1
|
Loebner HA, Bertholet J, Mackeprang PH, Volken W, Fix MK, Manser P. Robustness assessment of radiotherapy treatment plans in Switzerland. Z Med Phys 2025:S0939-3889(25)00037-6. [PMID: 40263012 DOI: 10.1016/j.zemedi.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/24/2025] [Accepted: 03/21/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE Robustness assessment is an essential part of radiotherapy plan quality assessment. However, it is often not evaluated in photon-based radiotherapy. This study aims to conduct a robustness audit to establish a baseline for the role of plan robustness in Switzerland by assessing and comparing robustness across plans from and clinical workflows in multiple institutions. MATERIALS AND METHODS A multi-institutional study involving 11 Swiss institutions was conducted. Each institution provided treatment plans for three cases and completed a questionnaire on treatment planning and assessment of robustness in their clinical practice. The plans were planned using the Eclipse treatment planning system and utilized intensity-modulated techniques using a 6 MV flattened photon beam for one brain case, and one unilateral and one bilateral head and neck cases, prescribed 60.0 Gy (one phase), 70.0 Gy (two phases) and 70.0 Gy (three phases) to 95% of the target volume, respectively. Institutions used their standard institutional protocols for the provided CT, structures and prescription. Dose distributions were subsequently recalculated in an in-house Monte Carlo (MC) framework incorporating clinically motivated uncertainties associated to patient setup and multi-leaf collimator (MLC) positions. The uncertainties' impact on the dosimetric plan quality was assessed by evaluating representative target and organ-at-risk (OAR) dose-volume endpoints (e.g. D98% and D2% of the target, mean dose of parallel OARs and near max dose of serial OARs). RESULTS Differences in target and OAR dose-volume endpoints in the presence of random patient setup uncertainties (Gaussian distributed with σ = 0.2 cm in the three translational and σ = 0.5° in the three rotational axes) were smaller than ±0.5 Gy. Exceptions were the near max dose-volume endpoints of structures near the target with differences up to ±2.2 Gy for the optic nerve in the brain case. Systematic rotational patient setup uncertainties of ≤3° in either pitch, yaw or roll had similar impact as translational uncertainties ≤0.3 cm in either left-right, superior inferior or anterior-posterior direction with maximal differences in most investigated dose-volume endpoints of 9.0 Gy. Systematic MLC uncertainties of +0.5 mm of all leaves led to an average increase of up to 3.0 Gy in the dose-volume endpoints. The questionnaire revealed diverse practices in terms of planning and assessment for robustness: all institutions use target and OAR margins, 2/11 use robust optimization and 5/11 regularly perform robustness assessments of treatment plans by recalculating the dose distribution including uncertainties. The importance of robustness in treatment planning was rated ≥8 out of 10 (10 as most important) by 6/11 institutions. The need for better commercial tools to assess or integrate robustness into treatment planning was expressed by 9/11 institutions. CONCLUSION This study presents the first multi-institutional inter-comparison of treatment plan robustness in Switzerland, establishing a robustness baseline for intensity-modulated plans. Despite diverse practices to assess plan robustness and to mitigate the impact of uncertainties on dosimetric plan quality, the robustness to the investigated uncertainties was similar across the plans and cases from all institutes. To foster standardization, we recommend to regularly conduct audits focusing on plan robustness to monitor and reduce inter-institutional variability in handling and assessing plan robustness.
Collapse
Affiliation(s)
- Hannes A Loebner
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.
| | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Paul-Henry Mackeprang
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Werner Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Michael K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Peter Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Terzidis E, Nordström F, Götstedt J, Bäck A. Impact of delivery variations on 3D dose distributions for volumetric modulated arc therapy plans of various complexity. Med Phys 2024; 51:8466-8481. [PMID: 39012800 DOI: 10.1002/mp.17310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 06/05/2024] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Delivery variations during radiotherapy can cause discrepancies between planned and delivered dose distribution. These variations could arise from random and systematic offsets in certain machine parameters or systematic offsets related to the calibration process of the treatment unit. PURPOSE The aim of this study was to present a novel simulation-based methodology to evaluate realistic delivery variations in three dimensions (3D). Additionally, we investigated the dosimetric impact of delivery variations for volumetric modulated arc therapy (VMAT) plans for different treatment sites and complexities. METHODS Twelve VMAT plans for different treatment sites (prostate-, head & neck-, lung-, and gynecological cancer) were selected. The clinical plan used for the treatment of each patient was reoptimized to create one plan with reduced complexity (i.e., simple plan) and one of higher complexity (i.e., complex plan). This resulted in a total of 36 plans. Delivery variations were simulated by randomly introducing offsets in multi-leaf collimator position, jaw position, gantry angle and collimator angle simultaneously. Twenty simulations were carried out for each of the 36 plans, yielding 720 simulated deliveries. To explore the impact of individual offsets, additional simulations were conducted for each type of offset separately. A 3D dose calculation was performed for each simulation using the same calculation engine as for the clinical plan. Two standard deviations (2SD) of dose were determined for every voxel for 3D-spatial evaluations. The dose variation in certain DVH metrics, that is, D2% and D98% for the clinical target volume and five different DVH metrics for selected organs at risk, was calculated for the twenty simulated deliveries of each plan. For comparison, the effect of delivery variations was assessed by conducting measurements with the Delta4 phantom. RESULTS The volume of voxels with 2SD above 1% of the prescribed dose was consistently larger for the complex plans in comparison to their corresponding simple and clinical plans. 2SDs larger than 1% were in many cases, found to accumulate outside the planning target volume. For complex plans, regions with 2SDs larger than 1% were detected also inside the high dose region, exhibiting, on average, a size six times larger volume, than those observed in simple plans. Similar results were found for all treatment sites. Variation in the selected DVH metrics for the simulated deliveries was generally largest for the complex plans with few exceptions. When comparing the 2SD distribution of the measurements with the 2SD distribution from the simulations, the spatial information showed deviations outside the PTV in both simulations and measurements. However, the measured values were, on average, 35% higher for the prostate plans and 10% higher for the head & neck plans compared to the simulated values. CONCLUSIONS The presented methodology effectively quantified and localized dose deviations due to delivery offsets. The 3D analysis provided information that was undetectable using the analysis based on DVH metrics. Dosimetric uncertainties due to delivery variations were prominent at the edge of the high-dose region irrespective of treatment site and plan complexity. Dosimetric uncertainties inside the high-dose region was more profound for plans of higher complexity.
