1
|
Lei X, Chen X, Chen J, Liang C. A New Mayorella Species Isolated from the Mariana Trench Area (Pacific Ocean). Protist 2023; 174:125958. [PMID: 37119544 DOI: 10.1016/j.protis.2023.125958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 05/01/2023]
Abstract
In this paper, we describe a new naked amoeba species, Mayorella marianaensis sp. n., order Dermamoebida, isolated from the bottom of the Pacific Ocean (>3,000 m depth) in the vicinity of the Mariana Trench, based on morphological and molecular data. The newly discovered species was identified based on morphological and molecular data. This is the first time that a Mayorella species was discovered in the deep sea (>1,000 m). Mayorella marianaensis is an irregularly rectangular naked amoeba (30-120 × 11-60 µm), with a narrow frontal hyaline area. Four to 15 conical sub-pseudopodia, and three kinds of floating forms are identified. Trophozoites have a thick cell coat consisting of two distinct layers. The small subunit ribosomal RNA gene phylogeny showed that M. marianaensis is classified into Dermamoebida, and is a sister clade to other Mayorella species whose sequences are available. BLAST analysis revealed that M. marianaensis is most similar to Coronamoeba villafranca and Mayorella sp. JJP-2003, with sequence identities of 92.43% and 88.30%, respectively.
Collapse
Affiliation(s)
- Xiaoli Lei
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fujian, China
| | - Xiaojuan Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fujian, China
| | - Jianming Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fujian, China; Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fujian, China
| | - Chen Liang
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, Fuzhou Institute of Oceanography, Minjiang University, Fujian, China; Technology Innovation Center for Monitoring and Restoration Engineering of Ecological Fragile Zone in Southeast China, Ministry of Natural Resources, Fujian, China.
| |
Collapse
|
2
|
Kudryavtsev A, Voytinsky F, Volkova E. Coronamoeba villafranca gen. nov. sp. nov. (Amoebozoa, Dermamoebida) challenges the correlation of morphology and phylogeny in Amoebozoa. Sci Rep 2022; 12:12541. [PMID: 35869259 PMCID: PMC9307759 DOI: 10.1038/s41598-022-16721-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/14/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractCoronamoeba villafranca gen. nov. sp. nov. is a small amoeba isolated from the surface planktonic biotope in the Bay of Villefranche (Mediterranean Sea). It has a confusing set of morphological and molecular characters. Its locomotive form is subcylindrical and monopodial with monoaxial cytoplasmic flow and occasional hyaline bulging at the anterior edge (a monotactic morphotype). Based on this set of characters, this amoeba is most similar to members of the genus Nolandella (Tubulinea, Euamoebida). However, molecular phylogenetic analysis based on only the small subunit ribosomal RNA (SSU rRNA) gene and on two concatenated markers (SSU rRNA gene and actin) robustly places this species in the Discosea, specifically, in a clade with Dermamoeba and Paradermamoeba (Dermamoebida) as the closest described relatives, and several SSU rRNA clones from environmental DNA. A unique glycocalyx of the studied amoeba consisting of complex separate units with pentameric symmetry may be considered a unifying character of this species with other dermamoebids. The monotactic morphotype demonstrated by these amoebae primarily occurs in Tubulinea but was recently confirmed in other clades of Amoebozoa (e.g. Dactylopodida and Variosea). This morphotype may be the plesiomorphic mode of cell organization in Amoebozoa that might have evolved in the last amoebozoan common ancestor (LACA) and conserved in several lineages of this group. It may reflect basic characteristics of the cytoskeletal structure and functions in Amoebozoa.
