1
|
Castelli M, Petroni G. An Evolutionary-Focused Review of the Holosporales (Alphaproteobacteria): Diversity, Host Interactions, and Taxonomic Re-ranking as Holosporineae Subord. Nov. MICROBIAL ECOLOGY 2025; 88:15. [PMID: 40085262 PMCID: PMC11909080 DOI: 10.1007/s00248-025-02509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
The order Holosporales is a broad and ancient lineage of bacteria obligatorily associated with eukaryotic hosts, mostly protists. Significantly, this is similar to other evolutionary distinct bacterial lineages (e.g. Rickettsiales and Chlamydiae). Here, we provide a detailed and comprehensive account on the current knowledge on the Holosporales. First, acknowledging the up-to-date phylogenetic reconstructions and recent nomenclatural proposals, we reevaluate their taxonomy, thus re-ranking them as a suborder, i.e. Holosporineae, within the order Rhodospirillales. Then, we examine the phylogenetic diversity of the Holosporineae, presenting the 20 described genera and many yet undescribed sub-lineages, as well as the variety of the respective environments of provenance and hosts, which belong to several different eukaryotic supergroups. Noteworthy representatives of the Holosporineae are the infectious intranuclear Holospora, the host manipulator 'Caedimonas', and the farmed shrimp pathogen 'Candidatus Hepatobacter'. Next, we put these bacteria in the broad context of the whole Holosporineae, by comparing with the available data on the least studied representatives, including genome sequences. Accordingly, we reason on the most probable evolutionary trajectories for host interactions, host specificity, and emergence of potential pathogens in aquaculture and possibly humans, as well as on future research directions to investigate those many open points on the Holosporineae.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | |
Collapse
|
2
|
Fujishima M, Kodama Y. Mechanisms for Establishing Primary and Secondary Endosymbiosis in Paramecium. J Eukaryot Microbiol 2022; 69:e12901. [PMID: 35243727 DOI: 10.1111/jeu.12901] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Primary (eukaryote and procaryote) and secondary (eukaryote and eukaryote) endosymbiosis are driving forces in eukaryotic cell evolution. These phenomena are still contributing to acquire new cell structures and functions. To understand mechanisms for establishment of each endosymbiosis, experiments that can induce endosymbiosis synchronously by mixing symbionts isolated from symbiont-bearing host cells and symbiont-free host cells are indispensable. Recent progress on endosymbiosis using Paramecium and their endonuclear symbiotic bacteria Holospora or symbiotic green alga Chlorella has been remarkable, and providing excellent opportunities for elucidating host-symbiont interactions. These organisms are now becoming model organisms to know the mechanisms for establishing primary and secondary endosymbiosis. Based on experiments of many researchers, we introduce, how these endosymbionts escape from the host lysosomal fusion, how they migrate in the host cytoplasm to localize specific locations within the host, how their species specificity and strain specificity of the host cells are controlled, how their life cycles are controlled, how they escape from the host cell to infect more young host cell, how they affect to the host viability and to gene expression, what kind of substances are needed in these phenomena, and what changes had been induced in the symbiont and the host genomes.
