1
|
Mahmoodi M, Cheraghi E, Riahi A. The Effect of Wharton's Jelly-Derived Conditioned Medium on the In Vitro Maturation of Immature Oocytes, Embryo Development, and Genes Expression Involved in Apoptosis. Reprod Sci 2024; 31:190-198. [PMID: 37697205 DOI: 10.1007/s43032-023-01345-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/30/2023] [Indexed: 09/13/2023]
Abstract
Oocyte cytoplasmic maturation is a crucial process during in vitro maturation (IVM), and finding an appropriate IVM medium that promotes oocyte competence is very critical in assisted reproductive technology (ART). The aim of this study was to investigate the effects of umbilical cord Wharton's jelly (WJ-MSCs)-derived conditioned media on the maturation of immature oocytes and their developmental potential in humans after IVM, as well as apoptotic gene expression. A total of 392 germinal vesicle (GV) oocytes were collected from 207 women aged 25-35 years and divided into two IVM groups: (1) control group, which was cultured in CleavTM medium, and (2) experimental group, which was cultured in supernatants of umbilical cord Wharton's jelly as a conditioned medium (CM). First, WJ-MSCs were isolated, and their purity was analyzed. The immunophenotypes of WJ-MSCs were analyzed by flow cytometry. The quantitative expression of BCL2, BAX, and BAG1 in matured oocytes and embryos was evaluated through quantitative real-time polymerase chain reaction (qRT-PCR). Our findings showed that WJ-MSCs have a high proliferating capacity. The purity of the isolated cells was further validated by immunophenotyping, which revealed that their surface antigen expression had phenotypical properties similar to WJ-MSCs. When compared to CD34 and CD45 surface markers, the enlarged cells were positive for CD90, CD105, and CD44. There were significant differences in cytoplasmic maturation of oocytes and embryo quality between the two groups. The mRNA expression levels of BCL-2, BAG1, and BAX in matured oocytes and embryos were also significantly different between the two groups. Therefore, WJ-MSCs medium indicated potential efficacy in terms of ameliorating oocyte maturation and in promoting the development and genes expression of BAX, BCL-2, and BAG1.
Collapse
Affiliation(s)
- Monireh Mahmoodi
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran.
| | - Ebrahim Cheraghi
- Department of Biology, Faculty of Sciences, University of Qom, Qom, Iran
| | - Alireza Riahi
- Department of Biology, Faculty of Sciences, Arak University, Arak, Iran
| |
Collapse
|
2
|
Luciano AM, Franciosi F, Dey P, Ladron De Guevara M, Monferini N, Bonumallu SKN, Musmeci G, Fagali Franchi F, Garcia Barros R, Colombo M, Lodde V. Progress toward species-tailored prematuration approaches in carnivores. Theriogenology 2023; 196:202-213. [PMID: 36423514 DOI: 10.1016/j.theriogenology.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
In the past four decades, the bovine model has been highly informative and inspiring to assisted reproductive technologies (ART) in other species. Most of the recent advances in ART have come from studies in cattle, particularly those unveiling the importance of several processes that must be recapitulated in vitro to ensure the proper development of the oocyte. The maintenance of structural and functional communications between the cumulus cells and the oocyte and a well-orchestrated chromatin remodeling with the gradual silencing of transcriptional activity represent essential processes for the progressive acquisition of oocyte developmental competence. These markers are now considered the milestones of physiological approaches to increase the efficiency of reproductive technologies. Different in vitro approaches have been proposed. In particular, the so-called "pre-IVM" or "prematuration" is a culture step performed before in vitro maturation (IVM) to support the completion of the oocyte differentiation process. Although these attempts only partially improved the embryo quality and yield, they currently represent a proof of principle that oocytes retrieved from an ovary or an ovarian batch shouldn't be treated as a whole and that tailored approaches can be developed for culturing competent oocytes in several species, including humans. An advancement in ART's efficiency would be desirable in carnivores, where the success is still limited. Since the progress in reproductive medicine has often come from comparative studies, this review highlights aspects that have been critical in other species and how they may be extended to carnivores.