Collapse
|
3
|
Lotonin K, Bondarenko N, Nassonova E, Rayko M, Smirnov A. Balamuthia spinosa n. sp. (Amoebozoa, Discosea) from the brackish-water sediments of Nivå Bay (Baltic Sea, The Sound) - a novel potential vector of Legionella pneumophila in the environment. Parasitol Res 2022; 121:713-724. [PMID: 35022888 DOI: 10.1007/s00436-022-07425-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/02/2022] [Indexed: 11/24/2022]
Abstract
We have found a new free-living amoeba species named Balamuthia spinosa n. sp. (Amoebozoa, Discosea) in the bottom sediments of the brackish-water Nivå Bay (Baltic Sea, The Sound). This species resembles members of the genus Stygamoeba morphologically and was (mis)identified as belonging to this genus during the initial investigation. However, SSU rRNA gene data show that it robustly groups with Balamuthia mandrillaris sequence among Acanthopodida and represents a new species of the genus Balamuthia. Fragments of Legionella pneumophila genome were found among the NGS contigs obtained from B. spinosa n. sp., suggesting that this species may be a vector of Legionella in the environment. We discuss a remarkable morphological and ultrastructural similarity between the genus Balamuthia and the genus Stygamoeba. In addition, our phylogenetic analysis based on the SSU rRNA gene sequences revealed a close relationship between the genera Stygamoeba and Vermistella. It is one more confirmation of the order Stygamoebida, which was formed basing on the morphological evidence. The position of these branches close to Thecamoebida clade is congruent with current phylogenomic data.
Collapse
Affiliation(s)
- K Lotonin
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russia.
| | - N Bondarenko
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russia
| | - E Nassonova
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russia
- Laboratory of Cytology of Unicellular Organisms, Institute of Cytology RAS, Tikhoretsky ave. 4, 194064, St. Petersburg, Russia
| | - M Rayko
- Center for Algorithmic Biotechnology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russia
| | - A Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russia
| |
Collapse
|
4
|
Volkova E, Kudryavtsev A. A morphological and molecular reinvestigation of Janickina pigmentifera (Grassi, 1881) Chatton 1953 - an amoebozoan parasite of arrow-worms (Chaetognatha). Int J Syst Evol Microbiol 2021; 71. [PMID: 34846292 DOI: 10.1099/ijsem.0.005094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amoebozoan parasites of arrow-worms (Chaetognatha) were isolated from their hosts living in plankton of the Bay of Villefranche (Mediterranean Sea). Based on the light microscopic characters, the amoebae were identified as Janickina pigmentifera (Grassi, 1881) by their limax locomotive form and due to the presence of the intracellular symbiont, Perkinsela amoebae, surrounded by a layer of pigment granules. Sequences of the 18S rRNA gene of both J. pigmentifera and its symbiont were obtained for the first time. The molecular phylogenetic analyses of 18S rRNA gene placed J. pigmentifera within the genus Neoparamoeba, a taxon also characterized by the presence of a symbiont, known as Perkinsela amoebae-like organism (PLO). The 18S rRNA gene sequence of P. amoebae from J. pigmentifera grouped with the sequences of 18S rRNA genes of PLOs from Neoparamoeba branchiphila and Neoparamoeba invadens. The first photo documentation of the light microscopic features of J. pigmentifera, such as locomotive form, the morphology of the nucleus and P. amoebae have been provided. The new results support the affinity of J. pigmentifera with the family Paramoebidae suggested previously based on the presence of PLO. In contrast to Janickina, typical members of Paramoebidae (Neoparamoeba and Paramoeba) have a flattened, dactylopodial locomotive form. This discrepancy in morphology can be explained by the obligate parasitic lifestyle of Janickina.