Collapse
Affiliation(s)
- Masahiro Fujishima
- Joint Faculty of Veterinary Medicine, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8515, Japan
| | - Yuuki Kodama
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Nishikawatsu-cho 1060, Matsue, 690-8504, Japan
| |
Collapse
|
3
|
Weiler J, Zilio G, Zeballos N, Nørgaard L, Conce Alberto WD, Krenek S, Kaltz O, Bright L. Among-Strain Variation in Resistance of Paramecium caudatum to the Endonuclear Parasite Holospora undulata: Geographic and Lineage-Specific Patterns. Front Microbiol 2020; 11:603046. [PMID: 33381098 PMCID: PMC7767928 DOI: 10.3389/fmicb.2020.603046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/24/2020] [Indexed: 01/04/2023] Open
Abstract
Resistance is a key determinant in interactions between hosts and their parasites. Understanding the amount and distribution of variation in this trait between strains can provide insights into (co)evolutionary processes and their potential to shape patterns of diversity in natural populations. Using controlled inoculation in experimental mass cultures, we investigated the quantitative variation in resistance to the bacterial parasite Holospora undulata across a worldwide collection of strains of its ciliate host Paramecium caudatum. We combined the observed variation with available information on the phylogeny and biogeography of the strains. We found substantial variation in resistance among strains, with upper-bound values of broad-sense heritability >0.5 (intraclass correlation coefficients). Strain estimates of resistance were repeatable between laboratories and ranged from total resistance to near-complete susceptibility. Early (1 week post inoculation) measurements provided higher estimates of resistance heritability than did later measurements (2-3 weeks), possibly due to diverging epidemiological dynamics in replicate cultures of the same strains. Genetic distance (based on a neutral marker) was positively correlated with the difference in resistance phenotype between strains (r = 0.45), essentially reflecting differences between highly divergent clades (haplogroups) within the host species. Haplogroup A strains, mostly European, were less resistant to the parasite (49% infection prevalence) than non-European haplogroup B strains (28%). At a smaller geographical scale (within Europe), strains that are geographically closer to the parasite origin (Southern Germany) were more susceptible to infection than those from further away. These patterns are consistent with a picture of local parasite adaptation. Our study demonstrates ample natural variation in resistance on which selection can act and hints at symbiont adaptation producing signatures in geographic and lineage-specific patterns of resistance in this model system.
Collapse
Affiliation(s)
- Jared Weiler
- Department of Biology, State University of New York, College at New Paltz, New Paltz, NY, United States
| | - Giacomo Zilio
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Nathalie Zeballos
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Louise Nørgaard
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
- School of Biological Sciences and Centre for Geometric Biology, Monash University, Melbourne, VIC, Australia
| | - Winiffer D. Conce Alberto
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Sascha Krenek
- Institute of Hydrobiology, Technische Universität Dresden, Dresden, Germany
| | - Oliver Kaltz
- ISEM, University of Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Lydia Bright
- Department of Biology, State University of New York, College at New Paltz, New Paltz, NY, United States
| |
Collapse
|
4
|
Pasqualetti C, Szokoli F, Rindi L, Petroni G, Schrallhammer M. The Obligate Symbiont " Candidatus Megaira polyxenophila" Has Variable Effects on the Growth of Different Host Species. Front Microbiol 2020; 11:1425. [PMID: 32733401 PMCID: PMC7360802 DOI: 10.3389/fmicb.2020.01425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
"Candidatus Megaira polyxenophila" is a recently described member of Rickettsiaceae which comprises exclusively obligate intracellular bacteria. Interestingly, these bacteria can be found in a huge diversity of eukaryotic hosts (protist, green algae, metazoa) living in marine, brackish or freshwater habitats. Screening of amplicon datasets revealed a high frequency of these bacteria especially in freshwater environments, most likely associated to eukaryotic hosts. The relationship of "Ca. Megaira polyxenophila" with their hosts and their impact on host fitness have not been studied so far. Even less is known regarding the responses of these intracellular bacteria to potential stressors. In this study, we used two phylogenetically close species of the freshwater ciliate Paramecium, Paramecium primaurelia and Paramecium pentaurelia (Ciliophora, Oligohymenophorea) naturally infected by "Ca. Megaira polyxenophila". In order to analyze the effect of the symbiont on the fitness of these two species, we compared the growth performance of both infected and aposymbiotic paramecia at different salinity levels in the range of freshwater and oligohaline brackish water i.e., at 0, 2, and 4.5 ppt. For the elimination of "Ca. Megaira polyxenophila" we established an antibiotic treatment to obtain symbiont-free lines and confirmed its success by fluorescence in situ hybridization (FISH). The population and infection dynamics during the growth experiment were observed by cell density counts and FISH. Paramecia fitness was compared applying generalized additive mixed models. Surprisingly, both infected Paramecium species showed higher densities under all salinity concentrations. The tested salinity concentrations did not significantly affect the growth of any of the two species directly, but we observed the loss of the endosymbiont after prolonged exposure to higher salinity levels. This experimental data might explain the higher frequency of "Ca. M. polyxenophila" in freshwater habitats as observed from amplicon data.
