1
|
Campello-Nunes PH, da Silva-Neto ID, da S Paiva T, Soares CAG, Fernandes NM. Ciliate diversity in rodrigo de freitas lagoon (Rio de Janeiro, Brazil) from an integrative standpoint. Braz J Microbiol 2024; 55:1489-1505. [PMID: 38401009 PMCID: PMC11153468 DOI: 10.1007/s42770-024-01291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/18/2024] [Indexed: 02/26/2024] Open
Abstract
The Rodrigo de Freitas Lagoon is a highly eutrophic lacustrine system and has one of the longest histories of exploration and anthropic alteration in Brazil. Despite its relevance, limited studies explored the diversity of micro-eukaryotes in the lagoon. Ciliates (Alveolata, Ciliophora) are overlooked in environmental microbiology, especially in tropical and subtropical ecosystems, resulting in limited knowledge about their diversity and functional relevance in South American habitats, particularly in coastal lagoons. To fill this gap, here we investigated the diversity of ciliates in a brackish coastal lagoon in an urban area of Rio de Janeiro, Brazil, applying and comparing the performance of morphological and metabarcoding approaches. The metabarcoding analysis, based on high-throughput sequencing of the hipervariable region V4 of the 18S rRNA genes detected 37 molecular operational taxonomic units (MOTUs) assigned to Ciliophora, representing only about a half (56.9%) of the diversity detected by microscopy, which counted 65 ciliate morphotypes. The most representative classes in both approaches were Spirotrichea and Oligohymenophorea. The metabarcoding analysis revealed that 35.3% of the ciliate MOTUs had less than 97% similarity to available sequences in the NCBI database, indicating that more than one-third of these MOTUs potentially represents still not represented or undescribed ciliate species in current databases. Our findings indicate that metabarcoding techniques can significantly enhance the comprehension of ciliate diversity in tropical environments, but the scarcity of reference sequences of brackish ciliates in molecular databases represents a challenge to the taxonomic assignment of the MOTUs. This study provides new insights into the diversity of ciliates in a threatened coastal lagoon, revealing a vast array of still unknown and rare ciliate taxonomic units in tropical environments.
Collapse
Affiliation(s)
- Pedro H Campello-Nunes
- Laboratório de Protistologia, Departamento de Zoologia, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Inácio D da Silva-Neto
- Laboratório de Protistologia, Departamento de Zoologia, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Thiago da S Paiva
- Laboratório de Protistologia, Departamento de Zoologia, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Carlos A G Soares
- Laboratório de Genética Molecular de Eucariontes E Simbiontes, Departamento de Genética, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Noemi M Fernandes
- Laboratório de Protistologia, Departamento de Zoologia, Universidade Federal Do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
Rotterová J, Pánek T, Salomaki ED, Kotyk M, Táborský P, Kolísko M, Čepička I. Single cell transcriptomics reveals UAR codon reassignment in Palmarella salina (Metopida, Armophorea) and confirms Armophorida belongs to APM clade. Mol Phylogenet Evol 2024; 191:107991. [PMID: 38092322 DOI: 10.1016/j.ympev.2023.107991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
Anaerobes have emerged in several major lineages of ciliates, but the number of independent transitions to anaerobiosis among ciliates is unknown. The APM clade (Armophorea, Muranotrichea, Parablepharismea) represents the largest clade of obligate anaerobes among ciliates and contains free-living marine and freshwater representatives as well as gut endobionts of animals. The evolution of APM group has only recently started getting attention, and our knowledge on its phylogeny and genetics is still limited to a fraction of taxa. While ciliates portray a wide array of alternatives to the standard genetic code across numerous classes, the APM ciliates were considered to be the largest group using exclusively standard nuclear genetic code. In this study, we present a pan-ciliate phylogenomic analysis with emphasis on the APM clade, bringing the first phylogenomic analysis of the family Tropidoatractidae (Armophorea) and confirming the position of Armophorida within Armophorea. We include five newly sequenced single cell transcriptomes from marine, freshwater, and endobiotic APM ciliates - Palmarella salina, Anteclevelandella constricta, Nyctotherus sp., Caenomorpha medusula, and Thigmothrix strigosa. We report the first discovery of an alternative nuclear genetic code among APM ciliates, used by Palmarella salina (Tropidoatractidae, Armophorea), but not by its close relative, Tropidoatractus sp., and provide a comparative analysis of stop codon identity and frequency indicating the precedency to the UAG codon loss/reassignment over the UAA codon reassignment in the specific ancestor of Palmarella. Comparative genomic and proteomic studies of this group may help explain the constraints that underlie UAR stop-to-sense reassignment, the most frequent type of alternative nuclear genetic code, not only in ciliates, but eukaryotes in general.