Collapse
Affiliation(s)
- Alberto Maria Luciano
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy.
| | - Federica Franciosi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Pritha Dey
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Magdalena Ladron De Guevara
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Noemi Monferini
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Sai Kamal Nag Bonumallu
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Giulia Musmeci
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Fernanda Fagali Franchi
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Rodrigo Garcia Barros
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Martina Colombo
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Veterinary Medicine and Animal Sciences, University of Milan, 26900, Lodi, Italy
| |
Collapse
|
3
|
Shi C, Zhang J, Yan Z, Gao L, Gao C, Wu W, Liu J, Cui Y. Epigenetic effect of putrescine supplementation during in vitro maturation of oocytes on offspring in mice. J Assist Reprod Genet 2022; 39:681-694. [PMID: 35254568 PMCID: PMC8995222 DOI: 10.1007/s10815-022-02448-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 02/25/2022] [Indexed: 01/12/2023] Open
Abstract
PURPOSE To investigate the epigenetic safety of putrescine supplementation during in vitro maturation (IVM) to offspring. METHODS Germinal vesicle oocytes retrieved from 12-week-old mice were randomly divided into two groups and cultured in IVM medium with or without 1 mmol/L putrescine for 16 h. Then, in vitro fertilization and embryo transplantation were conducted to produce the F1 offspring. The F1 mated with ordinary mice and bred the F2 offspring. The DNA methylation patterns in the brain and heart of F1 were investigated by reduced representation bisulfite sequencing. Imprinted gene expression levels of F1 oocytes were tested. The global methylation of F2 was examined by dot blot. RESULTS The weight, organ coefficient, and histology were normal in the F1 and F2 offspring from the putrescine-treated oocytes. An overall methylation level of 31.23 to 32.53% was observed for all CpG sites in the brain and heart of the two groups. The DNA methylation patterns of the brain and heart in F1 were not altered in general, with subtle differences. The expression levels of imprinted genes including H19, Snrpn, Peg3, Igf2, and Igf2r did not statistically change. The global 5mC level of F2 was consistent with the control group. CONCLUSION Putrescine supplementation during IVM did not directly affect the development, health, and reproduction, and did not affect the genome and global epigenetics of mouse offspring derived from those oocytes. The transient putrescine treatment for improving oocyte maturation shows its long-term safety of genome and epigenetics in the offspring of mice.
Collapse
Affiliation(s)
- Chennan Shi
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Jingyi Zhang
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Zhengjie Yan
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Li Gao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Chao Gao
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Wei Wu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Jiayin Liu
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Yugui Cui
- State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
4
|
Chen S, Zhang Y, Niu X, Mohyuddin SG, Wen J, Bao M, Yu T, Wu L, Hu C, Yong Y, Liu X, Abd El-Aty AM, Ju X. Coral-Derived Endophytic Fungal Product, Butyrolactone-I, Alleviates Lps Induced Intestinal Epithelial Cell Inflammatory Response Through TLR4/NF-κB and MAPK Signaling Pathways: An in vitro and in vivo Studies. Front Nutr 2021; 8:748118. [PMID: 34660669 PMCID: PMC8517189 DOI: 10.3389/fnut.2021.748118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/06/2021] [Indexed: 12/17/2022] Open
Abstract
Herein, we assessed the anti-inflammatory and intestinal barrier protective effects of butyrolactone-I (BTL-1), derived from the coral-derived endophytic fungus (Aspergillus terreus), using the LPS-induced IPEC-J2 inflammation model and the DSS-induced IBD model in mice. In IPEC-J2 cells, pretreatment with BTL-I significantly inhibited TLR4/NF-κB signaling pathway and JNK phosphorylation, resulting in the decrease of IL-1β and IL-6 expression. Interestingly, BTL-1 pretreatment activated the phosphorylation of ERK and P38, which significantly enhanced the expression of TNF-α. Meanwhile, BTL-1 pretreatment upregulated tight junction protein expression (ZO-1, occludin, and claudin-1) and maintained intestinal barrier and intestinal permeability integrity. In mice, BTL-1 significantly alleviated the intestinal inflammatory response induced by DSS, inhibited TLR4/NF-κB signaling pathway, and MAPK signaling pathway, thus reducing the production of IL-1, IL-6, and TNF-α. Further, the expression of tight junction proteins (ZO-1, occludin, and claudin-1) was upregulated in BTL-1 administrated mice. Therefore, it has been suggested that butyrolactone-I alleviates inflammatory responses in LPS-stimulated IPEC-J2 and DSS-induced murine colitis by TLR4/NF-κB and MAPK signal pathway. Thereby, BTL-1 might potentially be used as an ocean drug to prevent intestinal bowel disease.