Collapse
Affiliation(s)
- Chiara Pasqualetti
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy.,Mikrobiologie, Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Franziska Szokoli
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy.,Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Luca Rindi
- Dipartimento di Biologia, CoNISMa, Università di Pisa, Pisa, Italy
| | - Giulio Petroni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Martina Schrallhammer
- Mikrobiologie, Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
5
|
Modeo L, Salvetti A, Rossi L, Castelli M, Szokoli F, Krenek S, Serra V, Sabaneyeva E, Di Giuseppe G, Fokin SI, Verni F, Petroni G. "Candidatus Trichorickettsia mobilis", a Rickettsiales bacterium, can be transiently transferred from the unicellular eukaryote Paramecium to the planarian Dugesia japonica. PeerJ 2020; 8:e8977. [PMID: 32351785 PMCID: PMC7183750 DOI: 10.7717/peerj.8977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/24/2020] [Indexed: 01/10/2023] Open
Abstract
Most of the microorganisms responsible for vector-borne diseases (VBD) have hematophagous arthropods as vector/reservoir. Recently, many new species of microorganisms phylogenetically related to agents of VBD were found in a variety of aquatic eukaryotic hosts; in particular, numerous new bacterial species related to the genus Rickettsia (Alphaproteobacteria, Rickettsiales) were discovered in protist ciliates and other unicellular eukaryotes. Although their pathogenicity for humans and terrestrial animals is not known, several indirect indications exist that these bacteria might act as etiological agents of possible VBD of aquatic organisms, with protists as vectors. In the present study, a novel strain of the Rickettsia-Like Organism (RLO) endosymbiont "Candidatus (Ca.) Trichorickettsia mobilis" was identified in the macronucleus of the ciliate Paramecium multimicronucleatum. We performed transfection experiments of this RLO to planarians (Dugesia japonica) per os. Indeed, the latter is a widely used model system for studying bacteria pathogenic to humans and other Metazoa. In transfection experiments, homogenized paramecia were added to food of antibiotic-treated planarians. Treated and non-treated (i.e. control) planarians were investigated at day 1, 3, and 7 after feeding for endosymbiont presence by means of PCR and ultrastructural analyses. Obtained results were fully concordant and suggest that this RLO endosymbiont can be transiently transferred from ciliates to metazoans, being detected up to day 7 in treated planarians' enterocytes. Our findings might offer insights into the potential role of ciliates or other protists as putative vectors for diseases caused by Rickettsiales or other RLOs and occurring in fish farms or in the wild.
Collapse
Affiliation(s)
- Letizia Modeo
- Department of Biology, University of Pisa, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy
| | - Alessandra Salvetti
- CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leonardo Rossi
- CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michele Castelli
- Centro Romeo ed Enrica Invernizzi Ricerca Pediatrica, Department of Biosciences, University of Milan, Milan, Italy
| | - Franziska Szokoli
- Institute of Hydrobiology, Dresden University of Technology, Dresden, Germany
| | - Sascha Krenek
- Institute of Hydrobiology, Dresden University of Technology, Dresden, Germany.,Department of River Ecology, Helmholtz Center for Environmental Research-UFZ, Magdeburg, Germany
| | | | - Elena Sabaneyeva
- Department of Cytology and Histology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Sergei I Fokin
- Department of Biology, University of Pisa, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Franco Verni
- Department of Biology, University of Pisa, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy
| | - Giulio Petroni
- Department of Biology, University of Pisa, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy
| |
Collapse
|
6
|
Sigona C, Bardi A, Modeo L, Mori G, Potekhin A, Verni F, Munz G, Petroni G. Role of bacterivorous organisms on fungal-based systems for natural tannin degradation. Heliyon 2020; 6:e03604. [PMID: 32258507 PMCID: PMC7118291 DOI: 10.1016/j.heliyon.2020.e03604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 08/04/2019] [Accepted: 03/11/2020] [Indexed: 11/29/2022] Open
Abstract