Collapse
Affiliation(s)
- Johana Rotterová
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic; Department of Marine Sciences, University of Puerto Rico Mayagüez, Mayagüez, PR, USA.
| | - Tomáš Pánek
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Eric D Salomaki
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice 370 05, Czech Republic; Center for Computational Biology of Human Disease and Center for Computation and Visualization, Brown University, Providence, Rhode Island, USA
| | - Michael Kotyk
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Petr Táborský
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic
| | - Martin Kolísko
- Institute of Parasitology, Biology Centre Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague 128 00, Czech Republic.
| |
Collapse
|
3
|
Carvalho da Silva V, Fernandes N. Protist taxonomic and functional diversity in aquatic ecosystems of the Brazilian Atlantic Forest. PeerJ 2023; 11:e15762. [PMID: 37547721 PMCID: PMC10402703 DOI: 10.7717/peerj.15762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023] Open
Abstract
The Brazilian Atlantic Forest and its associated ecosystems are highly biodiverse but still understudied, especially with respect to eukaryotic microbes. Protists represent the largest proportion of eukaryotic diversity and play important roles in nutrient cycling and maintenance of the ecosystems in which they occur. However, much of protist diversity remains unknown, particularly in the Neotropics. Understanding the taxonomic and functional diversity of these organisms is urgently needed, not only to fill this gap in our knowledge, but also to enable the development of public policies for biological conservation. This is the first study to investigate the taxonomic and trophic diversity of the major protist groups in freshwater systems and brackish coastal lagoons located in fragments of the Brazilian Atlantic Forest by DNA metabarcoding, using high-throughput sequencing of the gene coding for the V4 region of the 18S rRNA gene. We compared α and β diversity for all protist communities and assessed the relative abundance of phototrophic, consumer, and parasitic taxa. We found that the protist communities of coastal lagoons are as diverse as the freshwater systems studied in terms of α diversity, although differed significantly in terms of taxonomic composition. Our results still showed a notable functional homogeneity between the trophic groups in freshwater environments. Beta diversity was higher among freshwater samples, suggesting a greater level of heterogeneity within this group of samples concerning the composition and abundance of OTUs.Ciliophora was the most represented group in freshwater, while Diatomea dominated diversity in coastal lagoons.
Collapse
|
4
|
Méndez-Sánchez D, Pomahač O, Rotterová J, Bourland WA, Čepička I. Morphology and phylogenetic position of three anaerobic ciliates from the classes Odontostomatea and Muranotrichea (Ciliophora). J Eukaryot Microbiol 2023; 70:e12965. [PMID: 36727275 DOI: 10.1111/jeu.12965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/17/2022] [Accepted: 01/27/2023] [Indexed: 02/03/2023]
Abstract
The diversity of the classes Odontostomatea and Muranotrichea, which contain solely obligate anaerobes, is poorly understood. We studied two populations of Mylestoma sp., one of Saprodinium dentatum (Odontostomatea), two of Muranothrix felix sp. nov., and one of Muranothrix sp. (Muranotrichea) employing live observation, protargol impregnation, scanning electron microscopy, and 18S rRNA gene sequencing. Conspecificity of Mylestoma sp., described here, with a previously described species of this genus cannot be excluded since no species have been studied with modern methods. Phylogenetically, the genus Mylestoma is closely related to the odontostomatid Discomorphella pedroeneasi, although the phylogenetic position of class Odontostomatea itself remains unresolved. The newly described muranotrichean species, Muranothrix felix sp. nov., is morphologically similar to M. gubernata but can be distinguished by its fewer macronuclear nodules and fewer adoral membranelles; moreover, it is clearly distinguished from M. gubernata by its 18S rRNA gene sequence. Another population, designated here as Muranothrix sp., most likely represents a separate species.
Collapse
Affiliation(s)
- Daniel Méndez-Sánchez
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ondřej Pomahač
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Johana Rotterová
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic.,Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - William A Bourland
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
5
|
Chen Z, Li J, Salas-Leiva DE, Chen M, Chen S, Li S, Wu Y, Yi Z. Group-specific functional patterns of mitochondrion-related organelles shed light on their multiple transitions from mitochondria in ciliated protists. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:609-623. [PMID: 37078085 PMCID: PMC10077286 DOI: 10.1007/s42995-022-00147-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/23/2022] [Indexed: 05/03/2023]
Abstract
Adaptations of ciliates to hypoxic environments have arisen independently several times. Studies on mitochondrion-related organelle (MRO) metabolisms from distinct anaerobic ciliate groups provide evidence for understanding the transitions from mitochondria to MROs within eukaryotes. To deepen our knowledge about the evolutionary patterns of ciliate anaerobiosis, mass-culture and single-cell transcriptomes of two anaerobic species, Metopus laminarius (class Armophorea) and Plagiopyla cf. narasimhamurtii (class Plagiopylea), were sequenced and their MRO metabolic maps were compared. In addition, we carried out comparisons using publicly available predicted MRO proteomes from other ciliate classes (i.e., Armophorea, Litostomatea, Muranotrichea, Oligohymenophorea, Parablepharismea and Plagiopylea). We found that single-cell transcriptomes were similarly comparable to their mass-culture counterparts in predicting MRO metabolic pathways of ciliates. The patterns of the components of the MRO metabolic pathways might be divergent among anaerobic ciliates, even among closely related species. Notably, our findings indicate the existence of group-specific functional relics of electron transport chains (ETCs). Detailed group-specific ETC functional patterns are as follows: full oxidative phosphorylation in Oligohymenophorea and Muranotrichea; only electron-transfer machinery in Armophorea; either of these functional types in Parablepharismea; and ETC functional absence in Litostomatea and Plagiopylea. These findings suggest that adaptation of ciliates to anaerobic conditions is group-specific and has occurred multiple times. Our results also show the potential and the limitations of detecting ciliate MRO proteins using single-cell transcriptomes and improve the understanding of the multiple transitions from mitochondria to MROs within ciliates. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-022-00147-w.