Collapse
Affiliation(s)
- Emmanouil Terzidis
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Therapeutic Radiation Physics, Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Fredrik Nordström
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Therapeutic Radiation Physics, Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Julia Götstedt
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Therapeutic Radiation Physics, Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Anna Bäck
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Therapeutic Radiation Physics, Medical Physics and Biomedical Engineering, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
3
|
Loebner HA, Bertholet J, Mackeprang PH, Volken W, Elicin O, Mueller S, Guyer G, Aebersold DM, Stampanoni MF, Fix MK, Manser P. Robustness analysis of dynamic trajectory radiotherapy and volumetric modulated arc therapy plans for head and neck cancer. Phys Imaging Radiat Oncol 2024; 30:100586. [PMID: 38808098 PMCID: PMC11130727 DOI: 10.1016/j.phro.2024.100586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Background and purpose Dynamic trajectory radiotherapy (DTRT) has been shown to improve healthy tissue sparing compared to volumetric arc therapy (VMAT). This study aimed to assess and compare the robustness of DTRT and VMAT treatment-plans for head and neck (H&N) cancer to patient-setup (PS) and machine-positioning uncertainties. Materials and methods The robustness of DTRT and VMAT plans previously created for 46 H&N cases, prescribed 50-70 Gy to 95 % of the planning-target-volume, was assessed. For this purpose, dose distributions were recalculated using Monte Carlo, including uncertainties in PS (translation and rotation) and machine-positioning (gantry-, table-, collimator-rotation and multi-leaf collimator (MLC)). Plan robustness was evaluated by the uncertainties' impact on normal tissue complication probabilities (NTCP) for xerostomia and dysphagia and on dose-volume endpoints. Differences between DTRT and VMAT plan robustness were compared using Wilcoxon matched-pair signed-rank test (α = 5 %). Results Average NTCP for moderate-to-severe xerostomia and grade ≥ II dysphagia was lower for DTRT than VMAT in the nominal scenario (0.5 %, p = 0.01; 2.1 %, p < 0.01) and for all investigated uncertainties, except MLC positioning, where the difference was not significant. Average differences compared to the nominal scenario were ≤ 3.5 Gy for rotational PS (≤ 3°) and machine-positioning (≤ 2°) uncertainties, <7 Gy for translational PS uncertainties (≤ 5 mm) and < 20 Gy for MLC-positioning uncertainties (≤ 5 mm). Conclusions DTRT and VMAT plan robustness to the investigated uncertainties depended on uncertainty direction and location of the structure-of-interest to the target. NTCP remained on average lower for DTRT than VMAT even when considering uncertainties.
Collapse
Affiliation(s)
- Hannes A. Loebner
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Jenny Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Paul-Henry Mackeprang
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Werner Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Olgun Elicin
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Silvan Mueller
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Gian Guyer
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Daniel M. Aebersold
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | | | - Michael K. Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Peter Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| |
Collapse
|
4
|
Enomoto H, Fujita Y, Matsumoto S, Nakajima Y, Nagai M, Tonari A, Ebara T. Dosimetric impact of MLC positional errors on dose distribution in IMRT. J Appl Clin Med Phys 2024; 25:e14158. [PMID: 37722769 PMCID: PMC10860456 DOI: 10.1002/acm2.14158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/07/2023] [Accepted: 09/04/2023] [Indexed: 09/20/2023] Open
Abstract
Optimizing the positional accuracy of multileaf collimators (MLC) for radiotherapy is important for dose accuracy and for reducing doses delivered to normal tissues. This study investigates dose sensitivity variations and complexity metrics of MLC positional error in volumetric modulated arc therapy and determines the acceptable ranges of MLC positional accuracy in several clinical situations. Treatment plans were generated for four treatment sites (prostate cancer, lung cancer, spinal, and brain metastases) using different treatment planning systems (TPSs) and fraction sizes. Each treatment plan introduced 0.25-2.0 mm systematic or random MLC leaf bank errors. The generalized equivalent uniform dose (gEUD) sensitivity and complexity metrics (MU/Gy and plan irregularity) were calculated, and the correlation coefficients were assessed. Furthermore, the required tolerances for MLC positional accuracy control were calculated. The gEUD sensitivity showed the highest dependence of systematic positional error on the treatment site, followed by TPS and fraction size. The gEUD sensitivities were 6.7, 4.5, 2.5, and 1.7%/mm for Monaco and 8.9, 6.2, 3.4, and 2.3%/mm (spinal metastasis, lung cancer, prostate cancer, and brain metastasis, respectively) for RayStation. The gEUD sensitivity was strongly correlated with the complexity metrics (r = 0.88-0.93). The minimum allowable positional error for MLC was 0.63, 0.34, 1.02, and 0.28 mm (prostate, lung, brain, and spinal metastasis, respectively). The acceptable range of MLC positional accuracy depends on the treatment site, and an appropriate tolerance should be set for each treatment site with reference to the complexity metric. It is expected to enable easier and more detailed MLC positional accuracy control than before by reducing dose errors to patients at the treatment planning stage and by controlling MLC quality based on complexity metrics, such as MU/Gy.
Collapse
Affiliation(s)
- Hiromi Enomoto
- Department of RadiologyKyorin University HospitalMitakaTokyoJapan
- Department of Radiological SciencesKomazawa UniversitySetagayaTokyoJapan
| | - Yukio Fujita
- Department of Radiological SciencesKomazawa UniversitySetagayaTokyoJapan
| | - Saki Matsumoto
- Department of RadiologyKyorin University HospitalMitakaTokyoJapan
| | - Yujiro Nakajima
- Department of Radiological SciencesKomazawa UniversitySetagayaTokyoJapan
| | - Miyuki Nagai
- Department of Radiation OncologyKyorin UniversityMitakaTokyoJapan
| | - Ayako Tonari
- Department of Radiation OncologyKyorin UniversityMitakaTokyoJapan
- Department of Medical Radiological TechnologyFaculty of Health SciencesKyorin UniversityMitakaTokyoJapan
| | - Takeshi Ebara
- Department of Radiation OncologyKyorin UniversityMitakaTokyoJapan
| |
Collapse
|
5
|
Nishiyama S, Takemura A. A method for patient-specific DVH verification using a high-sampling-rate log file in an Elekta linac. J Appl Clin Med Phys 2023; 24:e13849. [PMID: 36443959 PMCID: PMC10018669 DOI: 10.1002/acm2.13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/21/2022] [Indexed: 11/30/2022] Open
Abstract
We have proposed a method for patient-specific dose-volume histogram (DVH) verification using a 40-ms high-sampling-rate log file (HLF) available in an Elekta linac. Ten prostate volumetric-modulated arc therapy plans were randomly selected, and systematic leaf position errors of ±0.2, ±0.4, or ±0.8 mm were added to the 10 plans, thereby producing a total of 70 plans. An RTP file was created by interpolating each leaf position in the HLF to obtain values at each control point, which is subsequently exported to a treatment planning system. The isocenter dose calculated by the HLF-based plan to a phantom (Delta4 Phantom+) was compared to that measured by the diode in the phantom in order to evaluate the accuracy of the HLF-based dose calculation. The D95 of the planning target volume (PTV) was also compared between the HLF-based plans and the original plans with the systematic leaf position errors, the latter being referred to as theory-based plans. Sensitivities of the DVH parameters in the target, the rectum, and the bladder were also calculated with the varied systematic leaf position errors. The relative differences in the isocenter doses between the HLF-based calculations and the measurements among the 70 plans were 0.21% ± 0.67% (SD). The maximum relative differences in PTV D95 between the HLF-based and the theory-based plans among the 70 cases were 0.11%. The patient-specific DVH verification method detected a change in the target DVH parameters of less than 1% when the systematic leaf position error was ±0.2 mm. It is therefore suggested that the proposed DVH verification method may simplify patient-specific dose quality assurance procedures without compromising accuracy and sensitivity.