Tannery wastewater presents high concentrations of organic load and pollutant recalcitrant molecules (e.g. tannins), which reduce the efficiency of biological treatment processes. Recent studies showed that several fungal species and strains are effective in the degradation of tannins. However, high bacterial load can negatively affect fungal growth, reducing system stability and degradation performances. The aim of the present study was to evaluate the effects of the introduction of bacterivorous grazers (ciliates and/or rotifers) in batch scale experiments using fungi to remove Tara tannin, i.e. to check the potential synergistic effect between fungi and bacterivorous grazers in the degradation of recalcitrant compounds. In this context, the ciliated grazers Paramecium calkinsi, Tetrahymena sp., Pseudovorticella sp., and the rotifer Lecane inermis, preliminary selected according to their ability to grow in a solution prepared with Tara tannin, were separately tested. Activated sludge, including a complex mixture of native grazers, was used as experimental control. The following parameters were monitored: bacterial load, number of grazers/mL and Soluble Chemical Oxygen Demand (SCOD). Colony Forming Unit (CFU)/grazers ratio was also calculated. Particular attention was paid to: i) bacterial load reduction and ii) enhancement of recalcitrant compounds degradation, and we observed that in all experimental conditions where grazers occurred bacterial load was significantly reduced and the system achieved a higher SCOD removal in a shorter time. Our findings provide useful insights for the stabilization of fungal-based systems in non-sterile conditions.
Collapse
Affiliation(s)
- Cristiana Sigona
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain
| | - Alessandra Bardi
- Department of Civil and Environmental Engineering, University of Florence, Via Santa Marta 3, 50139, Florence, Italy
| | - Letizia Modeo
- Department of Biology, University of Pisa, Via Alessandro Volta 4, 56126, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, Univerisità di Pisa, via A. Volta 4, 56126, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, Pisa, Italy
| | - Gualtiero Mori
- CER2CO (Centro Ricerca Reflui Conciari), Via Arginale Ovest 81, 56028, San Romano-San Miniato, Pisa, Italy
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint-Petersburg State University, 7/9 University Embankment, 199034, Saint Petersburg, Russia
| | - Franco Verni
- Department of Biology, University of Pisa, Via Alessandro Volta 4, 56126, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, Univerisità di Pisa, via A. Volta 4, 56126, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, Pisa, Italy
| | - Giulio Munz
- Department of Civil and Environmental Engineering, University of Florence, Via Santa Marta 3, 50139, Florence, Italy
| | - Giulio Petroni
- Department of Biology, University of Pisa, Via Alessandro Volta 4, 56126, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, Univerisità di Pisa, via A. Volta 4, 56126, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione dell'Università di Pisa, Lungarno Pacinotti 43, Pisa, Italy
| |
Collapse
|
7
|
Potekhin A, Schweikert M, Nekrasova I, Vitali V, Schwarzer S, Anikina A, Kaltz O, Petroni G, Schrallhammer M. Complex life cycle, broad host range and adaptation strategy of the intranuclear Paramecium symbiont Preeria caryophila comb. nov. FEMS Microbiol Ecol 2019; 94:4987202. [PMID: 29718229 DOI: 10.1093/femsec/fiy076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 01/18/2023] Open
Abstract
Holospora and related bacteria are a group of obligate Paramecium symbionts. Characteristic features are their infectivity, the presence of two distinct morphotypes, and usually a strict specialization for a single Paramecium species as host and for a nuclear compartment (either somatic or generative nucleus) for reproduction. Holospora caryophila steps out of line, naturally occurring in Paramecium biaurelia and Paramecium caudatum. This study addresses the phylogenetic relationship among H. caryophila and other Holospora species based on 16S rRNA gene sequence comparison analyzing the type strain and seven new macronuclear symbionts. Key aspects of Holospora physiology such as infectivity, symbiosis establishment and host range were determined by comprehensive infection assays. Detailed morphological investigations and sequence-based phylogeny confirmed a high similarity between the type strain of H. caryophila and the novel strains. Surprisingly, they are only distantly related to other Holospora species suggesting that they belong to a new genus within the family Holosporaceae, here described as Preeria caryophila comb. nov. Adding to this phylogenetic distance, we also observed a much broader host range, comprising at least eleven Paramecium species. As these potential host species exhibit substantial differences in frequency of sexual processes, P. caryophila demonstrates which adaptations are crucial for macronuclear symbionts facing regular destruction of their habitat.