Collapse
Affiliation(s)
- Ekaterina Volkova
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Universitetskaya nab, St Petersburg, Russia
| | - Alexander Kudryavtsev
- Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Universitetskaya nab, St Petersburg, Russia
| |
Collapse
|
5
|
Kudryavtsev A, Völcker E, Clauß S, Pawlowski J. Ovalopodium rosalinum sp. nov., Planopodium haveli gen. nov, sp. nov., Planopodium desertum comb. nov. and new insights into phylogeny of the deeply branching members of the order Himatismenida (Amoebozoa). Int J Syst Evol Microbiol 2021; 71. [PMID: 33709902 DOI: 10.1099/ijsem.0.004737] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The order Himatismenida (Amoebozoa, Discosea) comprises naked amoebae with an organic coat that is located on the dorsal surface of the cell. The phylogenetic relationships among deeply branching genera of the Himatismenida are unclear, as data on the species diversity of the himatismenid genera is largely restricted to the derived genus Cochliopodium. Here, we describe two new amoeba species that branch at the base of the order Himatismenida, evidenced by SSU rRNA gene and multigene analyses. Among them, a freshwater species Planopodium haveli gen. nov., sp. nov. has a dorsal cell coat consisting of flat, oval scales. This species forms a clade at the base of the Himatismenida, and the previously described Ovalopodium desertum, its closest relative, is transferred into the new genus as Planopodium desertum comb. nov. Although the two species are barely distinguishable by their sequence data, they are clearly distinct in morphology. Using this data, we can report the first evidence of a dorsal cell coat consisting of scales outside of the genus Cochliopodium. The other species has a marine origin and branches deeply, close to the root of the phylogenetic tree of Himatismenida. Based on the morphology of this amoeba, it should be described as Ovalopodium rosalinum sp. nov., a new species of the genus Ovalopodium. Analyses of the phylogenetic relationships and the ultrastructure of the deeply branching himatismenids, together with several of the newly obtained gene sequences of Parvamoeba and Cochliopodium, suggest that some elements of the dorsal cell coat of Ovalopodium may be ancestral for Himatismenida and have been partly retained in various more derived species of this clade, in particular, Cochliopodium gallicum. Although actin and Cox1 gene data do not resolve the higher-level relationships in Himatismenida, they correspond to the grouping of species within most genera.
Collapse
Affiliation(s)
- Alexander Kudryavtsev
- Department of Invertebrate Zoology, Faculty of Biology, Saint-Petersburg State University, Universitetskaya nab., 7/9 199034 Saint-Petersburg, Russia.,Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Universitetskaya nab., 1 199034 Saint-Petersburg, Russia
| | | | | | - Jan Pawlowski
- Institute of Oceanology, Polish Academy of Sciences, 81-712 Sopot, Poland.,ID-Gene ecodiagnostics, Campus Biotech Innovation Park, 1202, Geneva, Switzerland.,Department of Genetics and Evolution, University of Geneva, Sciences III, 1211 Geneva, Switzerland
| |
Collapse
|
6
|
Lara E, Dumack K, García-Martín JM, Kudryavtsev A, Kosakyan A. Amoeboid protist systematics: A report on the "Systematics of amoeboid protists" symposium at the VIIIth ECOP/ISOP meeting in Rome, 2019. Eur J Protistol 2020; 76:125727. [PMID: 32755801 DOI: 10.1016/j.ejop.2020.125727] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/22/2020] [Accepted: 06/25/2020] [Indexed: 01/21/2023]
Abstract
Amoeboid protists are extremely abundant and diverse in natural systems where they often play outstanding ecological roles. They can be found in almost all major eukaryotic divisions, and genomic approaches are bringing major changes in our perception of their deep evolutionary relationships. At fine taxonomic levels, the generalization of barcoding is revealing a considerable and unsuspected specific diversity that can be appreciated with careful morphometric analyses based on light and electron microscopic observations. We provide examples on the difficulties and advances in amoeboid protists systematics in a selection of groups that were presented at the VIIIth ECOP/ISOP meeting in Rome, 2019. We conclude that, in all studied groups, important taxonomical rearrangements will certainly take place in the next few years, and systematics must be adapted to incorporate these changes. Notably, nomenclature should be flexible enough to integrate many new high level taxa, and a unified policy must be adopted to species description and to the establishment of types.
Collapse
Affiliation(s)
- Enrique Lara
- Real Jardín Botánico de Madrid, CSIC, Plaza de Murillo 2, 28014 Madrid, Spain.
| | - Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Zülpicher Str. 47b, 50674 Köln, Germany
| | | | - Alexander Kudryavtsev
- Laboratory of Cellular and Molecular Protistology, Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, 199034 Saint-Petersburg, Russia; Department of Invertebrate Zoology, Faculty of Biology, Saint-Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint-Petersburg, Russia
| | - Anush Kosakyan
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| |
Collapse
|
7
|
DNA Metabarcoding of Deep-Sea Sediment Communities Using COI: Community Assessment, Spatio-Temporal Patterns and Comparison with 18S rDNA. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12040123] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Among the complex ecosystems and habitats that form the deep sea, submarine canyons and open slope systems are regarded as potential hotspots of biodiversity. We assessed the spatial and temporal patterns of biodiversity in sediment communities of a NW Mediterranean Canyon and its adjacent open slope (Blanes Canyon) with DNA metabarcoding. We sampled three layers of sediment and four different depths (900–1750 m) at two seasons, and used a fragment of the mitochondrial gene cytochrome c oxidase subunit I (COI) as a metabarcoding marker. The final dataset contained a total of 15,318 molecular operational taxonomic units (MOTUs). Metazoa, Stramenopiles and Archaeplastida were the dominant taxa and, within metazoans, Arthropoda, Nematoda and Cnidaria were the most diverse. There was a trend towards decreasing MOTU richness and diversity in the first few cm (1 to 5) of the sediment, with only 26.3% of the MOTUs shared across sediment layers. Our results show the presence of heterogeneous communities in the studied area, which was significantly different between zones, depths and seasons. We compared our results with the ones presented in a previous study, obtained using the v7 region of the 18S rRNA gene in the same samples. There were remarkable differences in the total number of MOTUs and in the most diverse taxa. COI recovered a higher number of MOTUs, but more remained unassigned taxonomically. However, the broad spatio-temporal patterns elucidated from both datasets coincided, with both markers retrieving the same ecological information. Our results showed that COI can be used to accurately characterize the studied communities and constitute a high-resolution method to detect ecological shifts. We also highlight that COI reference databases for deep-sea organisms have important gaps, and their completeness is essential in order to successfully apply metabarcoding techniques.
Collapse
|
8
|
Obiol A, Giner CR, Sánchez P, Duarte CM, Acinas SG, Massana R. A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Mol Ecol Resour 2020; 20. [PMID: 32065492 DOI: 10.1111/1755-0998.13147] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/31/2020] [Accepted: 02/10/2020] [Indexed: 01/23/2023]
Abstract
Surveying microbial diversity and function is accomplished by combining complementary molecular tools. Among them, metagenomics is a PCR free approach that contains all genetic information from microbial assemblages and is today performed at a relatively large scale and reasonable cost, mostly based on very short reads. Here, we investigated the potential of metagenomics to provide taxonomic reports of marine microbial eukaryotes. We prepared a curated database with reference sequences of the V4 region of 18S rDNA clustered at 97% similarity and used this database to extract and classify metagenomic reads. More than half of them were unambiguously affiliated to a unique reference whilst the rest could be assigned to a given taxonomic group. The overall diversity reported by metagenomics was similar to that obtained by amplicon sequencing of the V4 and V9 regions of the 18S rRNA gene, although either one or both of these amplicon surveys performed poorly for groups like Excavata, Amoebozoa, Fungi and Haptophyta. We then studied the diversity of picoeukaryotes and nanoeukaryotes using 91 metagenomes from surface down to bathypelagic layers in different oceans, unveiling a clear taxonomic separation between size fractions and depth layers. Finally, we retrieved long rDNA sequences from assembled metagenomes that improved phylogenetic reconstructions of particular groups. Overall, this study shows metagenomics as an excellent resource for taxonomic exploration of marine microbial eukaryotes.
