• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4777623)   Today's Articles (687)
For: Gong J, Liu JY, Wang LJ, Zheng B, Nie SD. Computer-aided detection of pulmonary nodules using dynamic self-adaptive template matching and a FLDA classifier. Phys Med 2016;32:1502-9. [PMID: 27856118 DOI: 10.1016/j.ejmp.2016.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 11/24/2022]  Open
Number Cited by Other Article(s)
1
Wu J, Li R, Gan J, Zheng Q, Wang G, Tao W, Yang M, Li W, Ji G, Li W. Application of artificial intelligence in lung cancer screening: A real-world study in a Chinese physical examination population. Thorac Cancer 2024;15:2061-2072. [PMID: 39206529 PMCID: PMC11444925 DOI: 10.1111/1759-7714.15428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]  Open
2
VJ MJ, S K. Multi-classification approach for lung nodule detection and classification with proposed texture feature in X-ray images. MULTIMEDIA TOOLS AND APPLICATIONS 2023:1-28. [PMID: 37362672 PMCID: PMC10188326 DOI: 10.1007/s11042-023-15281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/22/2022] [Accepted: 04/06/2023] [Indexed: 06/28/2023]
3
Sebastian AE, Dua D. Lung Nodule Detection via Optimized Convolutional Neural Network: Impact of Improved Moth Flame Algorithm. SENSING AND IMAGING 2023;24:11. [PMID: 36936054 PMCID: PMC10009866 DOI: 10.1007/s11220-022-00406-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 09/30/2022] [Accepted: 11/02/2022] [Indexed: 06/18/2023]
4
Min Y, Hu L, Wei L, Nie S. Computer-aided detection of pulmonary nodules based on convolutional neural networks: a review. Phys Med Biol 2022;67. [DOI: 10.1088/1361-6560/ac568e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/18/2022] [Indexed: 02/08/2023]
5
Suzuki K, Otsuka Y, Nomura Y, Kumamaru KK, Kuwatsuru R, Aoki S. Development and Validation of a Modified Three-Dimensional U-Net Deep-Learning Model for Automated Detection of Lung Nodules on Chest CT Images From the Lung Image Database Consortium and Japanese Datasets. Acad Radiol 2022;29 Suppl 2:S11-S17. [PMID: 32839096 DOI: 10.1016/j.acra.2020.07.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 07/13/2020] [Accepted: 07/22/2020] [Indexed: 12/17/2022]
6
Identification of pathological subtypes of early lung adenocarcinoma based on artificial intelligence parameters and CT signs. Biosci Rep 2022;42:230629. [PMID: 35005775 PMCID: PMC8766821 DOI: 10.1042/bsr20212416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 12/05/2022]  Open
7
Lung Nodule Detection from Feature Engineering to Deep Learning in Thoracic CT Images: a Comprehensive Review. J Digit Imaging 2021;33:655-677. [PMID: 31997045 DOI: 10.1007/s10278-020-00320-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]  Open
8
Halder A, Chatterjee S, Dey D, Kole S, Munshi S. An adaptive morphology based segmentation technique for lung nodule detection in thoracic CT image. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020;197:105720. [PMID: 32877818 DOI: 10.1016/j.cmpb.2020.105720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/19/2020] [Indexed: 05/13/2023]
9
Ziyad SR, Radha V, Vayyapuri T. Overview of Computer Aided Detection and Computer Aided Diagnosis Systems for Lung Nodule Detection in Computed Tomography. Curr Med Imaging 2020;16:16-26. [PMID: 31989890 DOI: 10.2174/1573405615666190206153321] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 11/22/2022]
10
Cui S, Ming S, Lin Y, Chen F, Shen Q, Li H, Chen G, Gong X, Wang H. Development and clinical application of deep learning model for lung nodules screening on CT images. Sci Rep 2020;10:13657. [PMID: 32788705 PMCID: PMC7423892 DOI: 10.1038/s41598-020-70629-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 07/29/2020] [Indexed: 12/11/2022]  Open
11
Kuo CFJ, Leu YS, Hu DJ, Huang CC, Siao JJ, Leon KBP. Application of intelligent automatic segmentation and 3D reconstruction of inferior turbinate and maxillary sinus from computed tomography and analyze the relationship between volume and nasal lesion. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
12
Wang Y, Wu B, Zhang N, Liu J, Ren F, Zhao L. Research progress of computer aided diagnosis system for pulmonary nodules in CT images. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2020;28:1-16. [PMID: 31815727 DOI: 10.3233/xst-190581] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
13
Gong J, Liu J, Hao W, Nie S, Wang S, Peng W. Computer-aided diagnosis of ground-glass opacity pulmonary nodules using radiomic features analysis. Phys Med Biol 2019;64:135015. [PMID: 31167172 DOI: 10.1088/1361-6560/ab2757] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
14
Pehrson LM, Nielsen MB, Ammitzbøl Lauridsen C. Automatic Pulmonary Nodule Detection Applying Deep Learning or Machine Learning Algorithms to the LIDC-IDRI Database: A Systematic Review. Diagnostics (Basel) 2019;9:E29. [PMID: 30866425 PMCID: PMC6468920 DOI: 10.3390/diagnostics9010029] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/29/2019] [Accepted: 02/19/2019] [Indexed: 12/27/2022]  Open
15
Wang T, Gong J, Duan HH, Wang LJ, Ye XD, Nie SD. Correlation between CT based radiomics features and gene expression data in non-small cell lung cancer. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2019;27:773-803. [PMID: 31450540 DOI: 10.3233/xst-190526] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
16
Gong J, Liu J, Jiang Y, Sun X, Zheng B, Nie S. Fusion of quantitative imaging features and serum biomarkers to improve performance of computer‐aided diagnosis scheme for lung cancer: A preliminary study. Med Phys 2018;45:5472-5481. [PMID: 30317652 DOI: 10.1002/mp.13237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022]  Open
17
Automatic nodule detection for lung cancer in CT images: A review. Comput Biol Med 2018;103:287-300. [PMID: 30415174 DOI: 10.1016/j.compbiomed.2018.10.033] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022]
18
Monkam P, Qi S, Xu M, Han F, Zhao X, Qian W. CNN models discriminating between pulmonary micro-nodules and non-nodules from CT images. Biomed Eng Online 2018;17:96. [PMID: 30012167 PMCID: PMC6048884 DOI: 10.1186/s12938-018-0529-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 07/10/2018] [Indexed: 12/18/2022]  Open
19
Gong J, Liu JY, Wang LJ, Sun XW, Zheng B, Nie SD. Automatic detection of pulmonary nodules in CT images by incorporating 3D tensor filtering with local image feature analysis. Phys Med 2018. [PMID: 29519398 DOI: 10.1016/j.ejmp.2018.01.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]  Open
20
Gong J, Liu JY, Sun XW, Zheng B, Nie SD. Computer-aided diagnosis of lung cancer: the effect of training data sets on classification accuracy of lung nodules. ACTA ACUST UNITED AC 2018;63:035036. [DOI: 10.1088/1361-6560/aaa610] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA