1
|
De Sio C, Ballisat L, Beck L, Guatelli S, Sakata D, Shi Y, Duan J, Sabah LA, Velthuis J, Rosenfeld A. Targeted alpha therapies using 211At: A Geant4 simulation of dose and DNA damage. Phys Med 2025; 129:104860. [PMID: 39644875 DOI: 10.1016/j.ejmp.2024.104860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/03/2024] [Accepted: 11/20/2024] [Indexed: 12/09/2024] Open
Abstract
INTRODUCTION Targeted alpha therapies show great potential for cancer treatment due to their high linear energy transfer (LET) and low range. 211At is currently employed in clinical trials. Targeted alpha therapies (TAT) are effective as an adjuvant treatment for cancer or to treat micrometastases and diffuse cancers. A deeper understanding of the induced initial damage is crucial to enhance treatment planning. METHODS This study shows Geant4(-DNA)-based simulations to calculate absorbed dose profiles and DNA damaging potential in intravenously administered TAT with 211At. It assumes radionuclide decay on the blood vessel wall, and calculates the DNA damage in the surrounding tissue. RESULTS The calculated dosimetric quantities show that the effect of such treatment is mainly due to the emitted alpha particles, and is localised in a region of up to 80μm from the blood vessel. The RBE of the treatment is in the range 2.5-4, and is calculated as a function of the number of double-strand breaks. CONCLUSIONS Targeted therapies with 211At are effective within the range of the emitted alpha particles. With its capacity to induce complex DNA damage in such a short range, it is very promising for localised treatment of small tumour cells or micrometastases.
Collapse
Affiliation(s)
- Chiara De Sio
- School of Physics, University of Bristol, Bristol, UK.
| | | | - Lana Beck
- School of Physics, University of Bristol, Bristol, UK
| | - Susanna Guatelli
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, NSW, Australia
| | - Dousatsu Sakata
- Division of Health Sciences, Osaka University, Osaka 565-0871, Japan
| | - Yuyao Shi
- School of Physics, University of Bristol, Bristol, UK
| | - Jinyan Duan
- School of Physics, University of Bristol, Bristol, UK
| | | | - Jaap Velthuis
- School of Physics, University of Bristol, Bristol, UK
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, NSW, Australia
| |
Collapse
|
2
|
Alcocer-Ávila M, Levrague V, Delorme R, Testa É, Beuve M. Biophysical modeling of low-energy ion irradiations with NanOx. Med Phys 2024; 51:9358-9371. [PMID: 39287463 DOI: 10.1002/mp.17407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/22/2024] [Accepted: 08/27/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Targeted radiotherapies with low-energy ions show interesting possibilities for the selective irradiation of tumor cells, a strategy particularly appropriate for the treatment of disseminated cancer. Two promising examples are boron neutron capture therapy (BNCT) and targeted radionuclide therapy with α $\alpha$ -particle emitters (TAT). The successful clinical translation of these radiotherapies requires the implementation of accurate radiation dosimetry approaches able to take into account the impact on treatments of the biological effectiveness of ions and the heterogeneity in the therapeutic agent distribution inside the tumor cells. To this end, biophysical models can be applied to translate the interactions of radiations with matter into biological endpoints, such as cell survival. PURPOSE The NanOx model was initially developed for predicting the cell survival fractions resulting from irradiations with the high-energy ion beams encountered in hadrontherapy. We present in this work a new implementation of the model that extends its application to irradiations with low-energy ions, as the ones found in TAT and BNCT. METHODS The NanOx model was adapted to consider the energy loss of primary ions within the sensitive volume (i.e., the cell nucleus). Additional assumptions were introduced to simplify the practical implementation of the model and reduce computation time. In particular, for low-energy ions the narrow-track approximation allowed to neglect the energy deposited by secondary electrons outside the sensitive volume, increasing significantly the performance of simulations. Calculations were performed to compare the original hadrontherapy implementation of the NanOx model with the present one in terms of the inactivation cross sections of human salivary gland cells as a function of the kinetic energy of incident α $\alpha$ -particles. RESULTS The predictions of the previous and current versions of NanOx agreed for incident energies higher than 1 MeV/n. For lower energies, the new NanOx implementation predicted a decrease in the inactivation cross sections that depended on the length of the sensitive volume. CONCLUSIONS We reported in this work an extension of the NanOx biophysical model to consider irradiations with low-energy ions, such as the ones found in TAT and BNCT. The excellent agreement observed at intermediate and high energies between the original hadrontherapy implementation and the present one showed that NanOx offers a consistent, self-integrated framework for describing the biological effects induced by ion irradiations. Future work will focus on the application of the latest version of NanOx to cases closer to the clinical setting.