Collapse
Affiliation(s)
- Zhicheng Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Jia Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | | | - Miaoying Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Shilong Chen
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Senru Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Yanyan Wu
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| | - Zhenzhen Yi
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, School of Life Science, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|
6
|
Méndez-Sánchez D, Pomahač O, Rotterová J, Bourland W, Čepička I. Diversity and Phylogenetic Position of Bothrostoma Stokes, 1887 (Ciliophora: Metopida), with Description of Four New Species. Protist 2022; 173:125887. [PMID: 35714562 DOI: 10.1016/j.protis.2022.125887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 04/30/2022] [Accepted: 05/13/2022] [Indexed: 10/18/2022]
Abstract
Bothrostoma is a genus of anaerobic ciliates in family Metopidae comprising four species, all described based solely on the morphology of living and fixed cells. Unlike other metopids, cells of Bothrostoma are not twisted anteriorly, have a flattened preoral dome, a very prominent sail-like paroral membrane, and an adoral zone of distinctive, very narrow, curved membranelles confined to a wide, non-spiraling peristome on the ventral side. We examined 20 populations of Bothrostoma from hypoxic freshwater sediments. We provide morphological characterization and 18S rRNA gene sequences of four new species, namely B. bimicronucleatum sp. nov., B. boreale sp. nov., B. kovalyovi sp. nov., and B. robustum sp. nov., as well as B. undulans (type species), B. nasutum, and B. ovale comb. nov. (original combination Metopus undulans var. ovalis Kahl, 1932). Except for B. nasutum, Bothrostoma species show low genetic variability among geographically distant populations. Intraspecific phenotypic variability might be driven by environmental conditions. In phylogenetic analyses, Bothrostoma is not closely related to Metopus sensu stricto and forms a moderately supported clade with Planometopus, here referred to as BoPl clade. The anterior axial torsion of the body, typical of other Metopidae, appears to have been lost in the last common ancestor of the BoPl clade.
Collapse
Affiliation(s)
- Daniel Méndez-Sánchez
- Department of Zoology, Faculty of Science, Charles University, Vinična 7, 128 00 Prague, Czech Republic.
| | - Ondřej Pomahač
- Department of Zoology, Faculty of Science, Charles University, Vinična 7, 128 00 Prague, Czech Republic
| | - Johana Rotterová
- Department of Zoology, Faculty of Science, Charles University, Vinična 7, 128 00 Prague, Czech Republic
| | - William Bourland
- Department of Zoology, Faculty of Science, Charles University, Vinična 7, 128 00 Prague, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Vinična 7, 128 00 Prague, Czech Republic
| |
Collapse
|
7
|
Rotterová J, Edgcomb VP, Čepička I, Beinart R. Anaerobic Ciliates as a Model Group for Studying Symbioses in Oxygen-depleted Environments. J Eukaryot Microbiol 2022; 69:e12912. [PMID: 35325496 DOI: 10.1111/jeu.12912] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Anaerobiosis has independently evolved in multiple lineages of ciliates, allowing them to colonize a variety of anoxic and oxygen-depleted habitats. Anaerobic ciliates commonly form symbiotic relationships with various prokaryotes, including methanogenic archaea and members of several bacterial groups. The hypothesized functions of these ecto- and endosymbionts include the symbiont utilizing the ciliate's fermentative end-products to increase host's anaerobic metabolic efficiency, or the symbiont directly providing the host with energy by denitrification or photosynthesis. The host, in turn, may protect the symbiont from competition, the environment, and predation. Despite rapid advances in sampling, molecular, and microscopy methods, as well as the associated broadening of the known diversity of anaerobic ciliates, many aspects of these ciliate symbioses, including host-specificity and co-evolution, remain largely unexplored. Nevertheless, with the number of comparative genomic and transcriptomic analyses targeting anaerobic ciliates and their symbionts on the rise, insights into the nature of these symbioses and the evolution of the ciliate transition to obligate anaerobiosis continue to deepen. This review summarizes the current body of knowledge regarding the complex nature of symbioses in anaerobic ciliates, the diversity of these symbionts, their role in the evolution of ciliate anaerobiosis and their significance in ecosystem-level processes.
Collapse
Affiliation(s)
- Johana Rotterová
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA.,Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Virginia P Edgcomb
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Roxanne Beinart
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| |
Collapse
|