Collapse
Affiliation(s)
- Aleix Obiol
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Caterina R Giner
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Pablo Sánchez
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Carlos M Duarte
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Silvia G Acinas
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| | - Ramon Massana
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (ICM-CSIC), Barcelona, Spain
| |
Collapse
|
9
|
Kudryavtsev A, Volkova E. Cunea russae n. sp. (Amoebozoa, Dactylopodida), another cryptic species of Cunea Kudryavtsev and Pawlowski, 2015, inhabits a continental brackish-water biotope. Eur J Protistol 2020; 73:125685. [PMID: 32114251 DOI: 10.1016/j.ejop.2020.125685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 02/02/2023]
Abstract
The genus Cunea Kudryavtsev and Pawlowski, 2015 (Amoebozoa, Dactylopodida) was initially described from the oceanic benthos: C. profundata, from over 5 km depth in the Atlantic Ocean, and C. thuwala from the Red Sea benthos at ca. 60 m depth. Both species are identical to each other in morphology (including cell coat ultrastructure), but differ significantly in the gene sequence data, including barcoding loci of small subunit ribosomal RNA and cytochrome oxidase subunit 1 gene, as well as actin. This paper describes the third species of Cunea, C. russae n. sp. isolated from a brackish water habitat without a direct connection to the ocean, a small spring of brackish water (19‰) emerging from a 246 m deep hole in the earth. This species is morphologically identical to the previous two amoebae, but differs from them significantly in the gene sequence data and ecological preferences. In particular, this species has the broadest salinity tolerance range, being able to reproduce well already at 2.5‰. It is also capable of resisting cold temperatures, like C. profundata. The data obtained suggest that the genus Cunea may comprise a significant taxonomic diversity represented by morphologically identical, but quickly diverging species with significant ecological plasticity.
Collapse
Affiliation(s)
- Alexander Kudryavtsev
- Laboratory of Cellular and Molecular Protistology, Zoological Institute, Russian Academy of Sciences, 199034 St. Petersburg, Russia; Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Ekaterina Volkova
- Laboratory of Cellular and Molecular Protistology, Zoological Institute, Russian Academy of Sciences, 199034 St. Petersburg, Russia
| |
Collapse
|
10
|
Kudryavtsev A, Volkova E, Plotnikov A. Vannella samoroda n. sp. (Amoebozoa) — First member of the genus from a continental saline habitat placed in a molecular tree. Eur J Protistol 2019; 71:125634. [DOI: 10.1016/j.ejop.2019.125634] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 11/15/2022]
|
11
|
Paramoeba aparasomata n. sp., a symbiont-free species, and its relative Paramoeba karteshi n. sp. (Amoebozoa, Dactylopodida). Eur J Protistol 2019; 71:125630. [DOI: 10.1016/j.ejop.2019.125630] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 06/17/2019] [Accepted: 06/18/2019] [Indexed: 01/03/2023]
|
12
|
Udalov IA, Lee WJ, Lotonin K, Smirnov A. Pseudoparamoeba garorimi n. sp., with Notes on Species Distinctions within the Genus. J Eukaryot Microbiol 2019; 67:132-139. [PMID: 31529735 DOI: 10.1111/jeu.12763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 08/16/2019] [Accepted: 09/10/2019] [Indexed: 02/04/2023]
Abstract
A new marine species of naked lobose amoebae Pseudoparamoeba garorimi n. sp. (Amoebozoa, Dactylopodida) isolated from intertidal marine sediments of Garorim Bay, Korea was studied with light and transmission electron microscopy. This species has a typical set of morphological characters for a genus including the shape of the locomotive form, type of subpseudopodia and the tendency to form the single long waving pseudopodium in locomotion. Furthermore, it has the same cell surface structures as were described for the type species, Pseudoparamoeba pagei: blister-like glycostyles with hexagonal base and dome-shaped apex; besides, cell surface bears hair-like outgrowths. The new species described here lacks clear morphological distinctions from the two other Pseudoparamoeba species, but has considerable differences in the 18S rDNA and COX1 gene sequences. Phylogenetic analysis based on 18S rDNA placed P. garorimi n. sp. at the base of the Pseudoparamoeba clade with high PP/BS support. The level of COX1 sequence divergence was 22% between P. garorimi n. sp. and P. pagei and 25% between P. garorimi n. sp. and P. microlepis. Pseudoparamoeba species are hardly distinguishable by morphology alone, but display clear differences in 18S rDNA and COX1 gene sequences.