Collapse
Affiliation(s)
- Mario Alcocer-Ávila
- Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, Villeurbanne, France
| | - Victor Levrague
- University of Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, Grenoble, France
| | - Rachel Delorme
- University of Grenoble Alpes, CNRS, Grenoble INP, LPSC-IN2P3, Grenoble, France
| | - Étienne Testa
- Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, Villeurbanne, France
| | - Michaël Beuve
- Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon, UMR 5822, Villeurbanne, France
| |
Collapse
|
3
|
Bhimaniya S, Shah H, Jacene HA. Alpha-emitter Peptide Receptor Radionuclide Therapy in Neuroendocrine Tumors. PET Clin 2024; 19:341-349. [PMID: 38658229 DOI: 10.1016/j.cpet.2024.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Peptide receptor radionuclide therapy (PRRT) has become mainstream therapy of metastatic neuroendocrine tumors not controlled by somatostatin analog therapy. Currently, beta particle-emitting radiopharmaceuticals are the mainstay of PRRT. Alpha particle-emitting radiopharmaceuticals have a theoretic advantage over beta emitters in terms of improved therapeutic efficacy due to higher cancer cell death and lower nontarget tissue radiation-induced adverse events due to shorter path length of alpha particles. We discuss the available evidence for and the role of alpha particle PRRT.
Collapse
Affiliation(s)
- Sudhir Bhimaniya
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | - Hina Shah
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| | - Heather A Jacene
- Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA
| |
Collapse
|
4
|
Shamsabadi R, Baghani HR. Impact of gadolinium concentration and cell oxygen levels on radiobiological characteristics of gadolinium neutron capture therapy technique in brain tumor treatment. Radiol Phys Technol 2024; 17:135-142. [PMID: 37989987 DOI: 10.1007/s12194-023-00758-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 11/23/2023]
Abstract
Neutron capture therapy (NCT) with various concentrations of gadolinium (157Gd) is one of the treatment modalities for glioblastoma (GBM) tumors. Current study aims to evaluate how variations of 157Gd concentration and cell oxygen levels can affect the relative biological effectiveness (RBE) of gadolinium neutron capture therapy (GdNCT) technique through a hybrid Monte Carlo (MC) simulation approach. At first, Snyder phantom including a spherical tumor was simulated by Geant4 MC code and relevant energy electron spectra to different 157Gd concentrations including 100, 250, 500, and 1000 ppm were calculated following the neutron irradiation of simulated phantom. Scored energy electron spectra were then imported to Monte Carlo damage simulation (MCDS) code to estimate RBE values (both RBESSB and RBEDSB) at different gadolinium concentrations and oxygen levels from 10 to 100%. The results indicate that variations of 157Gd can affect the energy spectrum of released secondary electrons including Auger electrons. Variation of gadolinium concentration from 100 to 1000 ppm in tumor region can change RBESSB and RBEDSB values by about 0.1% and 0.5%, respectively. Besides, maximum variations of 4.3% and 2% were calculated for RBEDSB and RBESSB when cell oxygen level changed from 10 to 100%. From the results, variations of considered gadolinium and oxygen concentrations during GdNCT can influence RBE values. Nevertheless, due to the not remarkable changes in the intensity of Auger electrons, a slight difference in RBE values would be expected at various 157Gd concentrations, although considerable RBE changes were calculated relevant to the oxygen alternations inside tumor tissue.