Collapse
Affiliation(s)
- Shiro Nishiyama
- Department of RadiotechnologySaiseikai Kawaguchi General HospitalKawaguchiJapan
- Division of Health Sciences, Graduate School of Medical SciencesKanazawa UniversityKanazawaJapan
| | - Akihiro Takemura
- Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health SciencesKanazawa UniversityKanazawaJapan
| |
Collapse
|
6
|
U’wais FA, Radzi Y, Noor Rizan N, Zin HM. Validation of a digital method for patient-specific verification of VMAT treatment using a 2D ionisation detector array. Radiat Phys Chem Oxf Engl 1993 2023. [DOI: 10.1016/j.radphyschem.2022.110536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Barnes M, Pomare D, Doebrich M, Standen TS, Wolf J, Greer P, Simpson J. Insensitivity of machine log files to MLC leaf backlash and effect of MLC backlash on clinical dynamic MLC motion: An experimental investigation. J Appl Clin Med Phys 2022; 23:e13660. [PMID: 35678793 PMCID: PMC9512360 DOI: 10.1002/acm2.13660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/02/2022] Open
Abstract
Purpose Multi‐leaf‐collimator (MLC) leaf position accuracy is important for accurate dynamic radiotherapy treatment plan delivery. Machine log files have become widely utilized for quality assurance (QA) of such dynamic treatments. The primary aim is to test the sensitivity of machine log files in comparison to electronic portal imaging device (EPID)‐based measurements to MLC position errors caused by leaf backlash. The secondary aim is to investigate the effect of MLC leaf backlash on MLC leaf motion during clinical dynamic plan delivery. Methods The sensitivity of machine log files and two EPID‐based measurements were assessed via a controlled experiment, whereby the length of the “T” section of a series of 12 MLC leaf T‐nuts in a Varian Millennium MLC for a Trilogy C‐series type linac was reduced by sandpapering the top of the “T” to introduce backlash. The built‐in machine MLC leaf backlash test as well as measurements for two EPID‐based dynamic MLC positional tests along with log files were recorded pre‐ and post‐T‐nut modification. All methods were investigated for sensitivity to the T‐nut change by assessing the effect on measured MLC leaf positions. A reduced version of the experiment was repeated on a TrueBeam type linac with Millennium MLC. Results No significant differences before and after T‐nut modification were detected in any of the log file data. Both EPID methods demonstrated sensitivity to the introduced change at approximately the expected magnitude with a strong dependence observed with gantry angle. EPID‐based data showed MLC positional error in agreement with the micrometer measured T‐nut length change to 0.07 ± 0.05 mm (1 SD) using the departmental routine QA test. Backlash results were consistent between linac types. Conclusion Machine log files appear insensitive to MLC position errors caused by MLC leaf backlash introduced via the T‐nut. The effect of backlash on clinical MLC motions is heavily gantry angle dependent.
Collapse
Affiliation(s)
- Michael Barnes
- Department of Radiation Oncology, Calvary Mater Hospital Newcastle, Newcastle, New South Wales, Australia.,School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - Dennis Pomare
- Department of Radiation Oncology, Calvary Mater Hospital Newcastle, Newcastle, New South Wales, Australia
| | - Marcus Doebrich
- Department of Radiation Oncology, Calvary Mater Hospital Newcastle, Newcastle, New South Wales, Australia
| | - Therese S Standen
- Department of Radiation Oncology, Calvary Mater Hospital Newcastle, Newcastle, New South Wales, Australia
| | - Joshua Wolf
- Department of Radiation Oncology, Calvary Mater Hospital Newcastle, Newcastle, New South Wales, Australia.,Icon Cancer Centre Maitland, Maitland Private Hospital, Maitland, New South Wales, Australia
| | - Peter Greer
- Department of Radiation Oncology, Calvary Mater Hospital Newcastle, Newcastle, New South Wales, Australia.,School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - John Simpson
- Department of Radiation Oncology, Calvary Mater Hospital Newcastle, Newcastle, New South Wales, Australia.,School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| |
Collapse
|
8
|
Loebner HA, Volken W, Mueller S, Bertholet J, Mackeprang PH, Guyer G, Aebersold DM, Stampanoni M, Manser P, Fix MK. Development of a Monte Carlo based robustness calculation and evaluation tool. Med Phys 2022; 49:4780-4793. [PMID: 35451087 PMCID: PMC9545707 DOI: 10.1002/mp.15683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/09/2022] Open
Abstract
Background Evaluating plan robustness is a key step in radiotherapy. Purpose To develop a flexible Monte Carlo (MC)‐based robustness calculation and evaluation tool to assess and quantify dosimetric robustness of intensity‐modulated radiotherapy (IMRT) treatment plans by exploring the impact of systematic and random uncertainties resulting from patient setup, patient anatomy changes, and mechanical limitations of machine components. Methods The robustness tool consists of two parts: the first part includes automated MC dose calculation of multiple user‐defined uncertainty scenarios to populate a robustness space. An uncertainty scenario is defined by a certain combination of uncertainties in patient setup, rigid intrafraction motion and in mechanical steering of the following machine components: angles of gantry, collimator, table‐yaw, table‐pitch, table‐roll, translational positions of jaws, multileaf‐collimator (MLC) banks, and single MLC leaves. The Swiss Monte Carlo Plan (SMCP) is integrated in this tool to serve as the backbone for the MC dose calculations incorporating the uncertainties. The calculated dose distributions serve as input for the second part of the tool, handling the quantitative evaluation of the dosimetric impact of the uncertainties. A graphical user interface (GUI) is developed to simultaneously evaluate the uncertainty scenarios according to user‐specified conditions based on dose‐volume histogram (DVH) parameters, fast and exact gamma analysis, and dose differences. Additionally, a robustness index (RI) is introduced with the aim to simultaneously evaluate and condense dosimetric robustness against multiple uncertainties into one number. The RI is defined as the ratio of scenarios passing the conditions on the dose distributions. Weighting of the scenarios in the robustness space is possible to consider their likelihood of occurrence. The robustness tool is applied on IMRT, a volumetric modulated arc therapy (VMAT), a dynamic trajectory radiotherapy (DTRT), and a dynamic mixed beam radiotherapy (DYMBER) plan for a brain case to evaluate the robustness to uncertainties of gantry‐, table‐, collimator angle, MLC, and intrafraction motion. Additionally, the robustness of the IMRT, VMAT, and DTRT plan against patient setup uncertainties are compared. The robustness tool is validated by Delta4 measurements for scenarios including all uncertainty types available. Results The robustness tool performs simultaneous calculation of uncertainty scenarios, and the GUI enables their fast evaluation. For all evaluated plans and uncertainties, the planning target volume (PTV) margin prevented major clinical target volume (CTV) coverage deterioration (maximum observed standard deviation of D98%CTV was 1.3 Gy). OARs close to the PTV experienced larger dosimetric deviations (maximum observed standard deviation of D2%chiasma was 14.5 Gy). Robustness comparison by RI evaluation against patient setup uncertainties revealed better dosimetric robustness of the VMAT and DTRT plans as compared to the IMRT plan. Delta4 validation measurements agreed with calculations by >96% gamma‐passing rate (3% global/2 mm). Conclusions The robustness tool was successfully implemented. Calculation and evaluation of uncertainty scenarios with the robustness tool were demonstrated on a brain case. Effects of patient and machine‐specific uncertainties and the combination thereof on the dose distribution are evaluated in a user‐friendly GUI to quantitatively assess and compare treatment plans and their robustness.
