motion by using 4-dimensional computed tomography to evaluate volume and displacement changes of the heart, lungs, and tumor with and without ACP. METHODS AND MATERIALS Lung cancer patients (n = 17) received 4-dimensional computed tomography simulations (10 computed tomography scans from 0% to 90% breathing phases) with and without ACP under maximally tolerated diaphragmatic pressure. Gross tumor volume (GTV), heart, and lungs were contoured in treatment planning software for each phase. Structures were exported for analysis. For each phase, with and without ACP, tumor and organ absolute centroid range of motion and volume were calculated. RESULTS ACP did not significantly affect GTV, heart, or lung motion on the sample as a whole, but instead demonstrated patient-specific results. ACP reduced GTV motion in 3 (17.6%; 3 upper lobe tumors) by 2.9 mm (P < .01), increased motion in 5 (29.4%; 3 upper lobe tumors, 1 middle lobe, 1 lower lobe) by 1.9 mm (P < .03), and did not significantly change 9. Of the 3 patients exhibiting significantly decreased GTV motion, GTV, heart, and lung range of motion was 7.4 mm, 11.8 mm, and 11.9 mm, respectively, without compression and 4.5 mm, 8.4 mm, and 10.9 mm, respectively, with compression. Averaged across the sample, ACP did not exhibit any axis-specific effect. CONCLUSIONS ACP efficacy was patient-specific, possibly because of pre-existing factors including chronic obstructive pulmonary disease severity, chest wall elasticity, tumor location, and patient comfort. Tumor lobe location does not predetermine compression efficacy; therefore, patients should be simulated with and without ACP, regardless of tumor location. GTV motion seems most important in determining suitability for compression. Alternative motion control should be considered in patients not benefited by compression. In patients who benefited, ACP may enhance tumor coverage while minimizing toxicity. Larger scale studies are necessary for definitive treatment recommendations.
Collapse
Affiliation(s)
- Abdullah Rasheed
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Stephen Rosenberg
- Department of Human Oncology, University of Wisconsin Hospitals and Clinics, Madison, Wisconsin
| | - Ajay Patel
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Sharad Goyal
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Bruce G Haffty
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Ning J Yue
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | - Alvin Khan
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey.
| |
Collapse
|
44
|
Ko YE, Cho B, Kim SS, Song SY, Choi EK, Ahn SD, Yi B. Improving Delivery Accuracy of Stereotactic Body Radiotherapy to a Moving Tumor Using Simplified Volumetric Modulated Arc Therapy. PLoS One 2016; 11:e0158053. [PMID: 27333199 PMCID: PMC4917108 DOI: 10.1371/journal.pone.0158053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Accepted: 06/09/2016] [Indexed: 12/26/2022] Open
Abstract
PURPOSE To develop a simplified volumetric modulated arc therapy (VMAT) technique for more accurate dose delivery in thoracic stereotactic body radiation therapy (SBRT). METHODS AND MATERIALS For each of the 22 lung SBRT cases treated with respiratory-gated VMAT, a dose rate modulated arc therapy (DrMAT) plan was retrospectively generated. A dynamic conformal arc therapy plan with 33 adjoining coplanar arcs was designed and their beam weights were optimized by an inverse planning process. All sub-arc beams were converted into a series of control points with varying MLC segment and dose rates and merged into an arc beam for a DrMAT plan. The plan quality of original VMAT and DrMAT was compared in terms of target coverage, compactness of dose distribution, and dose sparing of organs at risk. To assess the delivery accuracy, the VMAT and DrMAT plans were delivered to a motion phantom programmed with the corresponding patients' respiratory signal; results were compared using film dosimetry with gamma analysis. RESULTS The plan quality of DrMAT was equivalent to that of VMAT in terms of target coverage, dose compactness, and dose sparing for the normal lung. In dose sparing for other critical organs, DrMAT was less effective than VMAT for the spinal cord, heart, and esophagus while being well within the limits specified by the Radiation Therapy Oncology Group. Delivery accuracy of DrMAT to a moving target was similar to that of VMAT using a gamma criterion of 2%/2mm but was significantly better using a 2%/1mm criterion, implying the superiority of DrMAT over VMAT in SBRT for thoracic/abdominal tumors with respiratory movement. CONCLUSION We developed a DrMAT technique for SBRT that produces plans of a quality similar to that achieved with VMAT but with better delivery accuracy. This technique is well-suited for small tumors with motion uncertainty.
