1
|
Shi M, Cui S, Chuang C, Oderinde O, Kovalchuk N, Surucu M, Xing L, Han B. A time- and space-saving Monte Carlo simulation method using post-collimation generative adversarial network for dose calculation of an O-ring gantry Linac. Phys Med 2024; 119:103318. [PMID: 38382210 DOI: 10.1016/j.ejmp.2024.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
PURPOSE This study explores the feasibility of employing Generative Adversarial Networks (GANs) to model the RefleXion X1 Linac. The aim is to investigate the accuracy of dose simulation and assess the potential computational benefits. METHODS The X1 Linac is a new radiotherapy machine with a binary multi-leaf collimation (MLC) system, facilitating innovative biology-guided radiotherapy. A total of 34 GAN generators, each representing a desired MLC aperture, were developed. Each generator was trained using a phase space file generated underneath the corresponding aperture, enabling the generation of particles and serving as a beam source for Monte Carlo simulation. Dose distributions in water were simulated for each aperture using both the GAN and phase space sources. The agreement between dose distributions was evaluated. The computational time reduction from bypassing the collimation simulation and storage space savings were estimated. RESULTS The percentage depth dose at 10 cm, penumbra, and full-width half maximum of the GAN simulation agree with the phase space simulation, with differences of 0.4 % ± 0.2 %, 0.32 ± 0.66 mm, and 0.26 ± 0.44 mm, respectively. The gamma passing rate (1 %/1mm) for the planar dose exceeded 90 % for all apertures. The estimated time-saving for simulating an plan using 5766 beamlets was 530 CPU hours. The storage usage was reduced by a factor of 102. CONCLUSION The utilization of the GAN in simulating the X1 Linac demonstrated remarkable accuracy and efficiency. The reductions in both computational time and storage requirements make this approach highly valuable for future dosimetry studies and beam modeling.
Collapse
Affiliation(s)
- Mengying Shi
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA; Department of Radiation Oncology, University of California, Irvine, Orange, CA, USA.
| | - Sunan Cui
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA; Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Cynthia Chuang
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | | | - Nataliya Kovalchuk
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | - Murat Surucu
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | - Lei Xing
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| | - Bin Han
- Department of Radiation Oncology, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
2
|
Delbaere A, Younes T, Khamphan C, Vieillevigne L. Experimental validation of absorbed dose-to-medium calculation algorithms in heterogeneous media. Phys Med Biol 2024; 69:055006. [PMID: 38266285 DOI: 10.1088/1361-6560/ad222e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/24/2024] [Indexed: 01/26/2024]
Abstract
Objective.The aim of this work was to determine heterogeneous correction factorshQclin,Qreffclin,frefdetm,wto validate absorbed dose-to-mediumDm,Qclinm,fclincalculation algorithms from detector readings. The impact of detector orientation perpendicular and parallel to the beam central axis on the correction factors was also investigated.Approach.ThehQclin,Qreffclin,frefdetm,wfactors were calculated for four types of detectors (PTW PinPoint T31016, PTW microDiamond T60019, PTW microSilicon T60023 and EBT3 film) placed in different media (cortical bone, lung, adipose tissue, Teflon and RW3) for the 6 MV energy beam with a 10 × 10 cm2field size. These corrections were then applied to the detector measurements performed at different depths in heterogeneous phantoms.Main results.ThehQclin,Qreffclin,frefdetm,wfactors mainly depended on the media and slightly on the type of detector. Considering all detectors, the largest corrections were found in high-density media with values ranging from 0.911 to 0.934 in cortical bone. For comparison, the corrections in other media were closer to unity with values from 0.966 (lung and RW3) to 0.991 (adipose tissue). Except for the PinPoint T31016, detector orientation-dependence was observed especially in high-density media. A good agreement (≤1.5%) was found betweenDm,Qclinm,fclincalculations and the detector readings corrected with thehQclin,Qreffclin,frefdetm,wfactor for all studied heterogeneous phantoms.Significance.This paper could serve as an initial guideline for medical physicists involved in the validation of the advanced type-b dose calculation algorithms reportingDm,Qclinm,fclin. To our knowledge, this is the first study to assess the impact of the orientation of different detectors in heterogeneous media. The orientation dependence of the detector response observed in water may not reflect what is observed in heterogeneous media, especially in high-density media. The knowledge of thehQclin,Qreffclin,frefdetm,wfactors becomes mandatory for accurate interpretation of detector readings and comparisons withDm,Qclinm,fclincalculations.