Collapse
Affiliation(s)
- Shengwei Chen
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Yi Zhang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.,College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Xueting Niu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Sahar Ghulam Mohyuddin
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Jiayin Wen
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Minglong Bao
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Tianyue Yu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Lianyun Wu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Canyin Hu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Yanhong Yong
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Xiaoxi Liu
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - A M Abd El-Aty
- State Key Laboratory of Bio Based Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology, Shandong Academy of Science, Jinan, China.,Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Xianghong Ju
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| |
Collapse
|
5
|
Giorgi VSI, Ferriani RA, Navarro PA. Follicular Fluid from Infertile Women with Mild Endometriosis Impairs In Vitro Bovine Embryo Development: Potential Role of Oxidative Stress. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2021; 43:119-125. [PMID: 33511620 PMCID: PMC10183848 DOI: 10.1055/s-0040-1718443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
OBJECTIVE To investigate whether follicular fluid (FF) from infertile women with mild endometriosis (ME) alters in vitro bovine embryo development, and whether the antioxidants N-acetyl-cysteine (NAC) and/or L-carnitine (LC) could prevent such damages. METHODS Follicular fluid was obtained from infertile women (11 with ME and 11 control). Bovine oocytes were matured in vitro divided in: No-FF, with 1% of FF from control women (CFF) or ME women (MEFF); with 1.5 mM NAC (CFF + NAC, MEFF + NAC), with 0.6 mg/mL LC (CFF + LC, MEFF + LC), or both antioxidants (CFF + NAC + LC, MEFF + NAC + LC). After in vitro fertilization, in vitro embryo culture was performed for 9 days. RESULTS A total of 883 presumptive zygotes were cultured in vitro. No differences were observed in cleavage rate (p = 0.5376) and blastocyst formation rate (p = 0.4249). However, the MEFF group (12.5%) had lower hatching rate than the No-FF (42.1%, p = 0.029) and CFF (42.9%, p = 0.036) groups. Addition of antioxidants in the group with CFF did not alter hatching rate (p ≥ 0.56), and in groups with MEFF, just NAC increased the hatching rate [(MEFF: 12.5% versus MEFF + NAC: 44.4% (p = 0.02); vs MEFF + LC: 18.8% (p = 0.79); versus MEFF + NAC + LC: 30.8% (p = 0.22)]. CONCLUSION Therefore, FF from infertile women with ME added to medium of in vitro maturation of bovine oocytes impairs hatching rate, and NAC prevented these damages, suggesting involvement of oxidative stress in worst of oocyte and embryo quality of women with ME.
Collapse
Affiliation(s)
- Vanessa Silvestre Innocenti Giorgi
- Human Reproduction Division, Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Rui Alberto Ferriani
- Human Reproduction Division, Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, DF, Brazil
| | - Paula Andrea Navarro
- Human Reproduction Division, Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brasília, DF, Brazil
| |
Collapse
|
6
|
Lodde V, Colleoni S, Tessaro I, Corbani D, Lazzari G, Luciano AM, Galli C, Franciosi F. A prematuration approach to equine IVM: considering cumulus morphology, seasonality, follicle of origin, gap junction coupling and large-scale chromatin configuration in the germinal vesicle. Reprod Fertil Dev 2020; 31:1793-1804. [PMID: 31630726 DOI: 10.1071/rd19230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 09/13/2019] [Indexed: 12/21/2022] Open
Abstract
Several studies report that a two-step culture where mammalian oocytes are first kept under meiosis-arresting conditions (prematuration) followed by IVM is beneficial to embryo development. The most promising results were obtained by stratifying the oocyte population using morphological criteria and allocating them to different culture conditions to best meet their metabolic needs. In this study, horse oocytes were characterised to identify subpopulations that may benefit from prematuration. We investigated gap-junction (GJ) coupling, large-scale chromatin configuration and meiotic competence in compact and expanded cumulus-oocyte complexes (COCs) according to follicle size (<1, 1-2, >2cm) and season. Then we tested the effect of cilostamide-based prematuration in compact COCs collected from follicles <1 and 1-2cm in diameter on embryo development. Meiotic competence was not affected by prematuration, whereas COCs from follicles 1-2cm in diameter yielded embryos with a higher number of cells per blastocyst than oocytes that underwent direct IVM (P<0.01, unpaired Mann-Whitney test), suggesting improved developmental competence. Oocytes collected from follicles <1cm in diameter were not affected by prematuration. This study represents an extensive characterisation of the functional properties of immature horse oocytes and is the first report of the effects of cilostamide-based prematuration in horse oocyte IVM on embryo development.