Collapse
Affiliation(s)
- Young Eun Ko
- Department of Radiation Oncology, Ulsan University Hospital, Ulsan, Korea
| | - Byungchul Cho
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Su Ssan Kim
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Si Yeol Song
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Eun Kyung Choi
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung Do Ahn
- Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Byongyong Yi
- Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
45
|
Garibaldi C, Piperno G, Ferrari A, Surgo A, Muto M, Ronchi S, Bazani A, Pansini F, Cremonesi M, Jereczek-Fossa BA, Orecchia R. Translational and rotational localization errors in cone-beam CT based image-guided lung stereotactic radiotherapy. Phys Med 2016; 32:859-65. [PMID: 27289354 DOI: 10.1016/j.ejmp.2016.05.055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/16/2016] [Accepted: 05/18/2016] [Indexed: 12/17/2022] Open
Abstract
PURPOSE Accurate localization is crucial in delivering safe and effective stereotactic body radiation therapy (SBRT). The aim of this study was to analyse the accuracy of image-guidance using the cone-beam computed tomography (CBCT) of the VERO system in 57 patients treated for lung SBRT and to calculate the treatment margins. MATERIALS AND METHODS The internal target volume (ITV) was obtained by contouring the tumor on maximum and mean intensity projection CT images reconstructed from a respiration correlated 4D-CT. Translational and rotational tumor localization errors were identified by comparing the manual registration of the ITV to the motion-blurred tumor on the CBCT and they were corrected by means of the robotic couch and the ring rotation. A verification CBCT was acquired after correction in order to evaluate residual errors. RESULTS The mean 3D vector at initial set-up was 6.6±2.3mm, which was significantly reduced to 1.6±0.8mm after 6D automatic correction. 94% of the rotational errors were within 3°. The PTV margins used to compensate for residual tumor localization errors were 3.1, 3.5 and 3.3mm in the LR, SI and AP directions, respectively. CONCLUSIONS On-line image guidance with the ITV-CBCT matching technique and automatic 6D correction of the VERO system allowed a very accurate tumor localization in lung SBRT.
Collapse
Affiliation(s)
- Cristina Garibaldi
- Unit of Radiation Research, European Institute of Oncology, Milano, Italy.
| | - Gaia Piperno
- Department of Radiation Oncology, European Institute of Oncology, Milano, Italy
| | - Annamaria Ferrari
- Department of Radiation Oncology, European Institute of Oncology, Milano, Italy
| | - Alessia Surgo
- Department of Radiation Oncology, European Institute of Oncology, Milano, Italy
| | - Matteo Muto
- Department of Radiation Oncology, European Institute of Oncology, Milano, Italy
| | - Sara Ronchi
- Department of Radiation Oncology, European Institute of Oncology, Milano, Italy
| | - Alessia Bazani
- Unit of Medical Physics, European Institute of Oncology, Milano, Italy
| | - Floriana Pansini
- Unit of Medical Physics, European Institute of Oncology, Milano, Italy
| | - Marta Cremonesi
- Unit of Radiation Research, European Institute of Oncology, Milano, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Radiation Oncology, European Institute of Oncology, Milano, Italy; Department of Health Sciences, Università degli Studi di Milano, Milano, Italy
| | - Roberto Orecchia
- Department of Health Sciences, Università degli Studi di Milano, Milano, Italy; Scientific Director, European Institute of Oncology, Milano, Italy
| |
Collapse
|
46
|
Pollock S, Keall R, Keall P. Breathing guidance in radiation oncology and radiology: A systematic review of patient and healthy volunteer studies. Med Phys 2016; 42:5490-509. [PMID: 26328997 DOI: 10.1118/1.4928488] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
PURPOSE The advent of image-guided radiation therapy has led to dramatic improvements in the accuracy of treatment delivery in radiotherapy. Such advancements have highlighted the deleterious impact tumor motion can have on both image quality and radiation treatment delivery. One approach to reducing tumor motion irregularities is the use of breathing guidance systems during imaging and treatment. These systems aim to facilitate regular respiratory motion which in turn improves image quality and radiation treatment accuracy. A review of such research has yet to be performed; it was therefore their aim to perform a systematic review of breathing guidance interventions within the fields of radiation oncology and radiology. METHODS From August 1-14, 2014, the following