Collapse
Affiliation(s)
- Alexia Delbaere
- Department of Medical Physics, Oncopole Claudius Regaud - Institut Universitaire du Cancer de Toulouse, F-31059 Toulouse, France
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 INSERM-Université Toulouse 3-ERL5294 CNRS, Oncopole, F-31037 Toulouse, France
| | - Tony Younes
- Department of Medical Physics, Oncopole Claudius Regaud - Institut Universitaire du Cancer de Toulouse, F-31059 Toulouse, France
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 INSERM-Université Toulouse 3-ERL5294 CNRS, Oncopole, F-31037 Toulouse, France
| | - Catherine Khamphan
- Department of Medical Physics, Institut du Cancer-Avignon Provence, F-84000 Avignon, France
| | - Laure Vieillevigne
- Department of Medical Physics, Oncopole Claudius Regaud - Institut Universitaire du Cancer de Toulouse, F-31059 Toulouse, France
- Centre de Recherches en Cancérologie de Toulouse, UMR1037 INSERM-Université Toulouse 3-ERL5294 CNRS, Oncopole, F-31037 Toulouse, France
| |
Collapse
|
3
|
Calvo-Ortega JF, Hermida-López M. PRIMO Monte Carlo software as a tool for commissioning of an external beam radiotherapy treatment planning system. Rep Pract Oncol Radiother 2023; 28:529-540. [PMID: 37795225 PMCID: PMC10547427 DOI: 10.5603/rpor.a2023.0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/24/2023] [Indexed: 10/06/2023] Open
Abstract
Background The purpose was to validate the PRIMO Monte Carlo software to be used during the commissioning of a treatment planning system (TPS). Materials and methods The Acuros XB v. 16.1 algorithm of the Eclipse was configured for 6 MV and 6 MV flattening-filter-free (FFF) photon beams, from a TrueBeam linac equipped with a high-definition 120-leaf multileaf collimator (MLC). PRIMO v. 0.3.64.1814 software was used with the phase space files provided by Varian and benchmarked against the reference dosimetry dataset published by the Imaging and Radiation Oncology Core-Houston (IROC-H). Thirty Eclipse clinical intensity-modulated radiation therapy (IMRT)/volumetric modulated arc therapy (VMAT) plans were verified in three ways: 1) using the PTW Octavius 4D (O4D) system; 2) the Varian Portal Dosimetry system and 3) the PRIMO software. Clinical validation of PRIMO was completed by comparing the simulated dose distributions on the O4D phantom against dose measurements for these 30 clinical plans. Agreement evaluations were performed using a 3% global/2 mm gamma index analysis. Results PRIMO simulations agreed with the benchmark IROC-H data within 2.0% for both energies. Gamma passing rates (GPRs) from the 30 clinical plan verifications were (6 MV/6MV FFF): 99.4% ± 0.5%/99.9% ± 0.1%, 99.8% ± 0.4%/98.9% ± 1.4%, 99.7% ± 0.4%/99.7% ± 0.4%, for the 1), 2) and 3) verification methods, respectively. Agreement between PRIMO simulations on the O4D phantom and 3D dose measurements resulted in GPRs of 97.9% ± 2.4%/99.7% ± 0.4%. Conclusion The PRIMO software is a valuable tool for dosimetric verification of clinical plans during the commissioning of the primary TPS.
Collapse
Affiliation(s)
- Juan-Francisco Calvo-Ortega
- Oncología Radioterápica, Hospital Quirónsalud Barcelona, Barcelona, Spain
- Oncología Radioterápica, Hospital Quirónsalud Málaga, Malaga, Spain
| | - Marcelino Hermida-López
- Servei de Física i Protecció Radiològica, Hospital Universitari Vall d’Hebron, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain
| |
Collapse
|
4
|
Sarrut D, Arbor N, Baudier T, Borys D, Etxebeste A, Fuchs H, Gajewski J, Grevillot L, Jan S, Kagadis GC, Kang HG, Kirov A, Kochebina O, Krzemien W, Lomax A, Papadimitroulas P, Pommranz C, Roncali E, Rucinski A, Winterhalter C, Maigne L. The OpenGATE ecosystem for Monte Carlo simulation in medical physics. Phys Med Biol 2022; 67:10.1088/1361-6560/ac8c83. [PMID: 36001985 PMCID: PMC11149651 DOI: 10.1088/1361-6560/ac8c83] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/24/2022] [Indexed: 11/12/2022]
Abstract
This paper reviews the ecosystem of GATE, an open-source Monte Carlo toolkit for medical physics. Based on the shoulders of Geant4, the principal modules (geometry, physics, scorers) are described with brief descriptions of some key concepts (Volume, Actors, Digitizer). The main source code repositories are detailed together with the automated compilation and tests processes (Continuous Integration). We then described how the OpenGATE collaboration managed the collaborative development of about one hundred developers during almost 20 years. The impact of GATE on medical physics and cancer research is then summarized, and examples of a few key applications are given. Finally, future development perspectives are indicated.