Collapse
Affiliation(s)
- Ilya A Udalov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7/9, Saint Petersburg, 199034, Russia.,Laboratory of Cellular and Molecular Protistology, Zoological Institute RAS, Universitetskaya nab. 1, Saint Petersburg, 199034, Russia
| | - Won Je Lee
- Department of Environment and Energy Engineering, Kyungnam University, Changwon, Kyungnam, 51767, Korea
| | - Kirill Lotonin
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7/9, Saint Petersburg, 199034, Russia
| | - Alexey Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7/9, Saint Petersburg, 199034, Russia
| |
Collapse
|
13
|
Kudryavtsev A, Pawlowski J, Smirnov A. More amoebae from the deep-sea: Two new marine species of Vexillifera (Amoebozoa, Dactylopodida) with notes on taxonomy of the genus. Eur J Protistol 2018; 66:9-25. [DOI: 10.1016/j.ejop.2018.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/04/2018] [Accepted: 07/04/2018] [Indexed: 10/28/2022]
|
14
|
Kudryavtsev A, Volkova E. Clydonella sawyeri n. sp. (Amoebozoa, Vannellida): Morphological and molecular study and a re-definition of the genus Clydonella Sawyer, 1975. Eur J Protistol 2018; 63:62-71. [DOI: 10.1016/j.ejop.2018.01.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/21/2018] [Accepted: 01/28/2018] [Indexed: 11/27/2022]
|
15
|
Volkova E, Kudryavtsev A. Description of Neoparamoeba longipodia n. sp. and a new strain of Neoparamoeba aestuarina (Page, 1970) (Amoebozoa, Dactylopodida) from deep-sea habitats. Eur J Protistol 2017; 61:107-121. [DOI: 10.1016/j.ejop.2017.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
|
16
|
Two new species of Ripella (Amoebozoa, Vannellida) and unusual intragenomic variability in the SSU rRNA gene of this genus. Eur J Protistol 2017; 61:92-106. [PMID: 28992523 DOI: 10.1016/j.ejop.2017.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Revised: 08/22/2017] [Accepted: 09/08/2017] [Indexed: 11/20/2022]
Abstract
Two new species, Ripella decalvata and R. tribonemae (Amoebozoa, Vannellida), are described and the diversity of known strains assigned to the genus analyzed. Ripella spp. are closely similar to each other in the light microscopic characters and sequences of small-subunit (SSU) ribosomal RNA gene, but differences in the cell coat structure and cytochrome oxidase (COI) gene sequences are more prominent. SSU rRNA in R. platypodia CCAP1589/2, R. decalvata and R. tribonemae demonstrates an unusual pattern of intragenomic variation. Sequencing of multiple molecular clones of this gene produced numerous sequence variants in a number of specific sites. These sites were usually terminal parts of several variable helices in all studied strains. Analysis of all known Ripella strains shows that SSU rRNA sites differing between strains of different origin are mainly restricted to these areas of the gene. There are only two sites, which differ between strains, but not within genomes. This intragenomic variability of the SSU rRNA gene, seemingly characteristic of all Ripella spp., was never reported to be so extensive in Amoebozoa. The data obtained show another example of complex organization of rRNA gene cluster in protists and emphasize caution needed when interpreting the metagenomic data based on this marker.
Collapse
|
17
|
Tekle YI, Wood FC. Longamoebia is not monophyletic: Phylogenomic and cytoskeleton analyses provide novel and well-resolved relationships of amoebozoan subclades. Mol Phylogenet Evol 2017; 114:249-260. [PMID: 28669813 DOI: 10.1016/j.ympev.2017.06.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 06/07/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
Longamoebia is one of the most morphologically diverse member of Amoebozoa. It includes the human pathogen Acanthamoeba, which causes minor skin and serious eye infections as well as fatal central nervous system complications. The taxonomy and phylogeny of Longamoebia is poorly understood partly due to the growing number of molecular studies that report unsuspected affiliations of lineages with extremely different morphotypes in the group. A recent molecular study questioned the monophyly of Longamoebia. In this study, we conducted a more comprehensive phylogenomic analysis including all of putative members of Longamoebia to assess its monophyly. We conducted extensive analyses to see effects of outgroup choice, missing data, and gene and taxon sampling on resulting phylogenies. We also collected morphological characters derived from the cytoskeleton using immunocytochemistry to assess homologies of pseudopodia at a finer scale. Our phylogenomic analysis yielded a well-resolved tree of Amoebozoa and highly supported novel relationships. Discosea is recovered as a monophyletic group with all of its known taxonomic orders. However, its within-group relationships dramatically differed from those originally proposed. Our study strongly demonstrates that Longamoebia sensu Smirnov et al. (2011) is not monophyletic and an invalid taxon. Thecamoebida forms a strongly supported sister group relationship with clade Flabellinea (Dactylopodida and Vannellida), while Dermamoebida (Mayorella+Dermamoeba) form an independent branch basal to other members of Discosea. The remaining groups including members of Centramoebida form a consistently well-supported clade that was shown to form a sister group relationship with Himatismenida. This robust clade shares the unique cytoskeletal features of coiled cytoplasmic microtubule network and F-actin characters. Our analyses demonstrated that placement of unstable taxa in large-scale analysis with varying levels of missing data might be compromised by some confounding factors such as outgroup choice and gene and taxon sampling.