Collapse
Affiliation(s)
- Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, 190020 Saint Petersburg, Russia
| | - Michael Schweikert
- Biobased Materials Group, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, 70569 Stuttgart, Germany
| | - Irina Nekrasova
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, 190020 Saint Petersburg, Russia
| | - Valerio Vitali
- Department of Biology, Università di Pisa, 56126 Pisa, Italy
| | - Sabine Schwarzer
- Microbiology, Institute of Biology II, Albert-Ludwigs Universität Freiburg, 79104 Freiburg, Germany
| | - Arina Anikina
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, 190020 Saint Petersburg, Russia
| | - Oliver Kaltz
- Institut des Sciences de l'Evolution Montpellier, Université de Montpellier, 34090 Montpellier, France
| | - Giulio Petroni
- Department of Biology, Università di Pisa, 56126 Pisa, Italy
| | - Martina Schrallhammer
- Department of Biology, Università di Pisa, 56126 Pisa, Italy.,Microbiology, Institute of Biology II, Albert-Ludwigs Universität Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
8
|
Grosser K, Ramasamy P, Amirabad AD, Schulz MH, Gasparoni G, Simon M, Schrallhammer M. More than the "Killer Trait": Infection with the Bacterial Endosymbiont Caedibacter taeniospiralis Causes Transcriptomic Modulation in Paramecium Host. Genome Biol Evol 2018; 10:646-656. [PMID: 29390087 PMCID: PMC5814942 DOI: 10.1093/gbe/evy024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 12/13/2022] Open
Abstract
Endosymbiosis is a widespread phenomenon and hosts of bacterial endosymbionts can be found all-over the eukaryotic tree of life. Likely, this evolutionary success is connected to the altered phenotype arising from a symbiotic association. The potential variety of symbiont’s contributions to new characteristics or abilities of host organisms are largely unstudied. Addressing this aspect, we focused on an obligate bacterial endosymbiont that confers an intraspecific killer phenotype to its host. The symbiosis between Paramecium tetraurelia and Caedibacter taeniospiralis, living in the host’s cytoplasm, enables the infected paramecia to release Caedibacter symbionts, which can simultaneously produce a peculiar protein structure and a toxin. The ingestion of bacteria that harbor both components leads to the death of symbiont-free congeners. Thus, the symbiosis provides Caedibacter-infected cells a competitive advantage, the “killer trait.” We characterized the adaptive gene expression patterns in symbiont-harboring Paramecium as a second symbiosis-derived aspect next to the killer phenotype. Comparative transcriptomics of infected P. tetraurelia and genetically identical symbiont-free cells confirmed altered gene expression in the symbiont-bearing line. Our results show up-regulation of specific metabolic and heat shock genes whereas down-regulated genes were involved in signaling pathways and cell cycle regulation. Functional analyses to validate the transcriptomics results demonstrated that the symbiont increases host density hence providing a fitness advantage. Comparative transcriptomics shows gene expression modulation of a ciliate caused by its bacterial endosymbiont thus revealing new adaptive advantages of the symbiosis. Caedibacter taeniospiralis apparently increases its host fitness via manipulation of metabolic pathways and cell cycle control.