Collapse
Affiliation(s)
- David Sarrut
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, Léon Bérard cancer center, Lyon, France
| | - Nicolas Arbor
- Université de Strasbourg, IPHC, CNRS, UMR7178, F-67037 Strasbourg, France
| | - Thomas Baudier
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, Léon Bérard cancer center, Lyon, France
| | - Damian Borys
- Department of Systems Biology and Engineering, Silesian University of Technology, Gliwice, Poland
| | - Ane Etxebeste
- Université de Lyon; CREATIS; CNRS UMR5220; Inserm U1294; INSA-Lyon; Université Lyon 1, Léon Bérard cancer center, Lyon, France
| | - Hermann Fuchs
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Medical University of Vienna, Department of Radiation Oncology, Vienna, Vienna, Währinger Gürtel 18-20, A-1090 Wien, Austria
| | - Jan Gajewski
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | | | - Sébastien Jan
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), F-91401 Orsay, France
| | - George C Kagadis
- 3DMI Research Group, Department of Medical Physics, School of Medicine, University of Patras, Patras, Greece
| | - Han Gyu Kang
- National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Assen Kirov
- Memorial Sloan Kettering Cancer, New York, NY 10021, United States of America
| | - Olga Kochebina
- Université Paris-Saclay, Inserm, CNRS, CEA, Laboratoire d'Imagerie Biomédicale Multimodale (BioMaps), F-91401 Orsay, France
| | - Wojciech Krzemien
- High Energy Physics Division, National Centre for Nuclear Research, Otwock-Świerk, Poland
- Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University, S. Lojasiewicza 11, 30-348 Krakow, Poland
- Centre for Theranostics, Jagiellonian University, Kopernika 40 St, 31 501 Krakow, Poland
| | - Antony Lomax
- Center for Proton Therapy, PSI, Switzerland
- Department of Physics, ETH Zurich, Switzerland
| | | | - Christian Pommranz
- Werner Siemens Imaging Center, Department of Preclinical Imaging and Radiopharmacy, Eberhard Karls University Tuebingen, Roentgenweg 13, D-72076 Tuebingen, Germany
- Institute for Astronomy and Astrophysics, Eberhard Karls University Tuebingen, Sand 1, D-72076 Tuebingen, Germany
| | - Emilie Roncali
- University of California Davis, Departments of Biomedical Engineering and Radiology, Davis, CA 95616, United States of America
| | - Antoni Rucinski
- Institute of Nuclear Physics Polish Academy of Sciences, Krakow, Poland
| | - Carla Winterhalter
- Center for Proton Therapy, PSI, Switzerland
- Department of Physics, ETH Zurich, Switzerland
| | - Lydia Maigne
- Université Clermont Auvergne, Laboratoire de Physique de Clermont, CNRS, UMR 6533, F-63178 Aubière, France
| |
Collapse
|
5
|
Calvo-Ortega JF, Moragues-Femenía S, Laosa-Bello C, Hermida-López M, Pozo-Massó M, Zamora-Pérez A. Monte Carlo-based independent dose verification of radiosurgery HyperArc plans. Phys Med 2022; 102:19-26. [PMID: 36037748 DOI: 10.1016/j.ejmp.2022.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 08/07/2022] [Accepted: 08/17/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE To investigate the feasibility of using the free PRIMO Monte Carlo software for independent dose check of cranial SRS plans designed with the Varian HyperArc (HA) technique. MATERIALS AND METHODS In this study, the PRIMO Monte Carlo software v. 0.3.64.1800 was used with the phase-space files (v. 2, Feb. 27, 2013) provided by Varian for 6 MV flattening-filter-free (FFF) photon beams from a Varian TrueBeam linear accelerator (linac), equipped with a Millennium 120 multileaf collimator (MLC). This configuration was validated by comparing the percentage depth doses (PDDs), lateral profiles and relative output factors (OFs) simulated in a water phantom against measurements for field sizes from 1 × 1 to 40 × 40 cm2. The agreement between simulated and experimental relative dose curves was evaluated using a global (G) gamma index analysis. In