Collapse
Affiliation(s)
- Reza Shamsabadi
- Physics Department, Hakim Sabzevari University, Daneshgah Blvd, P.O. 9617976487, Sabzevar, Iran
| | - Hamid Reza Baghani
- Physics Department, Hakim Sabzevari University, Daneshgah Blvd, P.O. 9617976487, Sabzevar, Iran.
| |
Collapse
|
5
|
Zaid NRR, Kletting P, Beer AJ, Stallons TAR, Torgue JJ, Glatting G. Mathematical Modeling of In Vivo Alpha Particle Generators and Chelator Stability. Cancer Biother Radiopharm 2023; 38:528-535. [PMID: 33481653 DOI: 10.1089/cbr.2020.4112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Targeted α particle therapy using long-lived in vivo α particle generators is cytotoxic to target tissues. However, the redistribution of released radioactive daughters through the circulation should be considered. A mathematical model was developed to describe the physicochemical kinetics of 212Pb-labeled pharmaceuticals and its radioactive daughters. Materials and Methods: A bolus of 212Pb-labeled pharmaceuticals injected in a developed compartmental model was simulated. The contributions of chelated and free radionuclides to the total released energy were investigated for different dissociation fractions of 212Bi for different chelators, for example, 36% for DOTA. The compartmental model was applied to describe a 212Bi retention study and to assess the stability of the 212Bi-1,4,7,10-tetrakis(carbamoylmethyl)-1,4,7,10-tetraazacyclododecane (212Bi-DOTAM) complex after β- decay of 212Pb. Results: The simulation of the injection showed that α emissions contribute 75% to the total released energy, mostly from 212Po (72%). The simulation of the 212Bi retention study showed that (16 ± 5)% of 212Bi atoms dissociate from the 212Bi-DOTAM complexes. The fractions of energies released by free radionuclides were 21% and 38% for DOTAM and DOTA chelators, respectively. Conclusion: The developed α particle generator model allows for simulating the radioactive kinetics of labeled and unlabeled pharmaceuticals being released from the chelating system due to a preceding disintegration.
Collapse
Affiliation(s)
- Nouran R R Zaid
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
- Department of Biomedical Sciences, Biophysics and Medical Imaging Program, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Peter Kletting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | - Ambros J Beer
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| | | | | | - Gerhard Glatting
- Medical Radiation Physics, Department of Nuclear Medicine, Ulm University, Ulm, Germany
- Department of Nuclear Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
6
|
Ballisat L, Beck L, De Sio C, Guatelli S, Sakata D, Incerti S, Tran HN, Duan J, Maclean K, Shi Y, Velthuis J, Rosenfeld A. In-silico calculations of DNA damage induced by α-particles in the 224Ra DaRT decay chain for a better understanding of the radiobiological effectiveness of this treatment. Phys Med 2023; 112:102626. [PMID: 37393861 DOI: 10.1016/j.ejmp.2023.102626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/07/2023] [Accepted: 06/13/2023] [Indexed: 07/04/2023] Open
Abstract
Diffusing alpha-emitters radiation Therapy (DaRT) is an interstitial brachytherapy technique using 224Ra seeds. For accurate treatment planning a good understanding of the early DNA damage due to α-particles is required. Geant4-DNA was used to calculate the initial DNA damage and radiobiological effectiveness due to α-particles with linear energy transfer (LET) values in the range 57.5-225.9 keV/μm from the 224Ra decay chain. The impact of DNA base pair density on DNA damage has been modelled, as this parameter varies between human cell lines. Results show that the quantity and complexity of DNA damage changes with LET as expected. Indirect damage, due to water radical reactions with the DNA, decreases and becomes less significant at higher LET values as shown in previous studies. As expected, the yield of complex double strand breaks (DSBs), which are harder for a cell to repair, increases approximately linearly with LET. The level of complexity of DSBs and radiobiological effectiveness have been found to increase with LET as expected. The quantity of DNA damage has been shown to increase for increased DNA density in the expected base pair density range of human cells. The change in damage yield as a function of base pair density is largest for higher LET α-particles, an increase of over 50% for individual strand breaks between 62.7 and 127.4 keV/μm. This change in yield shows that the DNA base pair density is an important parameter for modelling DNA damage particularly at higher LET where the DNA damage is greatest and most complex.