Collapse
Affiliation(s)
- H A Loebner
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - W Volken
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - S Mueller
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - J Bertholet
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - P-H Mackeprang
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - G Guyer
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - D M Aebersold
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Mfm Stampanoni
- Institute for Biomedical Engineering, ETH Zürich and PSI, Villigen, Switzerland
| | - P Manser
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - M K Fix
- Division of Medical Radiation Physics and Department of Radiation Oncology, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Noh YY, Kim J, Kim JS, Shin HB, Han MC, Suh TS. Assessment of log-based fingerprinting system of Mobius3D with Elekta linear accelerators. J Appl Clin Med Phys 2021; 23:e13480. [PMID: 34837723 PMCID: PMC8833274 DOI: 10.1002/acm2.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/15/2022] Open
Abstract
Purpose The purpose of this study was to investigate the matching error that occurs when the Mobius3D fingerprinting system is applied in conjunction with an Elekta linear accelerator (LINAC) and to offer an acceptable and alternative method for circumventing this problem. Material and methods To avoid the multileaf collimator (MLC) conflicting error in the Mobius3D fingerprinting system, we developed an in‐house program to move the MLC in the Digital Imaging and Communications in Medicine (DICOM) radiotherapy (RT)‐Plan to pertinent positions, considering the relationship between log data and planned data. The re‐delivered log files were calculated in the Mobius3D system, and the results were compared with those of corrected data (i.e., we analyzed a pair of re‐collected log data and the previous DICOM RT‐Plan data). The results were then evaluated by comparing several items, such as point dose errors, gamma index (GI) passing rates, and MLC root‐mean‐square (RMS) values. Results For the point dose error, the maximum difference found was below 2.0%. In the case of GI analysis of all plans, the maximum difference in the passing rates was below 1.4%. The statistical results obtained using a paired Student's t‐test showed that there were no significant differences within the uncertainty. In the case of the RMS test, the maximum difference found was approximately 0.08 mm. Conclusions Our results showed that all the mismatched log files were sufficiently acceptable within the uncertainty. We conclude that the matching error obtained when applying Mobius3D to an Elekta LINAC may be addressed using a simple modification of the fingerprinting system, and we expect that our study findings will help vendors resolve this issue in the near future.
Collapse
Affiliation(s)
- Yu-Yun Noh
- Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, South Korea.,Department of Radiation Oncology, Yonsei Cancer Center, College of Medicine, Yonsei University, Seoul, South Korea
| | - Jihun Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jin Sung Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Han-Back Shin
- Department of Radiation Oncology, Yonsei Cancer Center, College of Medicine, Yonsei University, Seoul, South Korea
| | - Min Cheol Han
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Tae Suk Suh
- Department of Biomedical Engineering and Research Institute of Biomedical Engineering, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| |
Collapse
|
10
|
Szeverinski P, Kowatsch M, Künzler T, Meinschad M, Clemens P, DeVries AF. Evaluation of 4-Hz log files and secondary Monte Carlo dose calculation as patient-specific quality assurance for VMAT prostate plans. J Appl Clin Med Phys 2021; 22:235-244. [PMID: 34151502 PMCID: PMC8292700 DOI: 10.1002/acm2.13315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/28/2022] Open
Abstract
Purpose In this study, 4‐Hz log files were evaluated with an independent secondary Monte Carlo dose calculation algorithm to reduce the workload for patient‐specific quality assurance (QA) in clinical routine. Materials and Methods A total of 30 randomly selected clinical prostate VMAT plans were included. The used treatment planning system (TPS) was Monaco (Elekta, Crawley), and the secondary dose calculation software was SciMoCa (Scientific‐RT, Munich). Monaco and SciMoCa work with a Monte Carlo algorithm. A plausibility check of Monaco and SciMoCa was performed using an ionization chamber in the BodyPhantom (BP). First, the original Monaco RT plans were verified with SciMoCa (pretreatment QA). Second, the corresponding 4‐Hz log files were converted into RT log file plans and sent to SciMoCa as on‐treatment QA. MLC shift errors were introduced for one prostate plan to determine the sensitivity of on‐treatment QA. For pretreatment and on‐treatment QA, a gamma analysis (2%/1mm/20%) was performed and dosimetric values of PTV and OARs were ascertained in SciMoCa. Results Plausibility check of TPS Monaco vs. BP measurement and SciMoCa vs. BP measurement showed valid accuracy for clinical VMAT QA. Using SciMoCa, there was no significant difference in PTV Dmean between RT plan and RT log file plan. Between pretreatment and on‐treatment QA, PTV metrics, femur right and left showed no significant dosimetric differences as opposed to OARs rectum and bladder. The overall gamma passing rate (GPR) ranged from 96.10% to 100% in pretreatment QA and from 93.50% to 99.80% in on‐treatment QA. MLC shift errors were identified for deviations larger than −0.50 mm and +0.75 mm using overall gamma criterion and PTV Dmean. Conclusion SciMoCa calculations of Monaco RT plans and RT log file plans are in excellent agreement to each other. Therefore, 4‐Hz log files and SciMoCa can replace labor‐intensive phantom‐based measurements as patient‐specific QA.