addition, the accuracy of PRIMO to model the MLC was investigated (dosimetric leaf gap, tongue and groove, leaf transmission and interleaf leakage). Thirty-five HA SRS plans computed in the Eclipse treatment planning system (TPS) were simulated in PRIMO. The Acuros XB algorithm v. 16.10 (dose to medium) was used in Eclipse. Sixty targets with diameters ranging from 6 to 33 mm were included. Agreement between the dose distributions given by Eclipse and PRIMO was evaluated in terms of 3D global gamma passing rates (GPRs) for the 2 %/2 mm criteria. RESULTS Average GPR greater than 95 % with the 2 %(G)/1 mm criteria were obtained over the PDD and profiles of each field size. Differences between PRIMO calculated and measured OFs were within 0.5 % in all fields, except for the 1 × 1 cm2 with a discrepancy of 1.5 %. Regarding the MLC modeling in PRIMO, an agreement within 3 % was achieved between calculated and experimental doses. Excellent agreement between PRIMO and Eclipse was found for the 35 HA plans. The 3D global GPRs (2 %/2 mm) for the targets and external patient contour were 99.6 % ± 1.1 % and 99.8 % ± 0.5 %, respectively. CONCLUSIONS According to the results described in this study, the PRIMO Monte Carlo software, in conjunction with the 6X FFF Varian phase-space files, can be used as secondary dose calculation software to check stereotactic radiosurgery plans from Eclipse using the HyperArc technique.
Collapse
Affiliation(s)
- Juan-Francisco Calvo-Ortega
- Servicio de Oncología Radioterápica, Hospital Quirónsalud, Barcelona, Spain; Servicio de Oncología Radioterápica, Hospital Quirónsalud, Málaga, Spain.
| | | | - Coral Laosa-Bello
- Servicio de Oncología Radioterápica, Hospital Quirónsalud, Barcelona, Spain
| | - Marcelino Hermida-López
- Marcelino Hermida-López. Servei de Física i Protecció Radiològica, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Miguel Pozo-Massó
- Servicio de Oncología Radioterápica, Hospital Quirónsalud, Barcelona, Spain
| | | |
Collapse
|
6
|
Delbaere A, Younes T, Simon L, Khamphan C, Vieillevigne L. Field output correction factors and electron fluence perturbation of the microSilicon and microSilicon X detectors. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac5e5e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/16/2022] [Indexed: 11/11/2022]
Abstract
Abstract
Objective. The aim of this study was to determine field output correction factors
k
Q
clin
,
Q
ref
f
clin
,
f
ref
and electron fluence perturbation for new PTW unshielded microSilicon and shielded microSilicon X detectors. Approach.
k
Q
clin
,
Q
ref
f
clin
,
f
ref
factors were calculated for 6 and 10 MV with and without flattening filter beams delivered by a TrueBeam STx. Correction factors were determined for field sizes ranging from 0.5 × 0.5 cm2 to 3 × 3 cm2 using both experimental and numerical methods. To better understand the underlying physics of their response, total electron (+positron) fluence spectra were scored in the sensitive volume considering the various component-dependent perturbations. Main results. The microSilicon and microSilicon X detectors can be used down to the smallest studied field size by applying corrections factors fulfilling the tolerance of 5% recommended by the IAEA TRS483. Electron fluence perturbation in both microSilicon detectors was greater than that in water but to a lesser extent than their predecessors. The main contribution of the overall perturbation of the detectors comes from the materials surrounding their sensitive volume, especially the epoxy in the case of unshielded diodes and the shielding for shielded diodes. This work demonstrated that the decrease in the density of the epoxy for the microSilicon led to a decrease in the electron fluence perturbation. Significance. A real improvement was observed regarding the design of the microSilicon and microSilicon X detectors compared to their predecessors.
Collapse
|