1
|
Abtahi SMM, Habibi F. Investigation of the beam quality and dose rate dependence of PAKAG polymer gel dosimeter in optical readout technique. Biomed Phys Eng Express 2024; 10:055041. [PMID: 39151446 DOI: 10.1088/2057-1976/ad7032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
This study aims to evaluate the optical response dependence of the PAKAG polymer gel dosimeter on photon energy and dose rate. The produced gel dosimeters were irradiated using a Varian CL 21EX medical linear accelerator with delivered doses of 0, 2, 4, 6, 8, and 10 Gy. To examine the response dependence on the delivered dose rate, dose rates of 50, 100, 200, and 350 cGy min-1were investigated. Additionally, two incident beam qualities of 6 and 18 MV were examined to study the response dependence on the incident beam energy. The irradiated polymer gel dosimeters were readout using a UV-vis spectrophotometer in the 300 to 800 nm scan range. The results reveal that a wide variation in dose rate (50-350 cGy.min-1) influences the absorbance-dose response and the sensitivity of PAKAG gel. However, smaller variations did not show a significant effect on the response. Furthermore, the response changed insignificantly with beam quality for investigated energies. It was concluded that the optical reading response of the PAKAG polymer gel dosimeter is satisfactorily independent of external parameters, including dose rate and incident beam quality.
Collapse
Affiliation(s)
| | - Fatemeh Habibi
- Department of Physics, Imam Khomeini International University, Qazvin, 3414896818, Iran
| |
Collapse
|
2
|
Watanabe Y, Maeyama T, Mizukami S, Tachibana H, Terazaki T, Takei H, Muraishi H, Gomi T, Hayashi SI. Verification of dose distribution in high dose-rate brachytherapy for cervical cancer using a normoxic N-vinylpyrrolidone polymer gel dosimeter. JOURNAL OF RADIATION RESEARCH 2022; 63:838-848. [PMID: 36109319 PMCID: PMC9726700 DOI: 10.1093/jrr/rrac053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/14/2022] [Indexed: 05/10/2023]
Abstract
The polymer gel dosimeter has been proposed for use as a 3D dosimeter for complex dose distribution measurement of high dose-rate (HDR) brachytherapy. However, various shapes of catheter/applicator for sealed radioactive source transport used in clinical cases must be placed in the gel sample. The absorbed dose readout for the magnetic resonance (MR)-based polymer gel dosimeters requires calibration data for the dose-transverse relaxation rate (R2) response. In this study, we evaluated in detail the dose uncertainty and dose resolution of three calibration methods, the multi-sample and distance methods using the Ir-192 source and the linear accelerator (linac) method using 6MV X-rays. The use of Ir-192 sources increases dose uncertainty with steep dose gradients. We clarified that the uniformly irradiated gel sample improved the signal-to-noise ratio (SNR) due to the large slice thickness of MR images and could acquire an accurate calibration curve using the linac method. The curved tandem and ovoid applicator used for intracavitary irradiation of HDR brachytherapy for cervical cancer were reproduced with a glass tube to verify the dose distribution. The results of comparison with the treatment planning system (TPS) calculation by gamma analysis on the 3%/2 mm criterion were in good agreement with a gamma pass rate of 90%. In addition, the prescription dose could be evaluated accurately. We conclude that it is easy to place catheter/applicator in the polymer gel dosimeters, making them a useful tool for verifying the 3D dose distribution of HDR brachytherapy with accurate calibration methods.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Corresponding author. School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan. E-mail:
| | - Takuya Maeyama
- School of Science, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shinya Mizukami
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Hidenobu Tachibana
- Radiation Safety and Quality Assurance division, National Cancer Center Hospital East, 6-5-1 Kashiwanoha, Kashiwa, Chiba, 277-8577, Japan
| | - Tsuyoshi Terazaki
- Department of Radiology, Yokohama City Minato Red Cross Hospital, 3-12-1 Shinyamashita, Naka-ku, Yokohama, Kanagawa, 231-8682, Japan
| | - Hideyuki Takei
- Quantum Life and Medical Science Directorate, National Institute for Quantum Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba-shi, Chiba, 263-8555, Japan
| | - Hiroshi Muraishi
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Tsutomu Gomi
- School of Allied Health Sciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan
| | - Shin-ichiro Hayashi
- Faculty of Health Sciences, Hiroshima International University, 555-36 Kurosegakuendai, Higashihiroshima, Hiroshima, 739-2695, Japan
| |
Collapse
|
3
|
Krauleidis A, Adliene D, Rutkuniene Z. The Impact of Temporal Changes in Irradiated nMAG Polymer Gels on Their Applicability in Small Field Dosimetry in Radiotherapy. Gels 2022; 8:629. [PMID: 36286130 PMCID: PMC9601347 DOI: 10.3390/gels8100629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
As advanced radiotherapy techniques progress to deliver a high absorbed dose to the target volume while minimizing the dose to normal tissues using intensity-modulated beams, arcs or stereotactic radiosurgery, new challenges occur to assure that the high treatment dose is delivered homogeneously to the tumor. Small irradiation field sizes (≤1 cm2) that tightly conform to precise target regions and allow for the deliverance of doses with a high therapeutic ratio, are of particular interest. However, the small field dosimetry using conventional dosimeters is limited by the relative large size of the detector. Radiation-sensitive polymer gels have the potential to meet this dosimetry challenge due to their almost unlimited ability in resolving three-dimensional dose distributions of any shape and makes them unique and suitable for the evaluation of dose profiles and the verification of complex doses. In this work, dose distributions in nMAG gels that have been irradiated to different doses by applying a 6 MV FFF photon beam collimated to 1 cm2, were analyzed and the dose profiles were evaluated by applying a gamma passing rate criteria of 3%/3 mm and considering different post-irradiation time intervals between the irradiation and the gels read out process. X-ray CT and NMR imaging procedures were used for the dose evaluation. It was found that the shape and uniformity of the dose profiles were changing due to post-irradiation polymerization and gelation processes, indicating time dependent growing uniformity which was better expressed for the higher delivered doses. It was estimated that in order to obtain acceptably symmetric small field dose profiles, a longer post-irradiation time is needed for getting the full scope of the polymerization as compared with the recently recommended 24 h period between irradiation and the read out processes of the dose gels. An estimated overall uncertainty (double standard deviation, 95% confidence level) of 3.66% was achieved by applying R2 measurements (NMR read out), and a 3.81-applying X-ray CT read out for 12 Gy irradiated gels 56 h post-irradiation. An increasing tendency for the uncertainty was observed with a decreasing post-irradiation time. A gamma passing rate of 90.3% was estimated for the 12 Gy irradiated gels and, 56 h post-irradiation, the X-ray CT evaluated gels as well as a gamma passing rate of 92.7% was obtained for the NMR evaluated gels applying a 3%/3 mm passing criteria.