Collapse
Affiliation(s)
- Valentina Lodde
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy
| | - Silvia Colleoni
- Laboratory of Reproductive Technologies, Avantea, Cremona, Via Porcellasco, 7f 26100 Cremona, Italy
| | - Irene Tessaro
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy
| | - Davide Corbani
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy
| | - Giovanna Lazzari
- Laboratory of Reproductive Technologies, Avantea, Cremona, Via Porcellasco, 7f 26100 Cremona, Italy; and Fondazione Avantea, Via Porcellasco, 7f 26100 Cremona, Italy
| | - Alberto M Luciano
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy
| | - Cesare Galli
- Laboratory of Reproductive Technologies, Avantea, Cremona, Via Porcellasco, 7f 26100 Cremona, Italy; and Fondazione Avantea, Via Porcellasco, 7f 26100 Cremona, Italy
| | - Federica Franciosi
- Dipartimento di Scienze Veterinarie per la Salute la Produzione Animale e la Sicurezza Alimentare 'Carlo Cantoni', Reproductive and Developmental Biology Lab, Università degli Studi di Milano, via Celoria, 10 20133 Milano, Italy; and Corresponding author.
| |
Collapse
|
7
|
Pimentel RN, Navarro PA, Wang F, Robinson LG, Cammer M, Liang F, Kramer Y, Keefe DL. Amyloid-like substance in mice and human oocytes and embryos. J Assist Reprod Genet 2019; 36:1877-1890. [PMID: 31332596 DOI: 10.1007/s10815-019-01530-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 07/09/2019] [Indexed: 11/30/2022] Open
Abstract
PURPOSE To identify and characterize amyloid-like substance (ALS) in human and mouse oocytes and preimplantation embryos. METHODS An experimental prospective pilot study. A total of 252 mouse oocytes and preimplantation embryos and 50 immature and in vitro matured human oocytes and parthenogenetic human embryos, from 11 consenting fertility patients, ages 18-45. Fluorescence intensity from immunofluorescent staining and data from confocal microscopy were quantified. Data were compared by one-way analysis of variance, with the least square-MEANS post-test, Pearson correlation coefficients (r), and bivariate analyses (t tests). ALS morphology was verified using transmission electron microscopy. RESULTS Immunostaining for ALS appears throughout the zona pellucida, as well as in the cytoplasm and nucleus of mouse and human oocytes, polar bodies, and parthenogenetic embryos, and mouse preimplantation embryos. In mouse, 2-cell embryos exhibited the highest level of ALS (69000187.4 ± 6733098.07). Electron microscopy confirmed the presence of ALS. In humans, fresh germinal vesicle stage oocytes exhibited the highest level of ALS (4164.74088 ± 1573.46) followed by metaphase I and II stages (p = 0.008). There was a significant negative association between levels of ALS and patient body mass index, number of days of ovarian stimulation, dose of gonadotropin used, time between retrieval and fixation, and time after the hCG trigger. Significantly higher levels of ALS were found in patients with AMH between 1 and 3 ng/ml compared to < 1 ng/ml. CONCLUSION We demonstrate for the first time the presence, distribution, and change in ALS throughout some stages of mouse and human oocyte maturation and embryonic development. We also determine associations between ALS in human oocytes with clinical characteristics.
Collapse
Affiliation(s)
- Ricardo N Pimentel
- Research Scientist from the Department of Obstetrics and Gynecology, New York University School of Medicine, 550 First Avenue, NBV 9N1, New York, NY, USA.,Human Reproduction Division, Department of Obstetrics and Gynecology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Paula A Navarro
- Human Reproduction Division, Department of Obstetrics and Gynecology, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil
| | - Fang Wang
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, New York, NY, USA
| | - LeRoy G Robinson
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, New York, NY, USA
| | - Michael Cammer
- DART Microscopy Laboratory, New York University School of Medicine, New York, NY, USA
| | - Fengxia Liang
- DART Microscopy Laboratory, New York University School of Medicine, New York, NY, USA
| | - Yael Kramer
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, New York, NY, USA
| | - David Lawrence Keefe
- Department of Obstetrics and Gynecology, Langone Medical Center, New York University, New York, NY, USA.
| |
Collapse
|
8
|
Expression of CPEB1 gene affects the cycle of ovarian granulosa cells from adult and young goats. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
9
|
Zhu J, Moawad AR, Wang CY, Li HF, Ren JY, Dai YF. Advances in in vitro production of sheep embryos. Int J Vet Sci Med 2018; 6:S15-S26. [PMID: 30761316 PMCID: PMC6161858 DOI: 10.1016/j.ijvsm.2018.02.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 02/07/2018] [Accepted: 02/09/2018] [Indexed: 12/18/2022] Open
Abstract
Sheep is an important livestock in the world providing meat, milk and wool for human beings. With increasing human population, the worldwide needs of production of sheep have elevated. To meet the needs, the assistant reproductive technology including ovine in vitro embryo production (ovine IVP) is urgently required to enhance the effective production of sheep in the world. To learn the status of ovine IVP, we collected some publications related to ovine IVP through PubMed and analyzed the progress in ovine IVP made in the last five years (2012-2017). We made comparisons of these data and found that the recent advances in ovine IVP has been made slowly comparable to that of ovine IVP two decades ago. Therefore, we suggested two strategies or approaches to tackle the main problems in ovine IVP and expect that the efficiency of ovine IVP could be improved significantly when the approaches would be implemented.
