1
|
Jafari M, Farhadi F, Baradaran Rahimi V, Rahmanian-Devin P, Askari N, Askari VR. Mechanistic insights on lycopene usage against diabetes and associated complications. J Diabetes Metab Disord 2025; 24:57. [PMID: 39868352 PMCID: PMC11759726 DOI: 10.1007/s40200-025-01561-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/01/2025] [Indexed: 01/28/2025]
Abstract
Lycopene is a tetraterpene compound belonging to carotenoids that are widely present in tomatoes and similar products. It is known as a powerful anti-oxidant and a non-provitamin A carotenoid. Lycopene has been found to effectively improve diabetes mellitus and its complications, such as cardiac complications, disorders caused by oxidative stress, and liver and neurological disorders. Furthermore, free radicals have been shown to disrupt the action of insulin by changing the physical state of the target cell membrane, while carotenoids improve insulin secretion and function in blood sugar regulation by neutralizing free radicals. It, therefore, seems that targeted clinical studies are needed to investigate the therapeutic effect of lycopene against metabolic disorders induced by diabetes. This review aims to summarize information on the sources and potential uses of lycopene and the possible mechanisms involved in the reduction of the above diseases. Its protective effects, in terms of toxicity and safety, are also discussed. The literature sources used in this review were PubMed, Google Scholar, Scopus, and Web of Science databases.
Collapse
Affiliation(s)
- Mandana Jafari
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Faeghe Farhadi
- Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Pouria Rahmanian-Devin
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nafiseh Askari
- Student Research Committee, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Vahid Reza Askari
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Guo W, Zhang J, Feng Y. Treatment of neuropathic pain by traditional Chinese medicine: An updated review on their effect and putative mechanisms of action. Phytother Res 2024; 38:2962-2992. [PMID: 38600617 DOI: 10.1002/ptr.8180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 04/12/2024]
Abstract
Neuropathic pain (NP) is a common chronic pain with heterogeneous clinical features, and consequent lowering of quality of life. Currently, although conventional chemical drugs can effectively manage NP symptoms in the short term, their long-term efficacy is limited, and they come with significant side effects. In this regard, traditional Chinese medicine (TCM) provides a promising avenue for treating NP. Numerous pharmacological and clinical studies have substantiated the effectiveness of TCM with multiple targets and mechanisms. We aimed to outline the characteristics of TCM, including compound prescriptions, single Chinese herbs, active ingredients, and TCM physical therapy, for NP treatment and discussed their efficacy by analyzing the pathogenesis of NP. Various databases, such as PubMed, Web of Science, China National Knowledge Infrastructure, and Wanfang database, were searched. We focused on recent research progress in NP treatment by TCM. Finally, we proposed the future challenges and emerging trends in the treatment of NP. TCM demonstrates significant clinical efficacy in NP treatment, employing multi-mechanisms. Drawing from the theory of syndrome differentiation, four types of dialectical treatments for NP by compound TCM prescriptions were introduced: promoting blood circulation and removing blood stasis; promoting blood circulation and promote Qi flow; warming Yang and benefiting Qi; soothing the liver and regulating Qi. Meanwhile, 33 single Chinese herbs and 25 active ingredients were included. In addition, TCM physical therapy (e.g., acupuncture, massage, acupoint injection, and fumigation) also showed good efficacy in NP treatment. TCM, particularly through the use of compound prescriptions and acupuncture, holds bright prospects in treating NP owing to its diverse holistic effects. Nonetheless, the multi-targets of TCM may result in possible disadvantages to NP treatment, and the pharmacological mechanisms of TCM need further evaluation. Here, we provide an overview of NP treatment via TCM, based on the pathogenesis and the potential therapeutic mechanisms, thus providing a reference for further studies.
Collapse
Affiliation(s)
- Wenjing Guo
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Jiquan Zhang
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
3
|
Abir MH, Mahamud AGMSU, Tonny SH, Anu MS, Hossain KHS, Protic IA, Khan MSU, Baroi A, Moni A, Uddin MJ. Pharmacological potentials of lycopene against aging and aging-related disorders: A review. Food Sci Nutr 2023; 11:5701-5735. [PMID: 37823149 PMCID: PMC10563689 DOI: 10.1002/fsn3.3523] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/25/2023] [Accepted: 06/13/2023] [Indexed: 10/13/2023] Open
Abstract
Aging and aging-related chronic disorders are one of the principal causes of death worldwide. The prevalence of these disorders is increasing gradually and globally. Considering this unwavering acceleration of the global burden, seeking alternatives to traditional medication to prevent the risk of aging disorders is needed. Among them, lycopene, a carotenoid, is abundant in many fruits and vegetables, including tomatoes, grapefruits, and watermelons, and it has a unique chemical structure to be a potent antioxidant compound. This nutraceutical also possesses several anti-aging actions, including combating aging biomarkers and ameliorating several chronic disorders. However, no systematic evaluation has yet been carried out that can comprehensively elucidate the effectiveness of lycopene in halting the course of aging and the emergence of chronic diseases linked to aging. This review, therefore, incorporates previous pre-clinical, clinical, and epidemiological studies on lycopene to understand its potency in treating aging disorders and its role as a mimic of caloric restriction. Lycopene-rich foods are found to prevent or attenuate aging disorders in various research. Based on the evidence, this review suggests the clinical application of lycopene to improve human health and alleviate the prevalence of aging and aging disorders.