Collapse
Affiliation(s)
- Philipp Szeverinski
- Institute of Medical Physics, Academic Teaching Hospital Feldkirch, Feldkirch, Austria.,Private University in the Principality of Liechtenstein, Triesen, Liechtenstein
| | - Matthias Kowatsch
- Institute of Medical Physics, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Thomas Künzler
- Institute of Medical Physics, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Marco Meinschad
- Institute of Medical Physics, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Patrick Clemens
- Department of Radio-Oncology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| | - Alexander F DeVries
- Department of Radio-Oncology, Academic Teaching Hospital Feldkirch, Feldkirch, Austria
| |
Collapse
|
11
|
Chuang KC, Giles W, Adamson J. A tool for patient-specific prediction of delivery discrepancies in machine parameters using trajectory log files. Med Phys 2021; 48:978-990. [PMID: 33332618 DOI: 10.1002/mp.14670] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 09/25/2020] [Accepted: 12/07/2020] [Indexed: 11/06/2022] Open
Abstract
PURPOSE Multileaf collimator (MLC) delivery discrepancy between planned and actual (delivered) positions have detrimental effect on the accuracy of dose distributions for both IMRT and VMAT. In this study, we evaluated the consistency of MLC delivery discrepancies over the course of treatment and over time to verify that a predictive machine learning model would be applicable throughout the course of treatment. Next, the MLC and gantry positions recorded in prior trajectory log files were analyzed to build a machine learning algorithm to predict MLC positional discrepancies during delivery for a new treatment plan. An open source tool was developed and released to predict the MLC positional discrepancies at treatment delivery for any given plan. METHODS Trajectory log files of 142 IMRT plans and 125 VMAT plans from 9 Varian TrueBeam linear accelerators were collected and analyzed. The consistency of delivery discrepancy over patient-specific quality assurance (QA) and patient treatment deliveries was evaluated. Data were binned by treatment site and machine type to determine their relationship with MLC and gantry angle discrepancies. Motion-related parameters including MLC velocity, MLC acceleration, control point, dose rate, and gravity vector, gantry velocity and gantry acceleration, where applicable, were analyzed to evaluate correlations with MLC and gantry discrepancies. Several regression models, such as simple/multiple linear regression, decision tree, and ensemble method (boosted tree and bagged tree model) were used to develop a machine learning algorithm to predict MLC discrepancy based on MLC motion parameters. RESULTS MLC discrepancies at patient-specific QA differed from those at patient treatment deliveries by a small (mean = 0.0021 ± 0.0036 mm, P = 0.0089 for IMRT; mean = 0.0010 ± 0.0016 mm, P = 0.0003 for VMAT) but statistically significant amount, likely due to setting the gantry angle to zero for QA in IMRT. MLC motion parameters, MLC velocity and gravity vector, showed significant correlation (P < 0.001) with MLC discrepancy, especially MLC velocity, which had an approximately linear relationship (slope = -0.0027, P < 0.001, R2 = 0.79). Incorporating MLC motion parameters, the final generalized model trained by data from all linear accelerators can predict MLC discrepancy to a high degree of accuracy with high correlation (R2 = 0.86) between predicted and actual MLC discrepancies. The same prediction results were found across different treatment sites and linear accelerators. CONCLUSION We have developed a machine learning model using trajectory log files to predict the MLC discrepancies during delivery. This model has been a released as a research tool in which a DICOM-RT with predicted MLC positions can be generated using the original DICOM-RT file as input. This tool can be used to simulate radiotherapy treatment delivery and may be useful for studies evaluating plan robustness and dosimetric uncertainties from treatment delivery.
Collapse
Affiliation(s)
- Kai-Cheng Chuang
- Medical Physics Graduate Program, Duke University, Durham, North Carolina, USA.,Medical Physics Graduate Program, Duke Kunshan University, Kunshan, China
| | - William Giles
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| | - Justus Adamson
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
12
|
Utena Y, Takatsu J, Sugimoto S, Sasai K. Trajectory log analysis and cone-beam CT-based daily dose calculation to investigate the dosimetric accuracy of intensity-modulated radiotherapy for gynecologic cancer. J Appl Clin Med Phys 2021; 22:108-117. [PMID: 33426810 PMCID: PMC7882102 DOI: 10.1002/acm2.13163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 11/13/2020] [Accepted: 12/15/2020] [Indexed: 11/21/2022] Open
Abstract
This study evaluated unexpected dosimetric errors caused by machine control accuracy, patient setup errors, and patient weight changes/internal organ deformations. Trajectory log files for 13 gynecologic plans with seven‐ or nine‐beam dynamic multileaf collimator (MLC) intensity‐modulated radiation therapy (IMRT), and differences between expected and actual MLC positions and MUs were evaluated. Effects of patient setup errors on dosimetry were estimated by in‐house software. To simulate residual patient setup errors after image‐guided patient repositioning, planned dose distributions were recalculated (blurred dose) after the positions were randomly moved in three dimensions 0–2 mm (translation) and 0°–2° (rotation) 28 times per patient. Differences between planned and blurred doses in the clinical target volume (CTV) D98% and D2% were evaluated. Daily delivered doses were calculated from cone‐beam computed tomography by the Hounsfield unit‐to‐density conversion method. Fractional and accumulated dose differences between original plans and actual delivery were evaluated by CTV D98% and D2%. The significance of accumulated doses was tested by the paired t test. Trajectory log file analysis showed that MLC positional errors were −0.01 ± 0.02 mm and MU delivery errors were 0.10 ± 0.10 MU. Differences in CTV D98% and D2% were <0.5% for simulated patient setup errors. Differences in CTV D98% and D2% were 2.4% or less between the fractional planned and delivered doses, but were 1.7% or less for the accumulated dose. Dosimetric errors were primarily caused by patient weight changes and internal organ deformation in gynecologic radiation therapy.
Collapse
Affiliation(s)
- Yohei Utena
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Department of Radiology, Toranomon Hospital, Tokyo, Japan
| | - Jun Takatsu
- Department of Radiation Oncology, Faculty of Medicine, Juntendo University, Tokyo, Japan
| | - Satoru Sugimoto
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Keisuke Sasai
- Department of Radiation Oncology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| |
Collapse
|
13
|
Chuang KC, Giles W, Adamson J. On the use of trajectory log files for machine & patient specific QA. Biomed Phys Eng Express 2020; 7. [PMID: 34037535 DOI: 10.1088/2057-1976/abc86c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/06/2020] [Indexed: 11/12/2022]
Abstract
Purpose:Trajectory log files are increasingly being utilized clinically for machine and patient specific QA. The process of converting the DICOM-RT plan to a deliverable trajectory by the linac control software introduces some uncertainty that is inherently incorporated into measurement-based patient specific QA but is not necessarily included for trajectory log file-based methods. Roughly half of prior studies have included this uncertainty in the analysis while the remaining studies have ignored it, and it has yet to be quantified in the literature.Methods:We collected DICOM-RT files from the treatment planning system and the trajectory log files from four TrueBeam linear accelerators for 25 IMRT and 10 VMAT plans. We quantified the DICOM-RT Conversion to Trajectory Residual (DCTR, difference between 'planned' MLC position from TPS DICOM-RT file and 'expected' MLC position (the deliverable MLC positions calculated by the linac control software) from trajectory log file) and compared it to the discrepancy between actual and expected machine parameters recorded in trajectory log files.Results:RMS of the DCTR was 0.0845 mm (range of RMS per field/arc: 0.0173-0.1825 mm) for 35 plans (114 fields/arcs) and was independent of treatment technique, with a maximum observed discrepancy at any control point of 0.7255 mm. DCTR was correlated with MLC velocity and was consistent over the course of treatment and over time, with a slight change in magnitude observed after a linac software upgrade. For comparison, the RMS of trajectory log file reported delivery error for moving MLCs was 0.0205 mm, thus DCTR is about four times the recorded delivery error in the trajectory log file.Conclusion:The uncertainty introduced from the conversion process by the linac control software from DICOM-RT plan to a deliverable trajectory is 3-4 times larger than the discrepancy between actual and expected machine parameters recorded in trajectory log files. This uncertainty should be incorporated into the analysis when using trajectory log file-based methods for analyzing MLC performance or patient-specific QA.