Collapse
Affiliation(s)
| | - Diana Adliene
- Physics Department, Kaunas University of Technology, Studentu Str. 50, 51368 Kaunas, Lithuania
| | | |
Collapse
|
4
|
Farahani S, Mosleh-Shirazi MA, Riyahi Alam N, Rabi Mahdavi S, Raeisi F. Global and spatial dosimetric characteristics of N-vinylpyrrolidone-based polymer gel dosimeters as a function of medium-term post-preparation and post-irradiation time. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
5
|
Nierer L, Kamp F, Reiner M, Corradini S, Rabe M, Dietrich O, Parodi K, Belka C, Kurz C, Landry G. Evaluation of an anthropomorphic ion chamber and 3D gel dosimetry head phantom at a 0.35 T MR-linac using separate 1.5 T MR-scanners for gel readout. Z Med Phys 2022; 32:312-325. [PMID: 35305857 PMCID: PMC9948847 DOI: 10.1016/j.zemedi.2022.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/27/2022] [Accepted: 01/31/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE To date, no universally accepted technique for the evaluation of the overall dosimetric performance of hybrid integrated magnetic resonance imaging (MR) - linear accelerators (linacs) is available. We report on the suitability and reliability of a novel phantom with modular inserts for combined polymer gel (PG) and ionisation chamber (IC) measurements at a 0.35 T MR-linac. METHODS Three 3D-printed, modular head phantoms, based on real patient anatomy, were used for repeated (2 times) PG irradiations of cranial treatment plans on a 0.35 T MR-linac. The PG readout was performed on two 1.5 T diagnostic MR-scanners to reduce scanning time. The PG dose volumes were normalised to the IC dose (normalised dose N1) and to the median planning target volume dose (normalised dose N2). Linearity of the PG dose response was validated and dose profiles, centres of mass (COM) of the 95% isodoses and dose volume histograms (DVH) were compared between planned and measured dose distributions and a 3D gamma analysis was performed. RESULTS Dose linearity of the PG was good (R2> 0.99 for all linear fit functions). High agreement was found between planned and measured dose volumes in the dose profiles and DVHs. The largest dose deviation was found in the intermediate dose region (mean dose deviation 0.2Gy; 5.6%). A mean COM offset of 1.2mm indicated high spatial accuracy. Mean 3D gamma passing rates (2%, 2mm) of 83.3% for N1 and 91.6% for N2 dose distributions were determined. When comparing repeated PG measurements to each other, a mean gamma passing rate of 95.7% was found. CONCLUSION The new modular phantom was found practical for use at a 0.35 T MR-linac. In contrast to the high dose region, larger mean deviations were found in the mid dose range. The PG measurements showed high reproducibility. The MR-linac performed well in a non-adaptive setting in terms of spatial and dosimetric accuracy.
Collapse
Affiliation(s)
- Lukas Nierer
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany.
| | - Florian Kamp
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; Department of Radiation Oncology, University Hospital Cologne, Kerpener Str. 62, 50937 Cologne, Germany
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Moritz Rabe
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Olaf Dietrich
- Department of Radiology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München, 85748 Garching, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany; German Cancer Consortium (DKTK), partner site Munich, Munich, Germany
| | - Christopher Kurz
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| | - Guillaume Landry
- Department of Radiation Oncology, University Hospital, LMU Munich, Marchioninistr. 15, 81377 Munich, Germany
| |
Collapse
|
6
|
Zirone L, Bonanno E, Borzì GR, Cavalli N, D’Anna A, Galvagno R, Girlando A, Gueli AM, Pace M, Stella G, Marino C. HyperArc TM Dosimetric Validation for Multiple Targets Using Ionization Chamber and RT-100 Polymer Gel. Gels 2022; 8:481. [PMID: 36005082 PMCID: PMC9407338 DOI: 10.3390/gels8080481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Multiple brain metastases single-isocenter stereotactic radiosurgery (SRS) treatment is increasingly employed in radiotherapy department. Before its use in clinical routine, it is recommended to perform end-to-end tests. In this work, we report the results of five HyperArcTM treatment plans obtained by both ionization chamber (IC) and polymer gel. The end-to-end tests were performed using a water equivalent Mobius Verification PhantomTM (MVP) and a 3D-printed anthropomorphic head phantom PseudoPatient® (PP) (RTsafe P.C., Athens, Greece); 2D and 3D dose distributions were evaluated on the PP phantom using polymer gel (RTsafe). Gels were read by 1.5T magnetic resonance imaging (MRI). Comparison between calculated and measured distributions was performed using gamma index passing rate evaluation by different criteria (5% 2 mm, 3% 2 mm, 5% 1 mm). Mean point dose differences of 1.01% [min −0.77%−max 2.89%] and 0.23% [min 0.01%−max 2.81%] were found in MVP and PP phantoms, respectively. For each target volume, the obtained results in terms of gamma index passing rate show an agreement >95% with 5% 2 mm and 3% 2 mm criteria for both 2D and 3D distributions. The obtained results confirmed that the use of a single isocenter for multiple lesions reduces the treatment time without compromising accuracy, even in the case of target volumes that are quite distant from the isocenter.
Collapse
Affiliation(s)
- Lucia Zirone
- Medical Physics Department, Humanitas Istituto Clinico Catanese, 95045 Catania, Italy; (L.Z.); (E.B.); (G.R.B.); (N.C.); (M.P.); (C.M.)
| | - Elisa Bonanno
- Medical Physics Department, Humanitas Istituto Clinico Catanese, 95045 Catania, Italy; (L.Z.); (E.B.); (G.R.B.); (N.C.); (M.P.); (C.M.)
| | - Giuseppina Rita Borzì
- Medical Physics Department, Humanitas Istituto Clinico Catanese, 95045 Catania, Italy; (L.Z.); (E.B.); (G.R.B.); (N.C.); (M.P.); (C.M.)
| | - Nina Cavalli
- Medical Physics Department, Humanitas Istituto Clinico Catanese, 95045 Catania, Italy; (L.Z.); (E.B.); (G.R.B.); (N.C.); (M.P.); (C.M.)
| | - Alessia D’Anna
- Department of Physics and Astronomy E. Majorana, University of Catania, 95123 Catania, Italy; (A.D.); (R.G.); (A.M.G.)
| | - Rosaria Galvagno
- Department of Physics and Astronomy E. Majorana, University of Catania, 95123 Catania, Italy; (A.D.); (R.G.); (A.M.G.)
| | - Andrea Girlando
- Radiotherapy Department, Humanitas Istituto Clinico Catanese, 95045 Catania, Italy;
| | - Anna Maria Gueli
- Department of Physics and Astronomy E. Majorana, University of Catania, 95123 Catania, Italy; (A.D.); (R.G.); (A.M.G.)
| | - Martina Pace
- Medical Physics Department, Humanitas Istituto Clinico Catanese, 95045 Catania, Italy; (L.Z.); (E.B.); (G.R.B.); (N.C.); (M.P.); (C.M.)
| | - Giuseppe Stella
- Department of Physics and Astronomy E. Majorana, University of Catania, 95123 Catania, Italy; (A.D.); (R.G.); (A.M.G.)
| | - Carmelo Marino
- Medical Physics Department, Humanitas Istituto Clinico Catanese, 95045 Catania, Italy; (L.Z.); (E.B.); (G.R.B.); (N.C.); (M.P.); (C.M.)
| |
Collapse
|
7
|
Investigation of isotropic radiation of low energy X-ray intra-operative radiotherapy by MAGAT gel dosimeter. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
8
|
Saenz D, Papanikolaou N, Zoros E, Pappas E, Reiner M, Chew LT, Lim HY, Hancock S, Nebelsky A, Njeh C, Anagnostopoulos G. Robustness of single-isocenter multiple-metastasis stereotactic radiosurgery end-to-end testing across institutions. JOURNAL OF RADIOSURGERY AND SBRT 2021; 7:223-232. [PMID: 33898086 PMCID: PMC8055241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
The accuracy of stereotactic radiosurgery (SRS) to multiple metastases with a single-isocenter using high definition dynamic radiosurgery (HDRS) was evaluated across institutions. An SRS plan was delivered at six HDRS-capable institutions to an anthropomorphic phantom consisting of point, film, and 3D-gel dosimeters. Direct dose comparison and gamma analysis were used to evaluate the accuracy. Point measurements averaged across institutions were within 1.2±0.5%. The average gamma passing rate in the film was 96.6±2.2% (3%/2 mm). For targets within 4 cm of the isocenter, the 3D dosimetric gel gamma passing rate averaged across institutions was >90% (3%/2 mm). The targeting accuracy of high definition dynamic radiosurgery assessed by geometrical offset of the center of dose distributions across multiple institutions in this study was within 1 mm for targets within 4 cm of isocenter. Across variations in clinical practice, comparable dosimetry and localization is possible with this treatment planning and delivery technique.
Collapse
Affiliation(s)
- Daniel Saenz
- University of Texas Health Science Center, San Antonio, TX, USA
| | | | - Emmanouil Zoros
- National and Kapodistrian University of Athens Medical School, Athens, Greece
| | | | | | | | | | - Sam Hancock
- Southeast Health, Cape Girardeau, Missouri, USA
| | | | | | | |
Collapse
|
9
|
Dellios D, Pappas EP, Seimenis I, Paraskevopoulou C, Lampropoulos KI, Lymperopoulou G, Karaiskos P. Evaluation of patient-specific MR distortion correction schemes for improved target localization accuracy in SRS. Med Phys 2020; 48:1661-1672. [PMID: 33230923 DOI: 10.1002/mp.14615] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/16/2020] [Accepted: 11/16/2020] [Indexed: 11/08/2022] Open
Abstract
PURPOSE This work aims at promoting target localization accuracy in cranial stereotactic radiosurgery (SRS) applications by focusing on the correction of sequence-dependent (also patient induced) magnetic resonance (MR) distortions at the lesion locations. A phantom-based quality assurance (QA) methodology was developed and implemented for the evaluation of three distortion correction techniques. The same approach was also adapted to cranial MR images used for SRS treatment planning purposes in single or multiple brain metastases cases. METHODS A three-dimensional (3D)-printed head phantom was filled with a 3D polymer gel dosimeter. Following treatment planning and dose delivery, volumes of radiation-induced polymerization served as hypothetical lesions, offering adequate MR contrast with respect to the surrounding unirradiated areas. T1-weighted (T1w) MR imaging was performed at 1.5 T using the clinical scanning protocol for SRS. Additional images were acquired to implement three distortion correction methods; the field mapping (FM), mean image (MI) and signal integration (SI) techniques. Reference lesion locations were calculated as the averaged centroid positions of each target identified in the forward and reverse read gradient polarity MRI scans. The same techniques and workflows were implemented for the correction of contrast-enhanced T1w MR images of 10 patients with a total of 27 brain metastases. RESULTS All methods employed in the phantom study diminished spatial distortion. Median and maximum distortion magnitude decreased from 0.7 mm (2.10 ppm) and 0.8 mm (2.36 ppm), respectively, to <0.2 mm (0.61 ppm) at all target locations, using any of the three techniques. Image quality of the corrected images was acceptable, while contrast-to-noise ratio slightly increased. Results of the patient study were in accordance with the findings of the phantom study. Residual distortion in corrected patient images was found to be <0.3 mm in the vast majority of targets. Overall, the MI approach appears to be the most efficient correction method from the three investigated. CONCLUSIONS In cranial SRS applications, patient-specific distortion correction at the target location(s) is feasible and effective, despite the expense of longer imaging time since additional MRI scan(s) need to be performed. A phantom-based QA methodology was developed and presented to reassure efficient implementation of correction techniques for sequence-dependent spatial distortion.