Collapse
Affiliation(s)
- Katrin Grosser
- Microbiology, Institute of Biology II, Albert-Ludwigs University of Freiburg, Germany
| | - Pathmanaban Ramasamy
- Excellence Cluster for Multimodal Computing and Interaction, Saarland Informatics Campus, Saarland University, Saarbruecken, Germany.,Molecular Cell Dynamics, Centre for Human and Molecular Biology, Saarland University, Saarbruecken, Germany
| | - Azim Dehghani Amirabad
- Excellence Cluster for Multimodal Computing and Interaction, Saarland Informatics Campus, Saarland University, Saarbruecken, Germany.,Computational Biology and Applied Algorithmics, Max-Planck-Institute for Informatics, Saarland Informatics Campus, Saarbruecken, Germany
| | - Marcel H Schulz
- Excellence Cluster for Multimodal Computing and Interaction, Saarland Informatics Campus, Saarland University, Saarbruecken, Germany.,Computational Biology and Applied Algorithmics, Max-Planck-Institute for Informatics, Saarland Informatics Campus, Saarbruecken, Germany
| | - Gilles Gasparoni
- Genetics, Centre for Human and Molecular Biology, Saarland University, Saarbruecken, Germany
| | - Martin Simon
- Molecular Cell Dynamics, Centre for Human and Molecular Biology, Saarland University, Saarbruecken, Germany
| | - Martina Schrallhammer
- Microbiology, Institute of Biology II, Albert-Ludwigs University of Freiburg, Germany
| |
Collapse
|
9
|
Cultivation Conditions Can Cause a Shift from Mutualistic to Parasitic Behavior in the Symbiosis Between Paramecium and Its Bacterial Symbiont Caedibacter taeniospiralis. Curr Microbiol 2018; 75:1099-1102. [DOI: 10.1007/s00284-018-1493-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 04/17/2018] [Indexed: 10/17/2022]
|
10
|
Bella C, Koehler L, Grosser K, Berendonk TU, Petroni G, Schrallhammer M. Fitness Impact of Obligate Intranuclear Bacterial Symbionts Depends on Host Growth Phase. Front Microbiol 2016; 7:2084. [PMID: 28066397 PMCID: PMC5177645 DOI: 10.3389/fmicb.2016.02084] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/08/2016] [Indexed: 01/24/2023] Open
Abstract
According to text book definition, parasites reduce the fitness of their hosts whereas mutualists provide benefits. But biotic and abiotic factors influence symbiotic interactions, thus under certain circumstances parasites can provide benefits and mutualists can harm their host. Here we addressed the question which intrinsic biotic factors shape a symbiosis and are crucial for the outcome of the interaction between the obligate intranuclear bacterium Holospora caryophila (Alphaproteobacteria; Rickettsiales) and its unicellular eukaryotic host Paramecium biaurelia (Alveolata; Ciliophora). The virulence of H. caryophila, i.e., the negative fitness effect on host division and cell number, was determined by growth assays of several P. biaurelia strains. The performances of genetically identical lines either infected with H. caryophila or symbiont-free were compared. Following factors were considered as potentially influencing the outcome of the interaction: (1) host strain, (2) parasite strain, and (3) growth phases of the host. All three factors revealed a strong effect on the symbiosis. In presence of H. caryophila, the Paramecium density in the stationary growth phase decreased. Conversely, a positive effect of the bacteria during the exponential phase was observed for several host × parasite combinations resulting in an increased growth rate of infected P. biaurelia. Furthermore, the fitness impact of the tested endosymbionts on different P. biaurelia lines was not only dependent on one of the two involved strains but distinct for the specific combination. Depending on the current host growth phase, the presence of H. caryophila can be harmful or advantageous for P. biaurelia. Thus, under the tested experimental conditions, the symbionts can switch from the provision of benefits to the exploitation of host resources within the same host population and a time-span of less than 6 days.