Collapse
Affiliation(s)
| | - Lana Beck
- School of Physics, University of Bristol, Bristol, UK
| | - Chiara De Sio
- School of Physics, University of Bristol, Bristol, UK
| | - Susanna Guatelli
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, NSW, Australia
| | - Dousatsu Sakata
- Division of Health Sciences, Osaka University, Osaka 565-0871, Japan
| | - Sébastien Incerti
- University of Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, France
| | - Hoang Ngoc Tran
- University of Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, France
| | - Jinyan Duan
- School of Physics, University of Bristol, Bristol, UK
| | - Katie Maclean
- School of Physics, University of Bristol, Bristol, UK
| | - Yuyao Shi
- School of Physics, University of Bristol, Bristol, UK
| | - Jaap Velthuis
- School of Physics, University of Bristol, Bristol, UK
| | - Anatoly Rosenfeld
- Centre for Medical Radiation Physics (CMRP), University of Wollongong, NSW, Australia
| |
Collapse
|
7
|
Pallares RM, Abergel RJ. Development of radiopharmaceuticals for targeted alpha therapy: Where do we stand? Front Med (Lausanne) 2022; 9:1020188. [PMID: 36619636 PMCID: PMC9812962 DOI: 10.3389/fmed.2022.1020188] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Targeted alpha therapy is an oncological treatment, where cytotoxic doses of alpha radiation are locally delivered to tumor cells, while the surrounding healthy tissue is minimally affected. This therapeutic strategy relies on radiopharmaceuticals made of medically relevant radionuclides chelated by ligands, and conjugated to targeting vectors, which promote the drug accumulation in tumor sites. This review discusses the state-of-the-art in the development of radiopharmaceuticals for targeted alpha therapy, breaking down their key structural components, such as radioisotope, targeting vector, and delivery formulation, and analyzing their pros and cons. Moreover, we discuss current drawbacks that are holding back targeted alpha therapy in the clinic, and identify ongoing strategies in field to overcome those issues, including radioisotope encapsulation in nanoformulations to prevent the release of the daughters. Lastly, we critically discuss potential opportunities the field holds, which may contribute to targeted alpha therapy becoming a gold standard treatment in oncology in the future.
Collapse
Affiliation(s)
- Roger M. Pallares
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States
| | - Rebecca J. Abergel
- Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States,Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA, United States,*Correspondence: Rebecca J. Abergel,
| |
Collapse
|
8
|
Tronchin S, Forster JC, Hickson K, Bezak E. Dosimetry in targeted alpha therapy. A systematic review: current findings and what is needed. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5fe0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 03/22/2022] [Indexed: 12/13/2022]
Abstract
Abstract
Objective. A systematic review of dosimetry in Targeted Alpha Therapy (TAT) has been performed, identifying the common issues. Approach. The systematic review was performed in accordance with the PRISMA guidelines, and the literature was searched using the Scopus and PubMed databases. Main results. From the systematic review, three key points should be considered when performing dosimetry in TAT. (1) Biodistribution/Biokinetics: the accuracy of the biodistribution data is a limit to accurate dosimetry in TAT. The biodistribution of alpha-emitting radionuclides throughout the body is difficult to image directly, with surrogate radionuclide imaging, blood/faecal sampling, and animal studies able to provide information. (2) Daughter radionuclides: the decay energy of the alpha-emissions is sufficient to break the bond to the targeting vector, resulting in a release of free daughter radionuclides in the body. Accounting for daughter radionuclide migration is essential. (3) Small-scale dosimetry and microdosimetry: due to the short path length and heterogeneous distribution of alpha-emitters at the target site, small-scale/microdosimetry are important to account for the non-uniform dose distribution in a target region, organ or cell and for assessing the biological effect of alpha-particle radiation. Significance. TAT is a form of cancer treatment capable of delivering a highly localised dose to the tumour environment while sparing the surrounding healthy tissue. Dosimetry is an important part of treatment planning and follow up. Being able to accurately predict the radiation dose to the target region and healthy organs could guide the optimal prescribed activity. Detailed dosimetry models accounting for the three points mentioned above will help give confidence in and guide the clinical application of alpha-emitting radionuclides in targeted cancer therapy.