Collapse
Affiliation(s)
- Dimitrios Dellios
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, 115 27, Greece
| | - Eleftherios P Pappas
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, 115 27, Greece
| | - Ioannis Seimenis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, 115 27, Greece
| | | | - Kostas I Lampropoulos
- Medical Physics and Gamma Knife Department, Hygeia Hospital, Marousi, 151 23, Greece
| | - Georgia Lymperopoulou
- 1st Department of Radiology, Medical School, National and Kapodistrian University of Athens, Athens, 115 28, Greece
| | - Pantelis Karaiskos
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, 115 27, Greece.,Medical Physics and Gamma Knife Department, Hygeia Hospital, Marousi, 151 23, Greece
| |
Collapse
|
10
|
Romero M, Macchione MA, Mattea F, Strumia M. The role of polymers in analytical medical applications. A review. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Han EY, Diagaradjane P, Luo D, Ding Y, Kalaitzakis G, Zoros E, Zourari K, Boursianis T, Pappas E, Wen Z, Wang J, Briere TM. Validation of PTV margin for Gamma Knife Icon frameless treatment using a PseudoPatient® Prime anthropomorphic phantom. J Appl Clin Med Phys 2020; 21:278-285. [PMID: 32786141 PMCID: PMC7497928 DOI: 10.1002/acm2.12997] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/28/2020] [Accepted: 06/23/2020] [Indexed: 11/09/2022] Open
Abstract
The Gamma Knife Icon allows the treatment of brain tumors mask-based single-fraction or fractionated treatment schemes. In clinic, uniform axial expansion of 1 mm around the gross tumor volume (GTV) and a 1.5 mm expansion in the superior and inferior directions are used to generate the planning target volume (PTV). The purpose of the study was to validate this margin scheme with two clinical scenarios: (a) the patient's head remaining right below the high-definition motion management (HDMM) threshold, and (b) frequent treatment interruptions followed by plan adaptation induced by large pitch head motion. A remote-controlled head assembly was used to control the motion of a PseudoPatient® Prime head phantom; for dosimetric evaluations, an ionization chamber, EBT3 films, and polymer gels were used. These measurements were compared with those from the Gamma Knife plan. For the absolute dose measurements using an ionization chamber, the percentage differences for both targets were less than 3.0% for all scenarios, which was within the expected tolerance. For the film measurements, the two-dimensional (2D) gamma index with a 2%/2 mm criterion showed the passing rates of ≥87% in all scenarios except the scenario 1. The results of Gel measurements showed that GTV (D100 ) was covered by the prescription dose and PTV (D95 ) was well above the planned dose by up to 5.6% and the largest geometric PTV offset was 0.8 mm for all scenarios. In conclusion, the current margin scheme with HDMM setting is adequate for a typical patient's intrafractional motion.
Collapse
Affiliation(s)
- Eun Young Han
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Parmeswaran Diagaradjane
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dershan Luo
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yao Ding
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Emmanouil Zoros
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kyveli Zourari
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Evangelos Pappas
- Department of Biomedical Sciences, Radiology & Radiotherapy Sector, University of West Attica, Athens, Greece
| | - Zhifei Wen
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jihong Wang
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tina Marie Briere
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
12
|
Tachibana H, Watanabe Y, Mizukami S, Maeyama T, Terazaki T, Uehara R, Akimoto T. End-to-end delivery quality assurance of computed tomography-based high-dose-rate brachytherapy using a gel dosimeter. Brachytherapy 2020; 19:362-371. [PMID: 32209357 DOI: 10.1016/j.brachy.2020.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 11/26/2022]
Abstract
PURPOSE The purpose of this study was to develop a novel quality assurance (QA) program to check the entire treatment chain of image-guided brachytherapy with dose distribution evaluation in a single setup and irradiation using a gel dosimeter. METHODS AND MATERIALS A polymer gel was used, and the readout was performed by magnetic resonance scanning. A CT-based treatment plan was generated using the Oncentra planning system (Elekta, Sweden), and irradiation was performed three times using an afterloading device with an Ir-192 source. The dose-response curve of the gel was created using 6-MV X-ray, which is independent of the source beams. Planar gamma images on a coronal plane along the source transport axis were calculated using the measured dose as a reference, and the calculated doses were used in several error simulations (no error; 2.0 or 2.5 mm systematic and random source dwell mispositioning; and dose error of 2%, 5%, 10%, and 20%). RESULTS The dose-R2 (spin-spin relaxation rate) conversion table revealed that the uncertainty and dose resolution of 6-MV X-ray were better than those of Ir-192 and also constant between the three measurements. With the 3%/1 mm criteria, there were statistically significant differences between each pair of settings except dose error of 2% and 5%. CONCLUSION This work depicts a simple and efficient end-to-end test that can provide a clinically useful tool for QA of image-guided brachytherapy. In this QA program, air kerma strength and dwell position setting could also be verified. This test can also distinguish between different types of error.