Collapse
Affiliation(s)
- Jie Zhu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Adel R. Moawad
- Department of Theriogenology, Faculty of Veterinary Medicine, Cairo University, PO BOX 12211, Giza, Egypt
| | - Chun-Yu Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Hui-Feng Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Jing-Yu Ren
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| | - Yan-Feng Dai
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
10
|
Peritoneal fluid of women with endometriosis reduces SOD1 in bovine oocytes in vitro maturation. Cell Tissue Res 2018; 372:621-628. [DOI: 10.1007/s00441-018-2805-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/18/2018] [Indexed: 01/06/2023]
|
11
|
Akbari H, Eftekhar Vaghefi SH, Shahedi A, Habibzadeh V, Mirshekari TR, Ganjizadegan A, Mollaei H, Ahmadi M, Nematollahi-Mahani SN. Mesenchymal Stem Cell-Conditioned Medium Modulates Apoptotic and Stress-Related Gene Expression, Ameliorates Maturation and Allows for the Development of Immature Human Oocytes after Artificial Activation. Genes (Basel) 2017; 8:genes8120371. [PMID: 29292728 PMCID: PMC5748689 DOI: 10.3390/genes8120371] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/30/2017] [Accepted: 11/21/2017] [Indexed: 01/09/2023] Open
Abstract
The aim of the present study was to determine whether mesenchymal stem cell-conditioned medium (MSC-CM) modulates apoptotic and stress-related gene expression, and ameliorates maturation and developmental potential of immature human oocytes after artificial activation. A total of 247 surplus immature germinal vesicle (GV) oocytes obtained from infertile women were allocated into two in vitro maturation (IVM) groups: 1: GV oocytes (n = 116) matured in vitro (fIVM), and 2: GV oocytes (n = 131) that were vitrified, then in vitro matured (vIVM). Also, two maturation media were used: Alpha-minimum essential medium (α-MEM) and human umbilical cord-derived MSCs (hUCM). After 36 h of incubation, the IVM oocytes were examined for nuclear maturation. In IVM-matured oocytes, cytoplasmic maturation was evaluated after artificial activation through Ionomycin. Moreover, the quantitative expressions of B-cell CLL/lymphoma 2 (BCL2), BCL2-associated X protein (BAX), superoxide dismutase (SOD), and Heat shock proteins (HSP70) in matured oocytes were assessed by quantitative Real-time polymerase chain reaction (qRT-PCR) and compared with fresh and vitrified in vivo matured oocytes, which were used as fIVM and vIVM controls, respectively. The highest maturation rate was found in hUCM in fIVM, and the lowest maturation rate was found using α-MEM in vIVM (85.18% and 71.42%, respectively). The cleavage rate in fIVM was higher than that in vIVM (83.4% vs. 72.0%). In addition, the cleavage rate in α-MEM was lower than that in the hUCM (66.0% vs. 89.4%). Furthermore, the difference between parthenote embryo arrested in 4-8 cells (p < 0.04) and the quality of embryo arrested in 8-cell (p < 0.007) were significant. The developmental stages of parthenote embryos in hUCM versus α-MEM were as follows: 2-4 cell (89.45% vs. 66.00%, respectively), 4-8 cell (44.31% vs. 29.11%, respectively), morula (12.27% vs. 2.63%, respectively), and blastocysts (2.5% vs. 0%, respectively). The messenger RNA (mRNA) expression levels of BCL2, BAX and SOD were significantly different (p < 0.05) between the matured IVM oocytes. Overall, hUCM showed potential efficacy in terms of ameliorating oocyte maturation and in promoting the development and mRNA expression of BAX, BCL2, and SOD.
Collapse
Affiliation(s)
- Hakimeh Akbari
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, 7616913555 Kerman, Iran.
- Cellular and Molecular Research Center, Gerash University of Medical Science, 7441758666 Gerash, Iran.
| | - Seyed Hassan Eftekhar Vaghefi
- Department of Anatomy, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, 7616913555 Kerman, Iran.
| | - Abbas Shahedi
- Department of Biology and Anatomical Sciences, Shahid Sadoughi University of Medical Sciences, 8916978477 Yazd, Iran.
| | - Victoria Habibzadeh
- Afzalipour Clinical Center for Infertility, Afzalipour Hospital, Kerman University of Medical Sciences, 7616913555 Kerman, Iran.
| | - Tooraj Reza Mirshekari
- Afzalipour Clinical Center for Infertility, Afzalipour Hospital, Kerman University of Medical Sciences, 7616913555 Kerman, Iran.