Collapse
|
9
|
Kokov KV, Egorova BV, German MN, Klabukov ID, Krasheninnikov ME, Larkin-Kondrov AA, Makoveeva KA, Ovchinnikov MV, Sidorova MV, Chuvilin DY. 212Pb: Production Approaches and Targeted Therapy Applications. Pharmaceutics 2022; 14:189. [PMID: 35057083 PMCID: PMC8777968 DOI: 10.3390/pharmaceutics14010189] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 01/18/2023] Open
Abstract
Over the last decade, targeted alpha therapy has demonstrated its high effectiveness in treating various oncological diseases. Lead-212, with a convenient half-life of 10.64 h, and daughter alpha-emitter short-lived 212Bi (T1/2 = 1 h), provides the possibility for the synthesis and purification of complex radiopharmaceuticals with minimum loss of radioactivity during preparation. As a benefit for clinical implementation, it can be milked from a radionuclide generator in different ways. The main approaches applied for these purposes are considered and described in this review, including chromatographic, solution, and other techniques to isolate 212Pb from its parent radionuclide. Furthermore, molecules used for lead's binding and radiochemical features of preparation and stability of compounds labeled with 212Pb are discussed. The results of preclinical studies with an estimation of therapeutic and tolerant doses as well as recently initiated clinical trials of targeted radiopharmaceuticals are presented.
Collapse
Affiliation(s)
- Konstantin V. Kokov
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| | - Bayirta V. Egorova
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Marina N. German
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| | - Ilya D. Klabukov
- Department of Regenerative Medicine, National Medical Research Radiological Center, 249036 Obninsk, Russia;
| | - Michael E. Krasheninnikov
- Research and Educational Resource Center for Cellular Technologies, Peoples’ Friendship University of Russia, 117198 Moscow, Russia;
| | - Antonius A. Larkin-Kondrov
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| | - Kseniya A. Makoveeva
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| | - Michael V. Ovchinnikov
- Laboratory of Peptide Synthesis, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (M.V.O.); (M.V.S.)
| | - Maria V. Sidorova
- Laboratory of Peptide Synthesis, National Medical Research Center of Cardiology, 121552 Moscow, Russia; (M.V.O.); (M.V.S.)
| | - Dmitry Y. Chuvilin
- Physical and Chemical Technology Center, National Research Center Kurchatov Institute, 123182 Moscow, Russia; (K.V.K.); (M.N.G.); (A.A.L.-K.); (K.A.M.); (D.Y.C.)
| |
Collapse
|
10
|
Mease RC, Kang C, Kumar V, Ray S, Minn IL, Brummet M, Gabrielson K, Feng Y, Park A, Kiess A, Sgouros G, Vaidyanathan G, Zalutsky M, Pomper MG. An improved 211At-labeled agent for PSMA-targeted alpha therapy. J Nucl Med 2021; 63:259-267. [PMID: 34088772 DOI: 10.2967/jnumed.121.262098] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/05/2021] [Indexed: 11/16/2022] Open
Abstract
α-Particle emitters targeting the prostate-specific membrane antigen (PSMA) proved effective in treating patients with prostate cancer who were unresponsive to the corresponding β-particle therapy. Astatine-211 is an α-emitter that may engender less toxicity than other α-emitting agents. We synthesized a new 211At-labeled radiotracer targeting PSMA that resulted from the search for a pharmacokinetically optimized agent. Methods: A small series of 125I-labeled compounds were synthesized from their tin precursors to evaluate the effect of location of radiohalogen within the molecule and the presence of lutetium in the chelate on biodistribution. On that basis, 211At-VK-02-90-Lu was selected and evaluated in cell uptake and internalization studies, biodistribution and PSMA+ PC3 PIP tumor growth control in experimental flank and metastatic (PC3-ML-Luc) models. A long-term (13-month) toxicity study was performed for 211At-VK-02-90-Lu, including tissue chemistries and histopathology. Results: The radiochemical yield of 211At-VK-02-90-Lu was 17.8 ± 8.2%. Lead compound 211At-VK-02-90-Lu demonstrated total uptake within PSMA+ PC3 PIP cells of 13.4 ± 0.5% of the input dose after 4 h of incubation with little uptake in control cells. In SCID mice, 211At-VK-02-90-Lu provided 30.6 ± 4.8 percentage of injected dose per gram (%ID/g) of uptake in PSMA+ PC3 PIP tumor at 1 h post-injection that decreased to 9.46 ± 0.96 %ID/g by 24 h. Tumor-to-salivary gland and tumor-to-kidney ratios were 129 ± 99 at 4 h and 130 ± 113 at 24 h, respectively. De-astatination was not significant (stomach 0.34 ± 0.20%ID/g at 4 h). Dose-dependent survival was demonstrated at higher doses (>1.48 MBq) in both flank and metastatic models. There was little off-target toxicity as demonstrated by hematopoietic stability, unchanged tissue chemistries, weight gain rather than loss throughout treatment, and favorable histopathology. Conclusion: Compound 211At-VK-02-90-Lu or close analogs may provide limited and acceptable toxicity while retaining efficacy in management of prostate cancer.
Collapse
Affiliation(s)
| | | | - Vivek Kumar
- Johns Hopkins Medical Institutions, United States
| | | | | | - Mary Brummet
- Johns Hopkins Medical Institutions, United States
| | | | | | - Andrew Park
- Johns Hopkins Medical Institutions, United States
| | | | | | | | | | | |
Collapse
|
11
|
Vaidyanathan G, Mease RC, Minn I, Choi J, Chen Y, Shallal H, Kang CM, McDougald D, Kumar V, Pomper MG, Zalutsky MR. Synthesis and preliminary evaluation of 211At-labeled inhibitors of prostate-specific membrane antigen for targeted alpha particle therapy of prostate cancer. Nucl Med Biol 2021; 94-95:67-80. [PMID: 33601187 PMCID: PMC7987787 DOI: 10.1016/j.nucmedbio.2021.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 01/07/2023]
Abstract
INTRODUCTION The high potency and short tissue range of α-particles are attractive features for targeted radionuclide therapy, particularly for cancers with micro-metastases. In the current study, we describe the synthesis of a series of 211At-labeled prostate-specific membrane antigen (PSMA) inhibitors and their preliminary evaluation as potential agents for metastatic prostate cancer treatment. METHODS Four novel Glu-urea based PSMA ligands containing a trialkyl stannyl group were synthesized and labeled with 211At, and for comparative purposes, 131I, via halodestannylation reactions with N-chlorosuccinimide as the oxidant. A PSMA inhibitory assay was performed to evaluate PSMA binding of the unlabeled, iodinated compounds. A series of paired-label biodistribution experiments were performed to compare each 211At-labeled PSMA ligand to its 131I-labeled counterpart in mice bearing subcutaneous PC3 PSMA+ PIP xenografts. RESULTS Radiochemical yields ranged from 32% to 65% for the 211At-labeled PSMA inhibitors and were consistently lower than those obtained with the corresponding 131I-labeled analogue. Good localization in PC3 PSMA+ PIP but not control xenografts was observed for all labeled molecules studied, which exhibited a variable degree of in vivo dehalogenation as reflected by thyroid and stomach activity levels. Normal tissue uptake and in vivo stability for several of the compounds was markedly improved compared with the previously evaluated compounds, [211At]DCABzL and [*I]DCIBzL. CONCLUSIONS AND IMPLICATIONS FOR PATIENT CARE Compared with the first generation compound [211At]DCABzL, several of the novel 211At-labeled PSMA ligands exhibited markedly improved stability in vivo and higher tumor-to-normal tissue ratios. [211At]GV-620 has the most promising characteristics and warrants further evaluation as a targeted radiotherapeutic for prostate cancer.