Collapse
Affiliation(s)
- Hidenobu Tachibana
- Radiation Safety and Quality Assurance Division, Hospital East, National Cancer Center, Kashiwa, Chiba, Japan.
| | - Yusuke Watanabe
- School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
| | - Shinya Mizukami
- School of Allied Health Sciences, Kitasato University, Kanagawa, Japan
| | | | - Tsuyoshi Terazaki
- Department of Radiology, Yokohama City Minato Red Cross Hospital, Kanagawa, Japan
| | - Ryuzo Uehara
- Department of Radiology, Hospital East, National Cancer Center, Chiba, Japan
| | - Tetsuo Akimoto
- Department of Radiation Oncology, Hospital East, National Cancer Center, Chiba, Japan
| |
Collapse
|
13
|
Pappas E, Kalaitzakis G, Boursianis T, Zoros E, Zourari K, Pappas EP, Makris D, Seimenis I, Efstathopoulos E, Maris TG. Dosimetric performance of the Elekta Unity MR-linac system: 2D and 3D dosimetry in anthropomorphic inhomogeneous geometry. ACTA ACUST UNITED AC 2019; 64:225009. [DOI: 10.1088/1361-6560/ab52ce] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Dave G, Kanchan D, Singh F. Conductivity and dielectric behavior of PEO-PAM-NaCF3SO3 blend electrolyte system irradiated with swift heavy O6+ion beam. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
15
|
Makris DN, Pappas EP, Zoros E, Papanikolaou N, Saenz DL, Kalaitzakis G, Zourari K, Efstathopoulos E, Maris TG, Pappas E. Characterization of a novel 3D printed patient specific phantom for quality assurance in cranial stereotactic radiosurgery applications. Phys Med Biol 2019; 64:105009. [PMID: 30965289 DOI: 10.1088/1361-6560/ab1758] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In single-isocenter stereotactic radiosurgery/radiotherapy (SRS/SRT) intracranial applications, multiple targets are being treated concurrently, often involving non-coplanar arcs, small photon beams and steep dose gradients. In search for more rigorous quality assurance protocols, this work presents and evaluates a novel methodology for patient-specific pre-treatment plan verification, utilizing 3D printing technology. In a patient's planning CT scan, the external contour and bone structures were segmented and 3D-printed using high-density bone-mimicking material. The resulting head phantom was filled with water while a film dosimetry insert was incorporated. Patient and phantom CT image series were fused and inspected for anatomical coherence. HUs and corresponding densities were compared in several anatomical regions within the head. Furthermore, the level of patient-to-phantom dosimetric equivalence was evaluated both computationally and experimentally. A single-isocenter multi-focal SRS treatment plan was prepared, while dose distributions were calculated on both CT image series, using identical calculation parameters. Phantom- and patient-derived dose distributions were compared in terms of isolines, DVHs, dose-volume metrics and 3D gamma index (GI) analysis. The phantom was treated as if the real patient and film measurements were compared against the patient-derived calculated dose distribution. Visual inspection of the fused CT images suggests excellent geometric similarity between phantom and patient, also confirmed using similarity indices. HUs and densities agreed within one standard deviation except for the skin (modeled as 'bone') and sinuses (water-filled). GI comparison between the calculated distributions resulted in passing rates better than 97% (1%/1 mm). DVHs and dose-volume metrics were also in satisfying agreement. In addition to serving as a feasibility proof-of-concept, experimental absolute film dosimetry verified the computational study results. GI passing rates were above 90%. Results of this work suggest that employing the presented methodology, patient-equivalent phantoms (except for the skin and sinuses areas) can be produced, enabling literally patient-specific pre-treatment plan verification in intracranial applications.
Collapse
Affiliation(s)
- D N Makris
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens 115 27, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pergascript orange-based polymeric solution as a dosimeter for radiotherapy dosimetric validation. Phys Med 2019; 57:169-176. [DOI: 10.1016/j.ejmp.2019.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/31/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022] Open
|
17
|
Watanabe Y, Mizukami S, Eguchi K, Maeyama T, Hayashi SI, Muraishi H, Terazaki T, Gomi T. Dose distribution verification in high-dose-rate brachytherapy using a highly sensitive normoxic N-vinylpyrrolidone polymer gel dosimeter. Phys Med 2018; 57:72-79. [PMID: 30738535 DOI: 10.1016/j.ejmp.2018.12.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/21/2018] [Accepted: 12/10/2018] [Indexed: 12/01/2022] Open
Abstract
Rapid technological advances in high-dose-rate brachytherapy have led to a requirement for greater accuracy in treatment planning system calculations and in the verification of dose distributions. In high-dose-rate brachytherapy, it is important to measure the dose distribution in the low-dose region at a position away from the source in addition to the high-dose range in the proximity of the source. The aim of this study was to investigate the accuracy of a treatment plan designed for prostate cancer in the low-dose range using a normoxic N-vinylpyrrolidone-based polymer gel (VIPET gel) dosimeter containing inorganic salt as a sensitizer (iVIPET). The dose response was evaluated on the basis of the transverse relaxation rate (R2) measured by magnetic resonance scanning. In the verification of the treatment plan, gamma analysis showed that the dose distributions obtained from the polymer gel dosimeter were in good agreement with those calculated by the treatment planning system. The gamma passing rate according to the 2%/2 mm criterion was 97.9%. The iVIPET gel dosimeter provided better accuracy for low doses than the normal VIPET gel dosimeter, demonstrating the potential to be a useful tool for quality assurance of the dose distribution delivered by high-dose-rate brachytherapy.