Collapse
Affiliation(s)
- Yonas I Tekle
- Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA.
| | - Fiona C Wood
- Spelman College, 350 Spelman Lane Southwest, Atlanta, GA 30314, USA
| |
Collapse
|
18
|
Blandenier Q, Lara E, Mitchell EA, Alcantara DM, Siemensma FJ, Todorov M, Lahr DJ. NAD9/NAD7 (mitochondrial nicotinamide adenine dinucleotide dehydrogenase gene)—A new “Holy Grail” phylogenetic and DNA-barcoding marker for Arcellinida (Amoebozoa)? Eur J Protistol 2017; 58:175-186. [DOI: 10.1016/j.ejop.2016.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 11/22/2016] [Accepted: 12/12/2016] [Indexed: 11/17/2022]
|
19
|
Blandenier Q, Seppey CVW, Singer D, Vlimant M, Simon A, Duckert C, Lara E. Mycamoeba gemmipara nov. gen., nov. sp., the First Cultured Member of the Environmental Dermamoebidae Clade LKM74 and its Unusual Life Cycle. J Eukaryot Microbiol 2016; 64:257-265. [PMID: 27543384 DOI: 10.1111/jeu.12357] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/04/2016] [Accepted: 08/08/2016] [Indexed: 11/30/2022]
Abstract
Since the first environmental DNA surveys, entire groups of sequences called "environmental clades" did not have any cultured representative. LKM74 is an amoebozoan clade affiliated to Dermamoebidae, whose presence is pervasively reported in soil and freshwater. We obtained an isolate from soil that we assigned to LKM74 by molecular phylogeny, close related to freshwater clones. We described Mycamoeba gemmipara based on observations made with light- and transmission electron microscopy. It is an extremely small amoeba with typical lingulate shape. Unlike other Dermamoebidae, it lacked ornamentation on its cell membrane, and condensed chromatin formed characteristic patterns in the nucleus. M. gemmipara displayed a unique life cycle: trophozoites formed walled coccoid stages which grew through successive buddings and developed into branched structures holding cysts. These structures, measuring hundreds of micrometres, are built as the exclusive product of osmotrophic feeding. To demonstrate that M. gemmipara is a genuine soil inhabitant, we screened its presence in an environmental soil DNA diversity survey performed on an experimental setup where pig cadavers were left to decompose in soils to follow changes in eukaryotic communities. Mycamoeba gemmipara was present in all samples, although related reads were uncommon underneath the cadaver.