Collapse
Affiliation(s)
| | - Ronnie C Mease
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Il Minn
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jaeyeon Choi
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Ying Chen
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hassan Shallal
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Choong Mo Kang
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Darryl McDougald
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Vivek Kumar
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael R Zalutsky
- Department of Radiology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
12
|
Juzeniene A, Stenberg VY, Bruland ØS, Larsen RH. Preclinical and Clinical Status of PSMA-Targeted Alpha Therapy for Metastatic Castration-Resistant Prostate Cancer. Cancers (Basel) 2021; 13:779. [PMID: 33668474 PMCID: PMC7918517 DOI: 10.3390/cancers13040779] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Bone, lymph node, and visceral metastases are frequent in castrate-resistant prostate cancer patients. Since such patients have only a few months' survival benefit from standard therapies, there is an urgent need for new personalized therapies. The prostate-specific membrane antigen (PSMA) is overexpressed in prostate cancer and is a molecular target for imaging diagnostics and targeted radionuclide therapy (theragnostics). PSMA-targeted α therapies (PSMA-TAT) may deliver potent and local radiation more selectively to cancer cells than PSMA-targeted β- therapies. In this review, we summarize both the recent preclinical and clinical advances made in the development of PSMA-TAT, as well as the availability of therapeutic α-emitting radionuclides, the development of small molecules and antibodies targeting PSMA. Lastly, we discuss the potentials, limitations, and future perspectives of PSMA-TAT.
Collapse
Affiliation(s)
- Asta Juzeniene
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway;
| | - Vilde Yuli Stenberg
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, Montebello, 0379 Oslo, Norway;
- Nucligen, Ullernchausséen 64, 0379 Oslo, Norway;
- Institute for Clinical Medicine, University of Oslo, Box 1171 Blindern, 0318 Oslo, Norway;
| | - Øyvind Sverre Bruland
- Institute for Clinical Medicine, University of Oslo, Box 1171 Blindern, 0318 Oslo, Norway;
- Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | | |
Collapse
|
13
|
Frelin-Labalme AM, Roger T, Falzone N, Quan Lee B, Sibson NR, Vallis KA, Bernaudin M, Valable S, Corroyer-Dulmont A. Radionuclide spatial distribution and dose deposition for in vitro assessments of 212 Pb-αVCAM-1 targeted alpha therapy. Med Phys 2020; 47:1317-1326. [PMID: 31838744 DOI: 10.1002/mp.13969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/14/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Targeted alpha therapy (TAT) takes advantage of the short-range and high-linear energy transfer of α-particles and is increasingly used, especially for the treatment of metastatic lesions. Nevertheless, dosimetry of α-emitters is challenging for the very same reasons, even for in vitro experiments. Assumptions, such as the uniformity of the distribution of radionuclides in the culture medium, are commonly made, which could have a profound impact on dose calculations. In this study we measured the spatial distribution of α-emitting 212 Pb coupled to an anti-VCAM-1 antibody (212 Pb-αVCAM-1) and its evolution over time in the context of in vitro irradiations. METHODS Two experimental setups were implemented without cells to measure α-particle count rates and energy spectra in culture medium containing 15 kBq of 212 Pb-α-VCAM-1. Silicon detectors were placed above and below cell culture dishes for 20 h. One of the dishes had a 2.5-µm-thick mylar-base allowing easy detection of the α-particles. Monte Carlo simulations were performed to analyze experimental spectra. Experimental setups were modeled and α-energy spectra were simulated in the silicon detectors for different decay positions in the culture medium. Simulated spectra were then used to deconvolute