Collapse
Affiliation(s)
- Yusuke Watanabe
- School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan.
| | - Shinya Mizukami
- School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Kou Eguchi
- Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Takuya Maeyama
- School of Science, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Shin-Ichiro Hayashi
- Faculty of Health Sciences, Hiroshima International University, Higashi-Hiroshima, Hiroshima, Japan
| | - Hiroshi Muraishi
- School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan; Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| | - Tsuyoshi Terazaki
- Department of Radiology, Kitasato University Hospital, Sagamihara, Kanagawa, Japan
| | - Tsutomu Gomi
- School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa, Japan; Kitasato University Graduate School of Medical Sciences, Sagamihara, Kanagawa, Japan
| |
Collapse
|
18
|
Dias JR, Mangueira TF, Lopes RDVV, Sales MJA, Ceschin AM. Preliminary analysis of N-vinylpyrrolidone based polymer gel dosimeter. POLIMEROS 2018. [DOI: 10.1590/0104-1428.01718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Hillbrand M, Landry G, Ebert S, Dedes G, Pappas E, Kalaitzakis G, Kurz C, Würl M, Englbrecht F, Dietrich O, Makris D, Pappas E, Parodi K. Gel dosimetry for three dimensional proton range measurements in anthropomorphic geometries. Z Med Phys 2018; 29:162-172. [PMID: 30249351 DOI: 10.1016/j.zemedi.2018.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 08/14/2018] [Accepted: 08/26/2018] [Indexed: 11/27/2022]
Abstract
Proton beams used for radiotherapy have potential for superior sparing of normal tissue, although range uncertainties are among the main limiting factors in the accuracy of dose delivery. The aim of this study was to benchmark an N-vinylpyrrolidone based polymer gel to perform three-dimensional measurement of geometric proton beam characteristics and especially to test its suitability as a range probe in combination with an anthropomorphic phantom. For single proton pencil beams as well as for 3×3cm2 mono-energy layers depth dose profiles, lateral dose distribution at different depths and proton range were evaluated in simple cubic gel phantoms at different energies from 75 to 115MeV and different dose levels. In addition, a 90MeV mono-energetic beam was delivered to an anthropomorphic 3D printed head phantom, which was filled with gel. Subsequently, all phantoms underwent magnetic resonance imaging using an axial pixel size of 0.68-0.98mm and with slice thicknesses of 2 or 3mm to derive a 3-dimensional distribution of the T2 relaxation time, which correlates with radiation dose. Indices describing lateral dose distribution and proton range were compared against predictions from a treatment planning system (TPS, for cubic and head phantoms) and Monte Carlo simulations (MC, for the head phantom) after manual rigid co-registration with the T2 relaxation time datasets. For all pencil beams, the FWHM agreement with TPS was better than 1mm or 7%. For the mono-energetic layer, the agreement with TPS in this respect was even better than 0.3mm in each case. With respect to range, results from gel measurements differed no more than 0.9mm (1.6%) from values predicted by TPS. In case of the anthropomorphic phantom, deviations with respect to a nominal range of about 61mm as well as in FWHM were slightly higher, namely within 1.0mm and 1.1mm respectively. Average deviations between gel and TPS/MC were similar (-0.3mm±0.4mm/-0.2±0.5mm). In conclusion, polymer gel dosimetry was found to be a valuable tool to determine geometric proton beam properties three-dimensionally and with high spatial resolution in simple cubic as well as in a more complex anthropomorphic phantom. Post registration range errors of the order of 1mm could be achieved. The additional registration uncertainty (95%) was 1mm.
Collapse
Affiliation(s)
| | - Guillaume Landry
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Sandy Ebert
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - George Dedes
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Eleftherios Pappas
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece
| | | | - Christopher Kurz
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Matthias Würl
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Franz Englbrecht
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany
| | - Olaf Dietrich
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Dimitris Makris
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Greece
| | - Evangelos Pappas
- Radiology & Radiotherapy Sector, Department of Biomedical Sciences, University of West Attica, Athens, Greece
| | - Katia Parodi
- Department of Medical Physics, Faculty of Physics, Ludwig-Maximilians-Universität München (LMU Munich), Munich, Germany.
| |
Collapse
|
20
|
Pantelis E, Moutsatsos A, Antypas C, Zoros E, Pantelakos P, Lekas L, Romanelli P, Zourari K, Hourdakis CJ. On the total system error of a robotic radiosurgery system: phantom measurements, clinical evaluation and long-term analysis. Phys Med Biol 2018; 63:165015. [PMID: 30033940 DOI: 10.1088/1361-6560/aad516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The total system error (TSE) of a CyberKnife® system was measured using two phantom-based methods and one patient-based method. The standard radiochromic film (RCF) end-to-end (E2E) test using an anthropomorphic head and neck phantom and isocentric treatment delivery was used with the 6Dskull, Fiducial and Xsight® spine (XST) tracking methods. More than 200 RCF-based E2E results covering the period from installation in 2006 until 2017 were analyzed with respect to tracking method, system hardware and software versions, secondary collimation system, and years since installation. An independent polymer gel E2E method was also applied, involving a 3D printed head phantom and multiple spherical target volumes widely distributed within the brain. Finally, the TSE was assessed by comparing the delineated target in the planning computed tomography images of a patient treated for a thalamic functional target with the radiation-induced lesion defined on the six-month follow-up magnetic resonance (MR) images. Statistical analysis of the RCF-based TSE results showed mean ± standard deviation values of 0.40 ± 0.18 mm, 0.40 ± 0.19 mm, and 0.55 ± 0.20 mm for the 6Dskull, Fiducial, and XST tracking methods, respectively. Polymer gel TSE values smaller than 0.66 mm were found for seven targets distributed within the brain, showing that the targeting accuracy of the system is sustained even for targets situated up to 80 mm away from the center of the skull. An average clinical TSE value of 0.87 ± 0.25 mm was also measured using the FSE T2 and FLAIR post-treatment MR image data. Analysis of the long-term RCF-based E2E tests showed no changes of TSE over time. This study is the first to report long-term (>10 years) analysis of TSE, TSE measurement for targets positioned at large distances from the virtual machine isocenter, or a clinical assessment of TSE for the CyberKnife system. All of these measurements demonstrate TSE consistently < 1 mm.