| | - Aboozar Ganjizadegan
- Afzalipour Clinical Center for Infertility, Afzalipour Hospital, Kerman University of Medical Sciences, 7616913555 Kerman, Iran.
| | - Hamidreza Mollaei
- Department of Medical Microbiology, Kerman University of Medical Sciences, 7616913555 Kerman, Iran.
| | - Meysam Ahmadi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, 7616913555 Kerman, Iran.
| | | |
Collapse
|
12
|
Jianini BTGM, Giorgi VSI, Da Broi MG, de Paz CCP, Rosa e Silva JC, Ferriani RA, Navarro PA. Peritoneal Fluid From Infertile Women With Minimal/Mild Endometriosis Compromises the Meiotic Spindle of Metaphase II Bovine Oocytes: A Pilot Study. Reprod Sci 2017; 24:1304-1311. [DOI: 10.1177/1933719116687658] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Bruna Talita Gazeto Melo Jianini
- Human Reproduction Division, Department of Gynecology and Obstetrics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Silvestre Innocenti Giorgi
- Human Reproduction Division, Department of Gynecology and Obstetrics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Michele Gomes Da Broi
- Human Reproduction Division, Department of Gynecology and Obstetrics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cláudia Cristina Paro de Paz
- Department of Genetics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Júlio César Rosa e Silva
- Human Reproduction Division, Department of Gynecology and Obstetrics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rui Alberto Ferriani
- Human Reproduction Division, Department of Gynecology and Obstetrics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute of Hormones and Woman’s Health, CNPq, Porto Alegre, Rio Grande do Sul, Brazil
| | - Paula Andrea Navarro
- Human Reproduction Division, Department of Gynecology and Obstetrics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- National Institute of Hormones and Woman’s Health, CNPq, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
13
|
Lima RS, Risolia PHB, Ispada J, Assumpção MEOA, Visintin JA, Orlandi C, Paula-Lopes FF. Role of insulin-like growth factor 1 on cross-bred Bos indicus cattle germinal vesicle oocytes exposed to heat shock. Reprod Fertil Dev 2017; 29:1405-1414. [DOI: 10.1071/rd15514] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 05/17/2016] [Indexed: 11/23/2022] Open
Abstract
Germinal vesicle (GV) oocytes are susceptible to heat stress. However, neither the cellular mechanisms triggered by elevated temperature nor the thermoprotective effects of insulin-like growth factor (IGF) on GV oocytes are completely understood. Therefore, a series of experiments was conducted to determine the direct effects of IGF1 (0, 12.5, 25, 50 and 100 ng mL–1) on heat-treated GV oocytes. Butyrolactone-arrested GV oocytes were cultured at 38.5°C (control) or 41°C (heat shock; HS) for 14 h in the presence of different concentrations of IGF1. Exposure of GV oocytes to 41°C increased (P < 0.05) the number of terminal deoxyribonucleotidyl transferase-mediated fluorescein-dUTP nick end-labelling (TUNEL)-positive oocytes. At concentrations of 12.5 and 25 ng mL–1, IGF1 tended to minimise these negative effect of HS (P = 0.07). However, neither HS nor IGF1 had any effect on caspase activity. HS also decreased (P < 0.05) GV oocyte mitochondrial activity and developmental competence to the blastocyst stage. These deleterious effects of HS were alleviated (P < 0.05) by 12.5 ng mL–1 IGF1. This concentration of IGF1 did not affect cleavage rate, the percentage of TUNEL-positive blastomeres and total blastocyst cell number regardless of temperature. In conclusion, exposure of GV oocytes to HS triggered the apoptotic cascade and compromised oocyte developmental competence. Physiological concentrations of IGF1 had a beneficial effect on heat-shocked GV oocytes.
Collapse
|
14
|
Inter-generational effects of the in vitro maturation technique on pregnancy outcomes, early development, and cognition of offspring in mouse model. Clin Chim Acta 2016; 473:218-227. [PMID: 27871845 DOI: 10.1016/j.cca.2016.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 11/16/2016] [Accepted: 11/16/2016] [Indexed: 11/20/2022]
Abstract
In vitro maturation (IVM) of oocytes has been a highly successful method for avoiding the occurrence of severe ovarian hyperstimulation syndrome in some patients during in vitro fertilization. However, the safety of the protocol, especially the long-term effects, is still an issue of debate. The current study is to investigate the long-term effects of IVM on mice through two generations and reveal its inter-generational effects as well. The data indicate that the rates of embryo resorption and fetal death in the F1 generation were significantly increased while the newborn survival rate in the F1 and F2 generations were significantly decreased in the IVM group. Increased body weights in the F1 generation and mouse number per litter in the F2 generation were observed in both the IVM and VVM groups; however, no insulin resistance was detected. No significant differences were detected in birth defects, organ weights, testis histology and sperm motility, estrous cycle, and cognition among the IVM, VVM and N mice in either the F1 or F2 generations. Our results suggest that mouse IVM can affect pregnancy outcomes throughout two generations. IVM does not appear to influence the development and cognition of the offspring throughout two generations.