Collapse
Affiliation(s)
- Chiara Bella
- Microbiology, Institute of Biology II, Albert-Ludwigs Universität FreiburgFreiburg, Germany
- Zoology-Anthropology Unit, Biology Department, Università di PisaPisa, Italy
| | - Lars Koehler
- Microbiology, Institute of Biology II, Albert-Ludwigs Universität FreiburgFreiburg, Germany
- Institute of Hydrobiology, Technische Universität DresdenDresden, Germany
| | - Katrin Grosser
- Microbiology, Institute of Biology II, Albert-Ludwigs Universität FreiburgFreiburg, Germany
- Institute of Hydrobiology, Technische Universität DresdenDresden, Germany
| | | | - Giulio Petroni
- Zoology-Anthropology Unit, Biology Department, Università di PisaPisa, Italy
| | - Martina Schrallhammer
- Microbiology, Institute of Biology II, Albert-Ludwigs Universität FreiburgFreiburg, Germany
- Institute of Hydrobiology, Technische Universität DresdenDresden, Germany
| |
Collapse
|
11
|
Lanzoni O, Fokin SI, Lebedeva N, Migunova A, Petroni G, Potekhin A. Rare Freshwater Ciliate Paramecium chlorelligerum Kahl, 1935 and Its Macronuclear Symbiotic Bacterium "Candidatus Holospora parva". PLoS One 2016; 11:e0167928. [PMID: 27992463 PMCID: PMC5161471 DOI: 10.1371/journal.pone.0167928] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/18/2016] [Indexed: 11/19/2022] Open
Abstract
Ciliated protists often form symbioses with many diverse microorganisms. In particular, symbiotic associations between ciliates and green algae, as well as between ciliates and intracellular bacteria, are rather wide-spread in nature. In this study, we describe the complex symbiotic system between a very rare ciliate, Paramecium chlorelligerum, unicellular algae inhabiting its cytoplasm, and novel bacteria colonizing the host macronucleus. Paramecium chlorelligerum, previously found only twice in Germany, was retrieved from a novel location in vicinity of St. Petersburg in Russia. Species identification was based on both classical morphological methods and analysis of the small subunit rDNA. Numerous algae occupying the cytoplasm of this ciliate were identified with ultrastructural and molecular methods as representatives of the Meyerella genus, which before was not considered among symbiotic algae. In the same locality at least fifteen other species of "green" ciliates were found, thus it is indeed a biodiversity hot-spot for such protists. A novel species of bacterial symbionts living in the macronucleus of Paramecium chlorelligerum cells was morphologically and ultrastructurally investigated in detail with the description of its life cycle and infection capabilities. The new endosymbiont was molecularly characterized following the full-cycle rRNA approach. Furthermore, phylogenetic analysis confirmed that the novel bacterium is a member of Holospora genus branching basally but sharing all characteristics of the genus except inducing connecting piece formation during the infected host nucleus division. We propose the name "Candidatus Holospora parva" for this newly described species. The described complex system raises new questions on how these microorganisms evolve and interact in symbiosis.
Collapse
Affiliation(s)
| | - Sergei I. Fokin
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Natalia Lebedeva
- Centre of Core Facilities “Culture Collections of Microorganisms”, Research Park, Saint Petersburg State University, Saint Petersburg, Russia
| | - Alexandra Migunova
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
12
|
Dellagnezze BM, Vasconcellos SP, Angelim AL, Melo VMM, Santisi S, Cappello S, Oliveira VM. Bioaugmentation strategy employing a microbial consortium immobilized in chitosan beads for oil degradation in mesocosm scale. MARINE POLLUTION BULLETIN 2016; 107:107-117. [PMID: 27158046 DOI: 10.1016/j.marpolbul.2016.04.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 04/06/2016] [Accepted: 04/08/2016] [Indexed: 05/22/2023]
Abstract
A bacterial consortium composed by four metagenomic clones and Bacillus subtilis strain CBMAI 707, all derived from petroleum reservoirs, was entrapped in chitosan beads and evaluated regarding hydrocarbon degradation capability. Experiments were carried out in mesocosm scale (3000L) with seawater artificially polluted with crude oil. At different time intervals, mesocosms were sampled and subjected to GC-FID and microbiological analyses, as total and heterotrophic culturable bacterial abundance (DAPI and CFU count), biological oxygen demand (BOD) and taxonomic diversity (massive sequencing of 16S rRNA genes). The results obtained showed that degradation of n-alkane hydrocarbons was similar between both treatments. However, aromatic compound degradation was more efficient in bioaugmentation treatment, with biodegradation percentages reaching up to 99% in 30days. Community dynamics was different between treatments and the consortium used in the bioaugmentation treatment contributed to a significant increase in aromatic hydrocarbon degradation.