Collapse
Affiliation(s)
- E Pantelis
- Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece. CyberKnife and TomoTherapy department, Iatropolis Clinic, 54-56 Ethnikis Antistaseos, 15231 Athens, Greece
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Evaluation of dose rate and photon energy dependence of PASSAG polymer gel dosimeter. J Radioanal Nucl Chem 2018. [DOI: 10.1007/s10967-018-5940-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Farhood B, Abtahi SMM, Geraily G, Ghorbani M, Mahdavi SR, Zahmatkesh MH. Dosimetric characteristics of PASSAG as a new polymer gel dosimeter with negligible toxicity. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.02.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Maeyama T, Ishida Y, Kudo Y, Fukasaku K, Ishikawa KL, Fukunishi N. Polymer gel dosimeter with AQUAJOINT ® as hydrogel matrix. Radiat Phys Chem Oxf Engl 1993 2018. [DOI: 10.1016/j.radphyschem.2018.01.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Characterization of a new gel based on alanine–ninhydrin for possible use in radiation dosimetry. J Radioanal Nucl Chem 2017. [DOI: 10.1007/s10967-017-5405-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Hsieh LL, Shieh JI, Wei LJ, Wang YC, Cheng KY, Shih CT. Polymer gel dosimeters for pretreatment radiotherapy verification using the three-dimensional gamma evaluation and pass rate maps. Phys Med 2017; 37:75-81. [PMID: 28535918 DOI: 10.1016/j.ejmp.2017.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/17/2017] [Accepted: 04/17/2017] [Indexed: 12/21/2022] Open
Abstract
Polymer gel dosimeters (PGDs) have been widely studied for use in the pretreatment verification of clinical radiation therapy. However, the readability of PGDs in three-dimensional (3D) dosimetry remain unclear. In this study, the pretreatment verifications of clinical radiation therapy were performed using an N-isopropyl-acrylamide (NIPAM) PGD, and the results were used to evaluate the performance of the NIPAM PGD on 3D dose measurement. A gel phantom was used to measure the dose distribution of a clinical case of intensity-modulated radiation therapy. Magnetic resonance imaging scans were performed for dose readouts. The measured dose volumes were compared with the planned dose volume. The relative volume histograms showed that relative volumes with a negative percent dose difference decreased as time elapsed. Furthermore, the histograms revealed few changes after 24h postirradiation. For the 3%/3mm and 2%/2mm criteria, the pass rates of the 12- and 24-h dose volumes were higher than 95%, respectively. This study thus concludes that the pass rate map can be used to evaluate the dose-temporal readability of PGDs and that the NIPAM PGD can be used for clinical pretreatment verifications.
Collapse
Affiliation(s)
- Ling-Ling Hsieh
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, No. 666, Buzih Road, Taichung 40601, Taiwan, ROC; Graduate Institute of Biotechnology and Biomedical Engineering, Central Taiwan University of Science and Technology, No. 666, Buzih Road, Taichung 40601, Taiwan, ROC
| | - Jiunn-I Shieh
- Department of M-Commerce and Multimedia Applications, Asia University, No. 500, Lioufeng Road, Taichung 41354, Taiwan, ROC
| | - Li-Ju Wei
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, No. 2, Yuh-Der Road, Taichung 40447, Taiwan, ROC
| | - Yi-Chun Wang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, No. 155, Sec. 2, Linong Street, Taipei 11221, Taiwan, ROC; Department of Radiology, China Medical University Hospital, China Medical University, No. 2, Yuh-Der Road, Taichung 40447, Taiwan, ROC
| | - Kai-Yuan Cheng
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, No. 666, Buzih Road, Taichung 40601, Taiwan, ROC
| | - Cheng-Ting Shih
- 3D Printing Medical Research Center, China Medical University Hospital, China Medical University, No. 2, Yuh-Der Road, Taichung 40447, Taiwan, ROC.
| |
Collapse
|
26
|
Silveira MA, Pavoni JF, Baffa O. Three-dimensional quality assurance of IMRT prostate plans using gel dosimetry. Phys Med 2017; 34:1-6. [PMID: 28108100 DOI: 10.1016/j.ejmp.2016.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 11/29/2016] [Accepted: 12/06/2016] [Indexed: 11/17/2022] Open
Abstract
Intensity modulated radiotherapy (IMRT) is one of the most modern radiation therapy treatment techniques. Although IMRT can deliver high and complex conformational doses to the tumor volume, its implementation requires rigorous quality assurance (QA) procedures that include a dosimetric pre-treatment verification of individual patient planning. This verification usually involves measuring a small volume of absolute dose with an ionization chamber and checking bi-dimensional fluency with an array of detectors. The planning technique has tri-dimensional characteristics, but no tridimensional dosimetry has been established in the clinical routine. One strategy to perform three-dimensional dosimetry is to use polymeric gels associated with magnetic resonance imaging to evaluate dose distribution. Here, we have compared the results of conventional QA procedures involving one- and two-dimensional dosimetry to the results of three-dimensional dosimetry conducted with MAGIC-f gel in 10 cases of prostate cancer IMRT planning. More specifically, we used the gamma index (3%/3mm) to compare the results of three-dimensional dosimetry to the expected dose distributions obtained with the treatment planning system. Except for one IMRT treatment plan, the gel dosimetry results agreed with the conventional quality control and provided an overview of dose distribution in the target volume.
Collapse
Affiliation(s)
- M A Silveira
- Departamento de Física, FFCLRP, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Monte Alegre, Ribeirão Preto, SP, Brazil
| | - J F Pavoni
- Departamento de Física, FFCLRP, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Monte Alegre, Ribeirão Preto, SP, Brazil.
| | - O Baffa
- Departamento de Física, FFCLRP, Universidade de São Paulo, Av. Bandeirantes 3900, 14040-901, Monte Alegre, Ribeirão Preto, SP, Brazil
| |
Collapse
|
27
|
Rabaeh KA, Basfar AA, Almousa AA, Devic S, Moftah B. New normoxic N-(Hydroxymethyl)acrylamide based polymer gel for 3D dosimetry in radiation therapy. Phys Med 2017; 33:121-126. [PMID: 28094138 DOI: 10.1016/j.ejmp.2016.12.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 12/05/2016] [Accepted: 12/28/2016] [Indexed: 11/15/2022] Open
Abstract
A novel composition of normoxic polymer gel dosimeters based on radiation-induced polymerization of N-(Hydroxymethyl)acrylamide (NHMA) is introduced in this study for 3D dosimetry for Quality Assurance (QA) in radiation therapy. Dosimeters were irradiated by 6, 10 and 18MV photon beams of a medical linear accelerator at various dose rates to doses of up to 20Gy. The dose response of polymer gel dosimeters was studied using nuclear magnetic resonance (NMR) spin-spin relaxation rate (R2) of hydrogen protons within the water molecule. Also, we measured gel response using absorption spectroscopy and found that this novel gel can be successfully utilized for both MRI- and OCT- (Optical Computed Tomography) based 3D dosimetry. We investigated dosimetric properties of six different compositions of the new NHMA-based gel in terms of dose rate, radiation beam quality and stability of dose-dependent polymerization after irradiation. We found no significant effects of these parameters on the novel gel dosimeter performance in both relaxation rate and absorbance measurements.