Collapse
Affiliation(s)
- Mehedy Hasan Abir
- ABEx Bio‐Research CenterDhakaBangladesh
- Faculty of Food Science and TechnologyChattogram Veterinary and Animal Sciences UniversityChattogramBangladesh
| | - A. G. M. Sofi Uddin Mahamud
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Food Safety and Regulatory ScienceChung‐Ang UniversityAnseong‐siGyeonggi‐doRepublic of Korea
| | - Sadia Haque Tonny
- Faculty of AgricultureBangladesh Agricultural UniversityMymensinghBangladesh
| | - Mithila Saha Anu
- Department of Fisheries Biology and GeneticsFaculty of Fisheries, Bangladesh Agricultural UniversityMymensinghBangladesh
| | | | - Ismam Ahmed Protic
- Department of Plant PathologyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Md Shihab Uddine Khan
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Crop BotanyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Artho Baroi
- ABEx Bio‐Research CenterDhakaBangladesh
- Department of Crop BotanyFaculty of Agriculture, Bangladesh Agricultural UniversityMymensinghBangladesh
| | - Akhi Moni
- ABEx Bio‐Research CenterDhakaBangladesh
| | | |
Collapse
|
4
|
Kaur N, Kishore L, Farooq SA, Kajal A, Singh R, Agrawal R, Mannan A, Singh TG. Cucurbita pepo seeds improve peripheral neuropathy in diabetic rats by modulating the inflammation and oxidative stress in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85910-85919. [PMID: 37400700 DOI: 10.1007/s11356-023-28339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND Cucurbita pepo (C. pepo) is cultivated and used traditionally as vegetable as well as medicine in different parts of the world. The aim of current study was to investigate the potential of C. pepo in attenuation of diabetic neuropathy via using streptozotocin (STZ)-induced diabetes model in male wistar rats. MATERIALS AND METHODS Diabetic neuropathy was induced by administration of STZ; 65 mg/kg, i.p. and Nicotinamide (NAD; 230 mg/kg i.p.) and assessed by measuring thermal hyperalgesia, mechanical hyperalgesia and motor nerve conduction velocity (MNCV) in experimental animals. Treatment with different doses of (100, 200 and 400 mg/kg, p.o.) petroleum ether extract of C. pepo (CPE) and hydroethanolic extract of C. pepo (CHE) was started from the 60th day of STZ/NAD administration and continued upto 90th day. RESULTS CPE and CHE significantly attenuated the behavioural changes including hyperalgesia, allodynia and MNCV linked to diabetic neuropathy. Moreover, the oxidative stress and level of TNF-α, TGF-β and IL-1β was found to be significantly attenuated in experimental animals. CONCLUSION Thus C. pepo might ameliorate the progression of diabetic neuropathy via modulation of chronic hyperglycemia and therefore and have therapeutic potential for treatment of diabetic neuropathic pain.