online databases were searched: Medline, Embase, PubMed, and Web of Science. Results of these searches were filtered in accordance to a set of eligibility criteria. The search, filtration, and analysis of articles were conducted in accordance with preferred reporting items for systematic reviews and meta-analyses. Reference lists of included articles, and repeat authors of included articles, were hand-searched. RESULTS The systematic search yielded a total of 480 articles, which were filtered down to 27 relevant articles in accordance to the eligibility criteria. These 27 articles detailed the intervention of breathing guidance strategies in controlled studies assessing its impact on such outcomes as breathing regularity, image quality, target coverage, and treatment margins, recruiting either healthy adult volunteers or patients with thoracic or abdominal lesions. In 21/27 studies, significant (p < 0.05) improvements from the use of breathing guidance were observed. CONCLUSIONS There is a trend toward the number of breathing guidance studies increasing with time, indicating a growing clinical interest. The results found here indicate that further clinical studies are warranted that quantify the clinical impact of breathing guidance, along with the health technology assessment to determine the advantages and disadvantages of breathing guidance.
Collapse
Affiliation(s)
- Sean Pollock
- Radiation Physics Laboratory, University of Sydney, Sydney 2050, Australia
| | - Robyn Keall
- Central School of Medicine, University of Sydney, Sydney 2050, Australia and Hammond Care, Palliative Care and Supportive Care Service, Greenwich 2065, Australia
| | - Paul Keall
- Radiation Physics Laboratory, University of Sydney, Sydney 2050, Australia
| |
Collapse
|
47
|
Thengumpallil S, Germond JF, Bourhis J, Bochud F, Moeckli R. Impact of respiratory-correlated CT sorting algorithms on the choice of margin definition for free-breathing lung radiotherapy treatments. Radiother Oncol 2016; 119:438-43. [DOI: 10.1016/j.radonc.2016.03.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 03/14/2016] [Accepted: 03/19/2016] [Indexed: 10/22/2022]
|
48
|
Evaluation of the motion of lung tumors during stereotactic body radiation therapy (SBRT) with four-dimensional computed tomography (4DCT) using real-time tumor-tracking radiotherapy system (RTRT). Phys Med 2016; 32:305-11. [DOI: 10.1016/j.ejmp.2015.10.093] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/09/2015] [Accepted: 10/23/2015] [Indexed: 11/30/2022] Open
|
49
|
Deep Inspiration Breath Hold-Based Radiation Therapy: A Clinical Review. Int J Radiat Oncol Biol Phys 2015; 94:478-92. [PMID: 26867877 DOI: 10.1016/j.ijrobp.2015.11.049] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 11/03/2015] [Accepted: 11/29/2015] [Indexed: 01/06/2023]
Abstract
Several recent developments in linear accelerator-based radiation therapy (RT) such as fast multileaf collimators, accelerated intensity modulation paradigms like volumeric modulated arc therapy and flattening filter-free (FFF) high-dose-rate therapy have dramatically shortened the duration of treatment fractions. Deliverable photon dose distributions have approached physical complexity limits as a consequence of precise dose calculation algorithms and online 3-dimensional image guided patient positioning (image guided RT). Simultaneously, beam quality and treatment speed have continuously been improved in particle beam therapy, especially for scanned particle beams. Applying complex treatment plans with steep dose gradients requires strategies to mitigate and compensate for motion effects in general, particularly breathing motion. Intrafractional breathing-related motion results in uncertainties in dose delivery and thus in target coverage. As a consequence, generous margins have been used, which, in turn, increases exposure to organs at risk. Particle therapy, particularly with scanned beams, poses additional problems such as interplay effects and range uncertainties. Among advanced strategies to compensate breathing motion such as beam gating and tracking, deep inspiration breath hold (DIBH) gating is particularly advantageous in several respects, not only for hypofractionated, high single-dose stereotactic body RT of lung, liver, and upper abdominal lesions but also for normofractionated treatment of thoracic tumors such as lung cancer, mediastinal lymphomas, and breast cancer. This review provides an in-depth discussion of the rationale and technical implementation of DIBH gating for hypofractionated and normofractionated RT of intrathoracic and upper abdominal tumors in photon and proton RT.