Collapse
Affiliation(s)
- Kai-Cheng Chuang
- Medical Physics Graduate Program, Duke University, Durham, NC, United States of America.,Medical Physics Graduate Program, Duke Kunshan University, Kunshan, People's Republic of China
| | - William Giles
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| | - Justus Adamson
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, United States of America
| |
Collapse
|
14
|
Wang R, Du Y, Yao K, Liu Z, Wang H, Yue H, Zhang Y, Wu H. Halcyon clinical performance evaluation: A log file-based study in comparison with a C-arm Linac. Phys Med 2020; 71:14-23. [PMID: 32086148 DOI: 10.1016/j.ejmp.2020.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/27/2019] [Accepted: 01/26/2020] [Indexed: 12/28/2022] Open
Abstract
PURPOSE The aim of this study is to compare the dosimetric and mechanical accuracy of Volumetric Modulation Arc Therapy (VMAT) delivery on the Halcyon, a recent ring-shaped Treatment Delivery System (TDS) featuring fast rotating gantry, with a conventional C-arm Linac. METHODS The comparison was performed via log file analysis, where mechanical parameters of related components was extracted. 480 and 3951 VMAT log files of clinically delivered fractions from a Halcyon and a TrueBeam Linac were analyzed respectively. The relations between mechanical parameters and errors were extensively explored to further investigate the differences between the two Linacs. The mechanical parameter fluctuations were taken into account for dose recalculations, and the Dose Volume Parameters (DVP) on the PTV were evaluated to quantify such dosimetric variations. RESULTS The Multi-Leaf Collimator (MLC) leaf mean Root Mean Square (RMS) errors were 0.028 mm and 0.031 mm for Halcyon and TrueBeam respectively. Maximum systematic error on the MLC leaves introduced by the gravity effect were 0.04 mm and 0.01 mm for the Halcyon and TrueBeam respectively. Thanks to the O-ring design, the Halcyon achieved 0.035° in mean RMS error in gantry angle compared with the 0.065° of the TrueBeam. Overall mechanical errors introduced similar levels of dose-volume parameter variations (about 0.1%) on both Linacs. CONCLUSION The Halcyon TDS can achieve similar mechanical leaf positioning accuracy compared with the TrueBeam TDS with a doubled delivery speed. In terms of dosimetric accuracy, The DVP standard deviations on the studied TB are generally larger than that on the Halcyon.
Collapse
Affiliation(s)
- Ruoxi Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yi Du
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Kaining Yao
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Zhuolun Liu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hanlin Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Haizhen Yue
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yibao Zhang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China
| | - Hao Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Radiation Oncology, Peking University Cancer Hospital & Institute, Beijing, China.
| |
Collapse
|
15
|
Miyasaka R, Saitoh H, Kawachi T, Katayose T, Cho S, Yamauchi R, Hara R. Evaluation of gantry angle during respiratory‐gated VMAT using triggered kilovoltage x‐ray image. J Appl Clin Med Phys 2019; 20:98-104. [PMID: 31355984 PMCID: PMC6698769 DOI: 10.1002/acm2.12683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/17/2019] [Accepted: 07/01/2019] [Indexed: 11/17/2022] Open
Abstract
Respiratory‐gated volumetric modulated arc therapy (gated VMAT) involves further complexities to the dose delivery process because the gantry rotation must repeatedly stop and restart according to the gating signals. In previous studies, the gantry rotation performances were evaluated by the difference between the plan and the machine log. However, several reports pointed out that log analysis does not sufficiently replicate the machine performance. In this report, a measurement‐based quality assurance of the relation between the gantry angle and gate‐on or gate‐off using triggered kilovoltage imaging and a cylinder phantom with 16 ball bearings is proposed. For the analysis, an in‐house program that estimates and corrects the phantom offset was developed. The gantry angle in static and gated arc delivery was compared between the machine log and the proposed method. The gantry was set every 5 deg through its full motion range in static delivery, and rotated at three speeds (2, 4 and 6 deg s‐1) with different gating intervals (1.5 or 3.0 s) in gated arc delivery. The mean and standard deviation of the angular differences between the log and the proposed method was −0.05 deg ± 0.12 deg in static delivery. The mean of the angular difference was within ±0.10 deg and the largest difference was 0.41 deg in gated arc delivery. The log records the output of the encoder so that miscalibration and mechanical sagging will be disregarded. However, the proposed method will help the users to detect the mechanical issues due to the repeated gantry stops and restarts in gated VMAT.
Collapse
Affiliation(s)
- Ryohei Miyasaka
- Department of Radiation Oncology Chiba Cancer Center 666‐2 Nitona‐chou, Chuo‐ku Chiba Japan
- Graduate School of Human Health Sciences Tokyo Metropolitan University 7‐2‐10 Higashiogu, Arakawa‐ku Tokyo Japan
| | - Hidetoshi Saitoh
- Graduate School of Human Health Sciences Tokyo Metropolitan University 7‐2‐10 Higashiogu, Arakawa‐ku Tokyo Japan
| | - Toru Kawachi
- Department of Radiation Oncology Chiba Cancer Center 666‐2 Nitona‐chou, Chuo‐ku Chiba Japan
| | - Tetsurou Katayose
- Department of Radiation Oncology Chiba Cancer Center 666‐2 Nitona‐chou, Chuo‐ku Chiba Japan
| | - SangYong Cho
- Department of Radiation Oncology Chiba Cancer Center 666‐2 Nitona‐chou, Chuo‐ku Chiba Japan
| | - Ryohei Yamauchi
- Graduate School of Human Health Sciences Tokyo Metropolitan University 7‐2‐10 Higashiogu, Arakawa‐ku Tokyo Japan
| | - Ryusuke Hara
- Department of Radiation Oncology Chiba Cancer Center 666‐2 Nitona‐chou, Chuo‐ku Chiba Japan
| |
Collapse
|
16
|
Evaluation of functionally weighted dose-volume parameters for thoracic stereotactic ablative radiotherapy (SABR) using CT ventilation. Phys Med 2018; 49:47-51. [PMID: 29866342 DOI: 10.1016/j.ejmp.2018.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/27/2018] [Accepted: 05/01/2018] [Indexed: 01/04/2023] Open
Abstract
For the purpose of reducing radiation pneumontisis (RP), four-dimensional CT (4DCT)-based ventilation can be used to reduce functionally weighted lung dose. This study aimed to evaluate the functionally weighted dose-volume parameters and to investigate an optimal weighting method to realize effective planning optimization in thoracic stereotactic ablative radiotherapy (SABR). Forty patients treated with SABR were analyzed. Ventilation images were obtained from 4DCT using deformable registration and Hounsfield unit-based calculation. Functionally-weighted mean lung dose (fMLD) and functional lung fraction receiving at least x Gy (fVx) were calculated by two weighting methods: thresholding and linear weighting. Various ventilation thresholds (5th-95th, every 5th percentile) were tested. The predictive accuracy for CTCAE grade ≧ 2 pneumonitis was evaluated by area under the curve (AUC) of receiver operating characteristic analysis. AUC values varied from 0.459 to 0.570 in accordance with threshold and dose-volume metrics. A combination of 25th percentile threshold and fV30 showed the best result (AUC: 0.570). AUC values with fMLD, fV10, fV20, and fV40 were 0.541, 0.487, 0.548 and 0.563 using a 25th percentile threshold. Although conventional MLD, V10, V20, V30 and V40 showed lower AUC values (0.516, 0.477, 0.534, 0.552 and 0.527), the differences were not statistically significant. fV30 with 25th percentile threshold was the best predictor of RP. Our results suggested that the appropriate weighting should be used for better treatment outcomes in thoracic SABR.