experimental spectra to determine the spatial distribution of 212 Pb-αVCAM-1 in the medium. This distribution was finally used to calculate the dose deposition in cell culture experiments. RESULTS Experimental count rates and energy spectra showed differences in measurements taken at the top and the bottom of dishes and temporal variations that did not follow 212 Pb decay. The radionuclide spatial distribution was shown to be composed of a uniform distribution and concentration gradients at the top and the bottom, which were subjected to temporal variations that may be explained by gravity and electrostatic attraction. The absorbed dose in cells calculated from this distribution was compared with the dose expected for a uniform and static distribution and found to be 1.75 times higher, which is highly significant to interpret biological observations. CONCLUSIONS This study demonstrated that accurate dosimetry of α-emitters requires the experimental determination of radionuclide spatial and temporal distribution and highlighted that in vitro assessment of dose for TAT cannot only rely on a uniform distribution of activity in the culture medium. The reliability and reproducibility of future experiments should benefit from specifically developed dosimetry tools and methods.
Collapse
Affiliation(s)
- Anne-Marie Frelin-Labalme
- Grand accélérateur National d'Ions Lourds (GANIL), CEA/DRF, CNRS/IN2P3, Boulevard Henri Becquerel, 14076, Caen, France
| | - Thomas Roger
- Grand accélérateur National d'Ions Lourds (GANIL), CEA/DRF, CNRS/IN2P3, Boulevard Henri Becquerel, 14076, Caen, France
| | - Nadia Falzone
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Boon Quan Lee
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Nicola R Sibson
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Katherine A Vallis
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
| | - Myriam Bernaudin
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Samuel Valable
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| | - Aurélien Corroyer-Dulmont
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, UK
- Normandie Univ, UNICAEN, CEA, CNRS, ISTCT/CERVOxy Group, Caen, France
| |
Collapse
|
14
|
Bavelaar BM, Lee BQ, Gill MR, Falzone N, Vallis KA. Subcellular Targeting of Theranostic Radionuclides. Front Pharmacol 2018; 9:996. [PMID: 30233374 PMCID: PMC6131480 DOI: 10.3389/fphar.2018.00996] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/13/2018] [Indexed: 12/16/2022] Open
Abstract
The last decade has seen rapid growth in the use of theranostic radionuclides for the treatment and imaging of a wide range of cancers. Radionuclide therapy and imaging rely on a radiolabeled vector to specifically target cancer cells. Radionuclides that emit β particles have thus far dominated the field of targeted radionuclide therapy (TRT), mainly because the longer range (μm-mm track length) of these particles offsets the heterogeneous expression of the molecular target. Shorter range (nm-μm track length) α- and Auger electron (AE)-emitting radionuclides on the other hand provide high ionization densities at the site of decay which could overcome much of the toxicity associated with β-emitters. Given that there is a growing body of evidence that other sensitive sites besides the DNA, such as the cell membrane and mitochondria, could be critical targets in TRT, improved techniques in detecting the subcellular distribution of these radionuclides are necessary, especially since many β-emitting radionuclides also emit AE. The successful development of TRT agents capable of homing to targets with subcellular precision demands the parallel development of quantitative assays for evaluation of spatial distribution of radionuclides in the nm-μm range. In this review, the status of research directed at subcellular targeting of radionuclide theranostics and the methods for imaging and quantification of radionuclide localization at the nanoscale are described.
Collapse
Affiliation(s)
| | | | | | | | - Katherine A. Vallis
- CR-UK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|