Collapse
Affiliation(s)
- B M Dellagnezze
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP, CP 6171, CEP 13081-970 Campinas, SP, Brazil.
| | - S P Vasconcellos
- Federal University of São Paulo (UNIFESP), Rua Prof. Artur Riedel, 275, CEP 09972-270, Jd. Eldorado, Diadema, SP, Brazil
| | - A L Angelim
- Lembiotech (UFC), Federal University of Ceará, Av. Humberto Monte, 2977, Campus do Pici, Bloco 909, 60455-000, Fortaleza, CE, Brazil
| | - V M M Melo
- Lembiotech (UFC), Federal University of Ceará, Av. Humberto Monte, 2977, Campus do Pici, Bloco 909, 60455-000, Fortaleza, CE, Brazil
| | - S Santisi
- Institute for Coastal Marine Environment (IAMC), Consiglio Nazionale delle Ricerche (CNR) of Messina, Messina, Italy
| | - S Cappello
- Institute for Coastal Marine Environment (IAMC), Consiglio Nazionale delle Ricerche (CNR) of Messina, Messina, Italy
| | - V M Oliveira
- Division of Microbial Resources, Research Center for Chemistry, Biology and Agriculture (CPQBA), Campinas University - UNICAMP, CP 6171, CEP 13081-970 Campinas, SP, Brazil
| |
Collapse
|
13
|
Castelli M, Lanzoni O, Rossi L, Potekhin A, Schrallhammer M, Petroni G. Evaluation of Enrichment Protocols for Bacterial Endosymbionts of Ciliates by Real-Time PCR. Curr Microbiol 2016; 72:723-32. [PMID: 26894821 DOI: 10.1007/s00284-016-1006-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/03/2016] [Indexed: 11/30/2022]
Abstract
Large-scale studies on obligate bacterial endosymbionts may frequently require preliminary purification and enrichment protocols, which are often elaborate to set up and to evaluate, especially if the host organism is a protist. The purpose of this study was to develop a real-time PCR-based strategy and employ it for assessing two of such enrichment protocols for Holospora caryophila, hosted by the ciliate Paramecium. Four SSU rRNA gene-targeted real-time PCR assays were designed, which allowed to compare the amount of H. caryophila to other organisms, namely the host, its food bacterium (Raoultella planticola), and free-living bacteria present in the culture medium. By the use of the real-time PCR assays in combination, it was possible to conclude that the "cell fractionation" protocol was quite successful in the enrichment of the symbiont, while the "Percoll gradient" protocol will need further refinements to be fully repeatable. The proposed approach has the potential to facilitate and encourage future studies on the yet underexplored field of bacterial endosymbionts of ciliates and other protists. It can also find valuable applications for experimental questions other than those tested, such as fast and precise assessment of symbiont abundance in natural populations and comparison among multiple coexisting symbionts.
Collapse
Affiliation(s)
| | - Olivia Lanzoni
- Department of Biology, University of Pisa, 56126, Pisa, Italy
| | - Leonardo Rossi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126, Pisa, Italy
| | - Alexey Potekhin
- Department of Microbiology, Faculty of Biology, St. Petersburg State University, Saint Petersburg, Russia, 199034
| | - Martina Schrallhammer
- Microbiology, Institute of Biology II, University of Freiburg, 79104, Freiburg, Germany
| | - Giulio Petroni
- Department of Biology, University of Pisa, 56126, Pisa, Italy.
| |
Collapse
|