Collapse
|
17
|
Hirashima H, Miyabe Y, Nakamura M, Mukumoto N, Mizowaki T, Hiraoka M. Quality assurance of geometric accuracy based on an electronic portal imaging device and log data analysis for Dynamic WaveArc irradiation. J Appl Clin Med Phys 2018; 19:234-242. [PMID: 29633542 PMCID: PMC5978977 DOI: 10.1002/acm2.12324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 12/28/2017] [Accepted: 03/02/2018] [Indexed: 11/26/2022] Open
Abstract
The purpose of this study was to develop a simple verification method for the routine quality assurance (QA) of Dynamic WaveArc (DWA) irradiation using electronic portal imaging device (EPID) images and log data analysis. First, an automatic calibration method utilizing the outermost multileaf collimator (MLC) slits was developed to correct the misalignment between the center of the EPID and the beam axis. Moreover, to verify the detection accuracy of the MLC position according to the EPID images, various positions of the MLC with intentional errors in the range 0.1–1 mm were assessed. Second, to validate the geometric accuracy during DWA irradiation, tests were designed in consideration of three indices. Test 1 evaluated the accuracy of the MLC position. Test 2 assessed dose output consistency with variable dose rate (160–400 MU/min), gantry speed (2.2–6°/s), and ring speed (0.5–2.7°/s). Test 3 validated dose output consistency with variable values of the above parameters plus MLC speed (1.6–4.2 cm/s). All tests were delivered to the EPID and compared with those obtained using a stationary radiation beam with a 0° gantry angle. Irradiation log data were recorded simultaneously. The 0.1‐mm intentional error on the MLC position could be detected by the EPID, which is smaller than the EPID pixel size. In Test 1, the MLC slit widths agreed within 0.20 mm of their exposed values. The averaged root‐mean‐square error (RMSE) of the dose outputs was less than 0.8% in Test 2 and Test 3. Using log data analysis in Test 3, the RMSE between the planned and recorded data was 0.1 mm, 0.12°, and 0.07° for the MLC position, gantry angle, and ring angle, respectively. The proposed method is useful for routine QA of the accuracy of DWA.
Collapse
Affiliation(s)
- Hideaki Hirashima
- Department of Radiation Oncology and Image-applied therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuki Miyabe
- Department of Radiation Oncology and Image-applied therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Mitsuhiro Nakamura
- Department of Radiation Oncology and Image-applied therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-applied therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-applied therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
18
|
Katsuta Y, Kadoya N, Fujita Y, Shimizu E, Majima K, Matsushita H, Takeda K, Jingu K. Log file-based patient dose calculations of double-arc VMAT for head-and-neck radiotherapy. Phys Med 2018; 48:6-10. [DOI: 10.1016/j.ejmp.2018.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 02/23/2018] [Accepted: 03/11/2018] [Indexed: 11/16/2022] Open
|
19
|
Hirashima H, Nakamura M, Miyabe Y, Uto M, Nakamura K, Mizowaki T. Monitoring of mechanical errors and their dosimetric impact throughout the course of non-coplanar continuous volumetric-modulated arc therapy. Radiat Oncol 2018; 13:27. [PMID: 29444693 PMCID: PMC5813375 DOI: 10.1186/s13014-018-0972-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 02/11/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Volumetric-modulated Dynamic WaveArc therapy (VMDWAT) is a non-coplanar continuous volumetric modulated radiation therapy (VMAT) delivery technique. Here, we monitored mechanical errors and their impact on dose distributions in VMDWAT using logfiles throughout the course of treatment. METHODS Fifteen patients were enrolled (2 skull base tumor patients and 13 prostate cancer patients). VMDWAT plans were created for the enrolled patients. The prescribed dose for the skull base tumor was set as 54 Gy at 1.8 Gy per fraction, and that for the prostate cancer was set as 72 to 78 Gy at 2 Gy per fraction. We acquired logfiles to monitor mechanical errors and their impact on dose distribution in each fraction. The root mean square error (RMSE) in the multi-leaf collimator (MLC), gantry angle, O-ring angle and monitor unit (MU) were calculated using logfiles throughout the course of VMDWAT for each patient. The dosimetric impact of mechanical errors throughout the course of VMDWAT was verified using a logfile-based dose reconstruction method. Dosimetric errors between the reconstructed plans and the original plans were assessed. RESULTS A total of 517 datasets, including 55 datasets for the 2 skull base tumor patients and 462 datasets for the 13 prostate cancer patients, were acquired. The RMSE values were less than 0.1 mm, 0.2°, 0.1°, and 0.4 MU for MLC position, gantry angle, O-ring angle, and MU, respectively. For the skull base tumors, the absolute mean dosimetric errors and two standard deviations throughout the course of treatment were less than 1.4% and 1.1%, respectively. For prostate cancer, these absolute values were less than 0.3% and 0.5%, respectively. The largest dosimetric error of 2.5% was observed in a skull base tumor patient. The resultant dosimetric error in the accumulated daily delivered dose distribution, in the patient with the largest error, was up to 1.6% for all dose-volumetric parameters relative to the planned dose distribution. CONCLUSIONS MLC position, gantry rotation, O-ring rotation and MU were highly accurate and stable throughout the course of treatment. The daily dosimetric errors due to mechanical errors were small. VMDWAT provided high delivery accuracy and stability throughout the course of treatment. TRIAL REGISTRATION UMIN000023870 . Registered: 1 October 2016.
Collapse
Affiliation(s)
- Hideaki Hirashima
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Mitsuhiro Nakamura
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan. .,Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Yuki Miyabe
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Megumi Uto
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Kiyonao Nakamura
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
20
|
Kadoya N, Kon Y, Takayama Y, Matsumoto T, Hayashi N, Katsuta Y, Ito K, Chiba T, Dobashi S, Takeda K, Jingu K. Quantifying the performance of two different types of commercial software programs for 3D patient dose reconstruction for prostate cancer patients: Machine log files vs. machine log files with EPID images. Phys Med 2018; 45:170-176. [DOI: 10.1016/j.ejmp.2017.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 12/18/2017] [Accepted: 12/23/2017] [Indexed: 01/24/2023] Open
|
21
|
Katsuta Y, Kadoya N, Fujita Y, Shimizu E, Matsunaga K, Sawada K, Matsushita H, Majima K, Jingu K. Patient-Specific Quality Assurance Using Monte Carlo Dose Calculation and Elekta Log Files for Prostate Volumetric-Modulated Arc Therapy. Technol Cancer Res Treat 2017; 16:1220-1225. [PMID: 29334027 PMCID: PMC5762095 DOI: 10.1177/1533034617745250] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Log file–based methods are attracting increasing interest owing to their ability to validate volumetric-modulated arc therapy outputs with high resolution in the leaf and gantry positions and in delivered dose. Cross-validation of these methods for comparison with measurement-based methods using the ionization chamber/ArcCHECK-3DVH software (version 3.2.0) under the same conditions of treatment anatomy and plan enables an efficient evaluation of this method. In this study, with the purpose of cross-validation, we evaluate the accuracy of a log file–based method using Elekta log files and an X-ray voxel Monte Carlo dose calculation technique in the case of leaf misalignment during prostate volumetric-modulated arc therapy. In this study, 10 prostate volumetric-modulated arc therapy plans were used. Systematic multileaf collimator leaf positional errors (±0.4 and ±0.8 mm for each single bank) were deliberately introduced into the optimized plans. Then, the delivered 3-dimensional doses to a phantom with a certain patient anatomy were estimated by our system. These doses were compared with the ionization chamber dose and the ArcCHECK-3DVH dose. For the given phantom and patient anatomy, the estimated dose strongly coincided with the ionization chamber/ArcCHECK-3DVH dose (P < .01). In addition, good agreement between the estimated dose and the ionization chamber/ArcCHECK-3DVH dose was observed. The dose estimation accuracy of our system, which combines Elekta log files and X-ray voxel Monte Carlo dose calculation, was evaluated.