Collapse
|
15
|
Giorgi VSI, Da Broi MG, Paz CCP, Ferriani RA, Navarro PA. N-Acetyl-Cysteine and l-Carnitine Prevent Meiotic Oocyte Damage Induced by Follicular Fluid From Infertile Women With Mild Endometriosis. Reprod Sci 2015; 23:342-51. [PMID: 26342050 DOI: 10.1177/1933719115602772] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study evaluated the potential protective effect of the antioxidants, l-carnitine (LC) and N-acetyl-cysteine (NAC), in preventing meiotic oocyte damage induced by follicular fluid (FF) from infertile women with mild endometriosis (ME). We performed an experimental study. The FF samples were obtained from 22 infertile women undergoing stimulated cycles for intracytoplasmic sperm injection (11 with ME and 11 without endometriosis). Immature bovine oocytes were submitted to in vitro maturation (IVM) divided into 9 groups: no-FF (No-FF); with FF from control (CFF) or ME (EFF) groups; and with LC (C + LC and E + LC), NAC (C + NAC and E + NAC), or both antioxidants (C + 2Ao and E + 2Ao). After IVM, oocytes were immunostained for visualization of microtubules and chromatin by confocal microscopy. The percentage of meiotically normal metaphase II (MII) oocytes was significantly lower in the EFF group (51.35%) compared to No-FF (86.36%) and CFF (83.52%) groups. The E + NAC (62.22%), E + LC (80.61%), and E + 2Ao (61.40%) groups showed higher percentage of normal MII than EFF group. The E + LC group showed higher percentage of normal MII than E + NAC and E + 2Ao groups and a similar percentage to No-FF and CFF groups. Therefore, FF from infertile women with ME causes meiotic abnormalities in bovine oocytes, and, for the first time, we demonstrated that the use of NAC and LC prevents these damages. Our findings elucidate part of the pathogenic mechanisms involved in infertility associated with ME and open perspectives for further studies investigating whether the use of LC could improve the natural fertility and/or the results of in vitro fertilization of women with ME.
Collapse
Affiliation(s)
- Vanessa S I Giorgi
- Human Reproduction Division, Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Michele G Da Broi
- Department of Genetics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Claudia C P Paz
- National Institute of Hormones and Women's Health, CNPq, Brazil
| | - Rui A Ferriani
- Human Reproduction Division, Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil National Institute of Hormones and Women's Health, CNPq, Brazil
| | - Paula A Navarro
- Human Reproduction Division, Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil National Institute of Hormones and Women's Health, CNPq, Brazil
| |
Collapse
|
16
|
Dib LA, Broi MGD, Navarro PA. Comparative Analysis of the Spindle of Fresh In Vivo-Matured Human Oocytes Through Polarized Light and Confocal Microscopy. Reprod Sci 2014; 21:984-992. [DOI: 10.1177/1933719113519174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Luciana Azôr Dib
- Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, Sao Paulo, Brazil
- National Institute of Hormones and Women’s Health, Ribeirão Preto, São Paulo, Brazil
| | - Michele Gomes Da Broi
- Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, Sao Paulo, Brazil
- National Institute of Hormones and Women’s Health, Ribeirão Preto, São Paulo, Brazil
| | - Paula Andrea Navarro
- Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, São Paulo University, Ribeirão Preto, Sao Paulo, Brazil
- National Institute of Hormones and Women’s Health, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
17
|
Da Broi MG, Malvezzi H, Paz CCP, Ferriani RA, Navarro PAAS. Follicular fluid from infertile women with mild endometriosis may compromise the meiotic spindles of bovine metaphase II oocytes. Hum Reprod 2013; 29:315-23. [PMID: 24166595 DOI: 10.1093/humrep/det378] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION What is the potential impact of follicular fluid (FF) from infertile women with mild endometriosis (ME) on oocyte quality, especially on nuclear maturation and the meiotic spindle? SUMMARY ANSWER FF from infertile women with ME may compromise nuclear maturation and the meiotic spindles of in vitro matured bovine oocytes. WHAT IS KNOWN ALREADY Controversial studies have suggested that impaired oocyte quality may be involved in the pathogenesis of endometriosis-related infertility. Moreover, some studies have demonstrated alterations in the composition of FF from infertile women with endometriosis. However, to date no study has evaluated the effect of FF from infertile women with ME on the genesis of meiotic oocyte anomalies. STUDY DESIGN, SIZE, DURATION We performed an experimental study. Samples of FF were obtained from February 2009 to February 2011 from 22 infertile women, 11 with ME and 11 with tubal or male factors of infertility (control group), who underwent ovarian stimulation for ICSI at our university IVF Unit. From March 2011 to February 2012 