Collapse
Affiliation(s)
- Quentin Blandenier
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Emile Argand 11, Neuchâtel, 2000, Switzerland
| | - Christophe V W Seppey
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Emile Argand 11, Neuchâtel, 2000, Switzerland
| | - David Singer
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Emile Argand 11, Neuchâtel, 2000, Switzerland
| | - Michèle Vlimant
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Emile Argand 11, Neuchâtel, 2000, Switzerland
| | - Anaële Simon
- Laboratory of Microbiology, Institute of Biology, University of Neuchâtel, Emile Argand 11, Neuchâtel, 2000, Switzerland
| | - Clément Duckert
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Emile Argand 11, Neuchâtel, 2000, Switzerland
| | - Enrique Lara
- Laboratory of Soil Biodiversity, Institute of Biology, University of Neuchâtel, Emile Argand 11, Neuchâtel, 2000, Switzerland
| |
Collapse
|
20
|
Udalov IA, Zlatogursky VV, Smirnov AV. A New Freshwater Naked Lobose Amoeba Korotnevella venosa
n. sp. (Amoebozoa, Discosea). J Eukaryot Microbiol 2016; 63:834-840. [DOI: 10.1111/jeu.12345] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 06/18/2016] [Accepted: 07/01/2016] [Indexed: 12/01/2022]
Affiliation(s)
- Ilya A. Udalov
- Department of Invertebrate Zoology; Faculty of Biology; Saint Petersburg State University; Universitetskaya nab. 7/9 St. Petersburg 199034 Russia
| | - Vasily V. Zlatogursky
- Department of Invertebrate Zoology; Faculty of Biology; Saint Petersburg State University; Universitetskaya nab. 7/9 St. Petersburg 199034 Russia
| | - Alexey V. Smirnov
- Department of Invertebrate Zoology; Faculty of Biology; Saint Petersburg State University; Universitetskaya nab. 7/9 St. Petersburg 199034 Russia
| |
Collapse
|
21
|
Udalov IA. Pseudoparamoeba microlepis n. sp., Korotnevella fousta n. sp. (Amoebozoa, Dactylopodida), with notes on the evolution of scales among dactylopodid amoebae. Eur J Protistol 2016; 54:33-46. [DOI: 10.1016/j.ejop.2016.03.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 02/05/2016] [Accepted: 03/14/2016] [Indexed: 11/29/2022]
|
22
|
Cavalier-Smith T, Chao EE, Lewis R. 187-gene phylogeny of protozoan phylum Amoebozoa reveals a new class (Cutosea) of deep-branching, ultrastructurally unique, enveloped marine Lobosa and clarifies amoeba evolution. Mol Phylogenet Evol 2016; 99:275-296. [DOI: 10.1016/j.ympev.2016.03.023] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 03/16/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|
23
|
Fučíková K, Lahr DJG. Uncovering Cryptic Diversity in Two Amoebozoan Species Using Complete Mitochondrial Genome Sequences. J Eukaryot Microbiol 2015. [PMID: 26211788 DOI: 10.1111/jeu.12253] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Amoebozoa are a major eukaryotic lineage that encompasses a wide range of amoeboid organisms. The group is understudied from a systematic perspective: molecular tools have only been applied in the last 15 yr. Hence, there is an undersampling of both genes and taxa in the group especially compared to plants, animals, and fungi. Here, we present the complete mitochondrial genomes of two ubiquitous and abundant morpho-species (Acanthamoeba castellanii and Vermamoeba vermiformis). Both have mitochondrial genomes of close relatives previously available, enabling insights into recent divergences at a genomic scale, while simultaneously offering comparisons with divergence estimates obtained from traditionally used single genes, SSU rDNA and cox1. The newly sequenced mt genomes are significantly divergent from their previously sequenced conspecifics (A. castellannii 16.4% divergence at nucleotide level and 10.4% amino acid; V. vermiformis 21.6% and 13.1%, respectively), while divergence at the small subunit ribosomal DNA is below 1% within both species. Morphological analyses determined that these lineages are indistinguishable from their previously sequenced counterparts. Phylogenetic reconstructions using 26 mt genes also indicate a level of divergence that is comparable to divergence among species, while reconstructions using the small subunit ribosomal DNA (SSU rDNA) do not. In addition, we demonstrate that between closely related taxa, there are high levels of synteny, which can be explored for primer design to obtain larger fragments than the traditional barcoding genes. We conclude that, although most systematic work has relied on SSU, this gene alone can severely underestimate diversity. Thus, we suggest that the mt genome emerges as an alternative for unraveling the lower level phylogenetic relationships of Amoebozoa.
Collapse
Affiliation(s)
- Karolina Fučíková
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Daniel J G Lahr
- Department of Zoology, Institute of Biosciences, University of São Paulo, São Paulo, 05508-090, Brazil
| |
Collapse
|