Collapse
Affiliation(s)
- Khalid A Rabaeh
- Radiation Technology Center, Atomic Energy Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia; Medical Imaging Department, Faculty of Allied Health Sciences, Hashemite University, Zarqa, Jordan.
| | - Ahmed A Basfar
- Radiation Technology Center, Atomic Energy Research Institute, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Akram A Almousa
- Biomedical Physics Department, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Slobodan Devic
- Medical Physics Unit, McGill University, Montréal, Québec, Canada
| | - Belal Moftah
- Biomedical Physics Department, Research Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia; Medical Physics Unit, McGill University, Montréal, Québec, Canada
| |
Collapse
|
28
|
Liu H, Li J, Pappas E, Andrews D, Evans J, Werner-Wasik M, Yu Y, Dicker A, Shi W. Dosimetric validation for an automatic brain metastases planning software using single-isocenter dynamic conformal arcsDosimetric validation for an automatic brain metastases planning software using single-isocenter dynamic conformal arcs. J Appl Clin Med Phys 2016; 17:142-156. [PMID: 27685134 PMCID: PMC5874088 DOI: 10.1120/jacmp.v17i5.6320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/26/2016] [Accepted: 04/25/2016] [Indexed: 01/12/2023] Open
Abstract
An automatic brain‐metastases planning (ABMP) software has been installed in our institution. It is dedicated for treating multiple brain metastases with radiosurgery on linear accelerators (linacs) using a single‐setup isocenter with noncoplanar dynamic conformal arcs. This study is to validate the calculated absolute dose and dose distribution of ABMP. Three types of measurements were performed to validate the planning software: 1, dual micro ion chambers were used with an acrylic phantom to measure the absolute dose; 2, a 3D cylindrical phantom with dual diode array was used to evaluate 2D dose distribution and point dose for smaller targets; and 3, a 3D pseudo‐in vivo patient‐specific phantom filled with polymer gels was used to evaluate the accuracy of 3D dose distribution and radiation delivery. Micro chamber measurement of two targets (volumes of 1.2 cc and 0.9 cc, respectively) showed that the percentage differences of the absolute dose at both targets were less than 1%. Averaged GI passing rate of five different plans measured with the diode array phantom was above 98%, using criteria of 3% dose difference, 1 mm distance to agreement (DTA), and 10% low‐dose threshold. 3D gel phantom measurement results demonstrated a 3D displacement of nine targets of 0.7±0.4 mm (range 0.2 ~ 1.1 mm). The averaged two‐dimensional (2D) GI passing rate for several region of interests (ROI) on axial slices that encompass each one of the nine targets was above 98% (5% dose difference, 2 mm DTA, and 10% low‐dose threshold). Measured D95, the minimum dose that covers 95% of the target volume, of the nine targets was 0.7% less than the calculated D95. Three different types of dosimetric verification methods were used and proved the dose calculation of the new automatic brain metastases planning (ABMP) software was clinical acceptable. The 3D pseudo‐in vivo patient‐specific gel phantom test also served as an end‐to‐end test for validating not only the dose calculation, but the treatment delivery accuracy as well. PACS number(s): 87.53.Lv, 87.55.km, 87.55.Qr
Collapse
Affiliation(s)
- Haisong Liu
- Sidney Kimmel Medical College at Thomas Jefferson University.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abtahi S. Characteristics of a novel polymer gel dosimeter formula for MRI scanning: Dosimetry, toxicity and temporal stability of response. Phys Med 2016; 32:1156-61. [DOI: 10.1016/j.ejmp.2016.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 07/17/2016] [Accepted: 08/09/2016] [Indexed: 10/21/2022] Open
|
30
|
Image reconstruction of optical computed tomography by using the algebraic reconstruction technique for dose readouts of polymer gel dosimeters. Phys Med 2015; 31:942-947. [PMID: 26165178 DOI: 10.1016/j.ejmp.2015.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/05/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022] Open
Abstract
Optical computed tomography (optical CT) has been proven to be a useful tool for dose readouts of polymer gel dosimeters. In this study, the algebraic reconstruction technique (ART) for image reconstruction of gel dosimeters was used to improve the image quality of optical CT. Cylindrical phantoms filled with N-isopropyl-acrylamide polymer gels were irradiated using a medical linear accelerator. A circular dose distribution and a hexagonal dose distribution were produced by applying the VMAT technique and the six-field dose delivery, respectively. The phantoms were scanned using optical CT, and the images were reconstructed using the filtered back-projection (FBP) algorithm and the ART. For the circular dose distribution, the ART successfully reduced the ring artifacts and noise in the reconstructed image. For the hexagonal dose distribution, the ART reduced the hot spots at the entrances of the beams and increased the dose uniformity in the central region. Within 50% isodose line, the gamma pass rates for the 2 mm/3% criteria for the ART and FBP were 99.2% and 88.1%, respectively. The ART could be used for the reconstruction of optical CT images to improve image quality and provide accurate dose conversion for polymer gel dosimeters.
Collapse
|
31
|
Radiological characteristics of MRI-based VIP polymer gel under carbon beam irradiation. Radiat Phys Chem Oxf Engl 1993 2015. [DOI: 10.1016/j.radphyschem.2014.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|