Collapse
|
50
|
Mancosu P, Reggiori G, Gaudino A, Lobefalo F, Paganini L, Palumbo V, Stravato A, Tomatis S, Scorsetti M. Are pitch and roll compensations required in all pathologies? A data analysis of 2945 fractions. Br J Radiol 2015; 88:20150468. [PMID: 26393283 PMCID: PMC4743463 DOI: 10.1259/bjr.20150468] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/10/2015] [Accepted: 09/16/2015] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE New linear accelerators can be equipped with a 6D robotic couch, providing two additional rotational motion axes: pitch and roll. These shifts in kilo voltage-cone beam CT (kV-CBCT) image-guided radiotherapy (IGRT) were evaluated over the first 6 months of usage of a 6D robotic couch-top, ranking the treatment sites for which the two compensations are larger for patient set-up. METHODS The couch compensations of 2945 fractions for 376 consecutive patients treated on the PerfectPitch™ 6D couch (Varian(®) Medical Systems, Palo Alto, CA) were analysed. Among these patients, 169 were treated for brain, 111 for lung, 54 for liver, 26 for pancreas and 16 for prostate tumours. During the set-up, patient anatomy from planning CT was aligned to kV-CBCT, and 6D movements were executed. Information related to pitch and roll were extracted by proper querying of the Microsoft(®) SQL server (Microsoft Corporation, Redmond, WA) ARIA database (Varian Medical Systems). Mean values and standard deviations were calculated for all sites. Kolmogorov-Smirnov (KS) test was performed. RESULTS Considering all the data, mean pitch and roll adjustments were -0.10° ± 0.92° and 0.12° ± 0.96°, respectively; mean absolute values for both adjustments were 0.58° ± 0.69° and 0.69° ± 0.72°, respectively. Brain treatments showed the highest mean absolute values for pitch and roll rotations (0.73° ± 0.69° and 0.80° ± 0.78°, respectively); the lowest values of 0.36° ± 0.47° and 0.49° ± 0.58° were found for pancreas. KS test was significant for brain vs liver, pancreas and prostate. Collective corrections (pitch + roll) >0.5°, >1.0° and >2.0° were observed in, respectively, 79.8%, 61.0% and 29.1% for brain and 56.7%, 39.4% and 6.7% for pancreas. CONCLUSION Adjustments in all six dimensions, including unconventional pitch and roll rotations, improve the patient set-up in all treatment sites. The greatest improvement was observed for patients with brain tumours. ADVANCES IN KNOWLEDGE To our knowledge, this is the first systematic evaluation of the clinical efficacy of a 6D Robotic couch-top in CBCT IGRT over different tumour regions.
Collapse
Affiliation(s)
- Pietro Mancosu
- Physics Service of Radiation Oncology Department, Clinical and Research Center, Rozzano, Milan, Italy
| | - Giacomo Reggiori
- Physics Service of Radiation Oncology Department, Clinical and Research Center, Rozzano, Milan, Italy
| | - Anna Gaudino
- Physics Service of Radiation Oncology Department, Clinical and Research Center, Rozzano, Milan, Italy
| | - Francesca Lobefalo
- Physics Service of Radiation Oncology Department, Clinical and Research Center, Rozzano, Milan, Italy
| | - Lucia Paganini
- Physics Service of Radiation Oncology Department, Clinical and Research Center, Rozzano, Milan, Italy
| | - Valentina Palumbo
- Physics Service of Radiation Oncology Department, Clinical and Research Center, Rozzano, Milan, Italy
| | - Antonella Stravato
- Physics Service of Radiation Oncology Department, Clinical and Research Center, Rozzano, Milan, Italy
| | - Stefano Tomatis
- Physics Service of Radiation Oncology Department, Clinical and Research Center, Rozzano, Milan, Italy
| | - Marta Scorsetti
- Radiation Oncology Department, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| |
Collapse
|