we performed in vitro maturation (IVM) experiments using immature bovine oocytes as described below. PARTICIPANTS/MATERIALS, SETTING, METHODS FF free of blood and containing a mature oocyte was obtained from 22 infertile women during oocyte retrieval for ICSI. Immature bovine oocytes underwent IVM in the absence of FF (No-FF) and in the presence of four concentrations (1, 5, 10 and 15%) of FF from infertile women without endometriosis (C-FF) and with ME (ME-FF). Eleven replicates were performed, each one using FF from a control patient and a patient with ME. Each FF sample was used in only one experiment. After 22-24 h of IVM, oocytes were denuded, fixed and immunostained for morphological visualization of microtubules and chromatin by confocal microscopy. MAIN RESULTS AND THE ROLE OF CHANCE A total of 1324 cumulus-oocyte complexes were matured in vitro. Of these, 1128 were fixed and 1048 were analyzed by confocal microscopy. The percentage of meiotically normal oocytes was significantly higher for oocytes that underwent IVM in the absence of FF (No-FF; 76.5%) and in the presence of 1% (80.9%), 5% (76.6%), 10% (75%) and 15% (76.2%) C-FF than in oocytes that underwent IVM in the presence of 1% (44.4%), 5% (36.7%), 10% (45.5%) and 15% (51.2%) ME-FF (P < 0.01). No differences were observed among FF concentrations within each group. When the four concentrations from each group were pooled, the number of oocytes in metaphase I stage was significantly higher in the ME-FF (50 oocytes) than in the C-FF (29 oocytes) group and the percentage of meiotic abnormalities was significantly higher when oocytes were matured with ME-FF (55.8%) than with C-FF (23.1%), P < 0.01. LIMITATIONS, REASONS FOR CAUTION Owing to the strict selection criteria for FF donors, this study had a small sample size (11 cases and 11 controls), and thus further investigations using a large cohort of patients are needed to confirm these results. In addition, data obtained from studies using animal models may not necessarily be extrapolated to humans and studies evaluating in vivo matured oocytes from infertile women with ME are important to confirm our results. WIDER IMPLICATIONS OF THE FINDINGS Our results open new insights into the pathogenic mechanisms of infertility related to mild endometriosis, suggesting that FF from infertile women with mild endometriosis may be involved in the worsening of oocyte quality of these women. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the National Council for Scientific and Technological Development (CNPq), Brazil. The authors declare no conflicts of interest.
Collapse
Affiliation(s)
- M G Da Broi
- Human Reproduction Division, Department of Gynecology and Obstetrics, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | |
Collapse
|
18
|
De Bem TH, Chiaratti MR, Rochetti R, Bressan FF, Sangalli JR, Miranda MS, Pires PR, Schwartz KR, Sampaio RV, Fantinato-Neto P, Pimentel JR, Perecin F, Smith LC, Meirelles FV, Adona PR, Leal CL. Viable Calves Produced by Somatic Cell Nuclear Transfer Using Meiotic-Blocked Oocytes. Cell Reprogram 2011; 13:419-29. [DOI: 10.1089/cell.2011.0010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tiago H.C. De Bem
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Marcos R. Chiaratti
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Raquel Rochetti
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Fabiana F. Bressan
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Juliano R. Sangalli
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Moysés S. Miranda
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Pedro R.L. Pires
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Kátia R.L. Schwartz
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Rafael V. Sampaio
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Departamento de Biologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Paulo Fantinato-Neto
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - José R.V. Pimentel
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Felipe Perecin
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Lawrence C. Smith
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Centre de recherche en reproduction animale, Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, Québec, Canada
| | - Flávio V. Meirelles
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| | - Paulo R. Adona
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
- Universidade do Norte do Paraná, Londrina, PR, Brazil
| | - Cláudia L.V. Leal
- Departamento de Ciências Básicas, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, Brazil
| |
Collapse
|
19
|
Adona PR, de Bem THC, Mesquita LG, Rochetti RC, Leal CLV. Embryonic Development and Gene Expression in Oocytes Cultured In Vitro in Supplemented Pre-Maturation and Maturation Media. Reprod Domest Anim 2011; 46:e31-8. [DOI: 10.1111/j.1439-0531.2010.01618.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|