Collapse
Affiliation(s)
- Yoshiyuki Katsuta
- 1 Department of Radiology, Takeda General Hospital, Aizuwakamatsu, Japan.,2 Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriyuki Kadoya
- 2 Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukio Fujita
- 3 Department of Radiation Oncology, Tokai University Graduate School of Medicine, Isehara, Japan
| | - Eiji Shimizu
- 1 Department of Radiology, Takeda General Hospital, Aizuwakamatsu, Japan
| | - Kenichi Matsunaga
- 1 Department of Radiology, Takeda General Hospital, Aizuwakamatsu, Japan
| | - Kinya Sawada
- 1 Department of Radiology, Takeda General Hospital, Aizuwakamatsu, Japan
| | - Haruo Matsushita
- 2 Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhiro Majima
- 1 Department of Radiology, Takeda General Hospital, Aizuwakamatsu, Japan
| | - Keiichi Jingu
- 2 Department of Radiation Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
22
|
Hirashima H, Nakamura M, Miyabe Y, Mukumoto N, Uto M, Nakamura K, Mizowaki T, Hiraoka M. Geometric and dosimetric quality assurance using logfiles and a 3D helical diode detector for Dynamic WaveArc. Phys Med 2017; 43:107-113. [PMID: 29195552 DOI: 10.1016/j.ejmp.2017.10.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/20/2017] [Accepted: 10/26/2017] [Indexed: 12/28/2022] Open
Abstract
PURPOSE To conduct patient-specific geometric and dosimetric quality assurance (QA) for the Dynamic WaveArc (DWA) using logfiles and ArcCHECK (Sun Nuclear Inc., Melbourne, FL, USA). METHODS Twenty DWA plans, 10 for pituitary adenoma and 10 for prostate cancer, were created using RayStation version 4.7 (RaySearch Laboratories, Stockholm, Sweden). Root mean square errors (RMSEs) between the actual and planned values in the logfiles were evaluated. Next, the dose distributions were reconstructed based on the logfiles. The differences between dose-volumetric parameters in the reconstructed plans and those in the original plans were calculated. Finally, dose distributions were assessed using ArcCHECK. In addition, the reconstructed dose distributions were compared with planned ones. RESULTS The means of RMSEs for the gantry, O-ring, MLC position, and MU for all plans were 0.2°, 0.1°, 0.1 mm, and 0.4 MU, respectively. Absolute means of the change in PTV D99% were 0.4 ± 0.4% and 0.1 ± 0.1% points between the original and reconstructed plans for pituitary adenoma and prostate cancer, respectively. The mean of the gamma passing rate (3%/3 mm) between the measured and planned dose distributions was 97.7%. In addition, that between the reconstructed and planned dose distributions was 99.6%. CONCLUSIONS We have demonstrated that the geometric accuracy and gamma passing rates were within AAPM 119 and 142 criteria during DWA. Dose differences in the dose-volumetric parameters using the logfile-based dose reconstruction method were also clinically acceptable in DWA.
Collapse
Affiliation(s)
- Hideaki Hirashima
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Mitsuhiro Nakamura
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan.
| | - Yuki Miyabe
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Nobutaka Mukumoto
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Megumi Uto
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Kiyonao Nakamura
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Masahiro Hiraoka
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
23
|
Katsuta Y, Kadoya N, Fujita Y, Shimizu E, Matsunaga K, Matsushita H, Majima K, Jingu K. Clinical impact of dosimetric changes for volumetric modulated arc therapy in log file-based patient dose calculations. Phys Med 2017; 42:1-6. [DOI: 10.1016/j.ejmp.2017.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/19/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022] Open
|
24
|
Kantz S, Troeller McDermott A, Söhn M, Reinhardt S, Belka C, Parodi K, Reiner M. Practical implications for the quality assurance of modulated radiation therapy techniques using point detector arrays. J Appl Clin Med Phys 2017; 18:20-31. [PMID: 28857409 PMCID: PMC5689906 DOI: 10.1002/acm2.12157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/02/2017] [Accepted: 06/29/2017] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Linac parameters potentially influencing the delivery quality of IMRT and VMAT plans are investigated with respect to threshold ranges, consequently to be considered in a linac based quality assurance procedure. Three commercially available 2D arrays are used to further investigate the influence of the measurement device. METHODS Using three commercially available 2D arrays (Mx: MatriXXevolution , Oc: Octavius1500 , Mc: MapCHECK2), simple static measurements, measurements for MLC characterization and dynamic interplay of gantry movement, MLC movement and variable dose rate were performed. The results were evaluated with respect to each single array as well as among each other. RESULTS Simple static measurements showed different array responses to dose, dose rate and profile homogeneity and revealed instabilities in dose delivery and profile shape during linac ramp up. Using the sweeping gap test, all arrays were able to detect small leaf misalignments down to ±0.1 mm, but this test also demonstrated up to 15% dose deviation due to profile instabilities and fast accelerating leaves during linac ramp up. Tests including gantry rotation showed different stability of gantry mounts for each array. Including gantry movement and dose rate variability, differences compared to static delivery were smaller compared to dose differences when simultaneously controling interplay of gantry movement, leaf movement and dose rate variability. CONCLUSION Linac based QA is feasible with the tested commercially available 2D arrays. Limitations of each array and the linac ramp up characteristics should be carefully considered during individual plan generation and regularly checked in linac QA. Especially the dose and dose profile during linac ramp up should be checked regularly, as well as MLC positioning accuracy using a sweeping gap test. Additionally, dynamic interplay tests including various gantry rotation speeds and angles, various leaf speeds and various dose rates should be included.
Collapse
Affiliation(s)
- Steffi Kantz
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Almut Troeller McDermott
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany.,Department of Radiation Oncology, Beaumont Health, Royal Oak, MI, USA
| | - Matthias Söhn
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Sabine Reinhardt
- Faculty of Physics, Department of Medical Physics, LMU Munich, Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Katia Parodi
- Faculty of Physics, Department of Medical Physics, LMU Munich, Munich, Germany
| | - Michael Reiner
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|