Collapse
Affiliation(s)
- Navpreet Kaur
- M.M. College of Pharmacy, M.M. (Deemed to Be) University, Mullana-Ambala, Haryana, 133207, India
| | - Lalit Kishore
- Faculty of Health Sciences, University of Ottawa, Montréal, ON, K1H 8L1, Canada
| | - Shah Asma Farooq
- M.M. College of Pharmacy, M.M. (Deemed to Be) University, Mullana-Ambala, Haryana, 133207, India
| | - Anu Kajal
- M.M. College of Pharmacy, M.M. (Deemed to Be) University, Mullana-Ambala, Haryana, 133207, India
| | - Randhir Singh
- College of Pharmacy, JSS Academy of Technical Education, Uttar Pradesh, Noida, 201309, India
| | - Rohini Agrawal
- Department of Pharmacology, Central University of Punjab, Ghudda, 151401, Bathinda, India
| | - Ashi Mannan
- Chitkara College of Pharmacy, Chitkara University, Punjab, 140401, India
| | | |
Collapse
|
5
|
Jin Y, Arroo R. The protective effects of flavonoids and carotenoids against diabetic complications-A review of in vivo evidence. Front Nutr 2023; 10:1020950. [PMID: 37032781 PMCID: PMC10080163 DOI: 10.3389/fnut.2023.1020950] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/24/2023] [Indexed: 04/11/2023] Open
Abstract
Diabetes mellitus is a chronic metabolic disorder caused either by inadequate insulin secretion, impaired insulin function, or both. Uncontrolled diabetes is characterized by hyperglycemia which over time leads to fatal damage to both macro-and microvascular systems, causing complications such as cardiovascular diseases, retinopathy and nephropathy. Diabetes management is conventionally delivered through modifications of diet and lifestyle and pharmacological treatment, using antidiabetic drugs, and ultimately insulin injections. However, the side effects and financial cost of medications often reduce patient compliance to treatment, negatively affecting their health outcomes. Natural phytochemicals from edible plants such as fruits and vegetables (F&V) and medicinal herbs have drawn a growing interest as potential therapeutic agents for treating diabetes and preventing the onset and progression of diabetic complications. Flavonoids, the most abundant polyphenols in the human diet, have shown antidiabetic effects in numerous in vitro and preclinical studies. The underlying mechanisms have been linked to their antioxidant, anti-inflammatory and immunomodulatory activities. Carotenoids, another major group of dietary phytochemicals, have also shown antidiabetic potential in recent in vitro and in vivo experimental models, possibly through a mechanism of action similar to that of flavonoids. However, scientific evidence on the efficacy of these phytochemicals in treating diabetes or preventing the onset and progression of its complications in clinical settings is scarce, which delays the translation of animal study evidence to human applications and also limits the knowledge on their modes of actions in diabetes management. This review is aimed to highlight the potential roles of flavonoids and carotenoids in preventing or ameliorating diabetes-related complications based on in vivo study evidence, i.e., an array of preclinical animal studies and human intervention trials. The current general consensus of the underlying mechanisms of action exerted by both groups of phytochemicals is that their anti-inflammatory action is key. However, other potential mechanisms of action are considered. In total, 50 in vivo studies were selected for a review after a comprehensive database search via PubMed and ScienceDirect from January 2002 to August 2022. The key words used for analysis are type-2 diabetes (T2DM), diabetic complications, flavonoids, carotenoids, antioxidant, anti-inflammatory, mechanisms of prevention and amelioration, animal studies and human interventions.
Collapse
Affiliation(s)
- Yannan Jin
- Leicester School of Allied Health Sciences, Faculty of Health & Life Sciences, De Montfort University, Leicester, United Kingdom
- *Correspondence: Yannan Jin,
| | - Randolph Arroo
- Leicester School of Pharmacy, Faculty of Health & Life Sciences, De Montfort University, Leicester, United Kingdom
| |
Collapse
|
6
|
Alpha-Lipoic Acid as an Antioxidant Strategy for Managing Neuropathic Pain. Antioxidants (Basel) 2022; 11:antiox11122420. [PMID: 36552628 PMCID: PMC9774895 DOI: 10.3390/antiox11122420] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/04/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Neuropathic pain (NP) is the most prevalent and debilitating form of chronic pain, caused by injuries or diseases of the somatosensory system. Since current first-line treatments only provide poor symptomatic relief, the search for new therapeutic strategies for managing NP is an active field of investigation. Multiple mechanisms contribute to the genesis and maintenance of NP, including damage caused by oxidative stress. The naturally occurring antioxidant alpha-lipoic acid (ALA) is a promising therapeutic agent for the management of NP. Several pre-clinical in vitro and in vivo studies as well as clinical trials demonstrate the analgesic potential of ALA in the management of NP. The beneficial biological activities of ALA are reflected in the various patents for the development of ALA-based innovative products. This review demonstrates the therapeutic potential of ALA in the management of NP by discussing its analgesic effects by multiple antioxidant mechanisms as well as the use of patented ALA-based products and how technological approaches have been applied to enhance ALA's pharmacological properties.
Collapse
|
7
|
Carotenoids in Palliative Care—Is There Any Benefit from Carotenoid Supplementation in the Adjuvant Treatment of Cancer-Related Symptoms? Nutrients 2022; 14:nu14153183. [PMID: 35956359 PMCID: PMC9370407 DOI: 10.3390/nu14153183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/22/2022] Open
Abstract
Carotenoids are organic, liposoluble pigments found in nature, which are responsible for the characteristic colors of ripe tomatoes, carrots, peppers, and crustaceans, among others. Palliative care provided to patients with an incurable disease is aimed at improving the patient’s quality of life through appropriate treatment of symptoms accompanying the disease. Palliative care patients with burdensome symptoms related to advanced-stage cancers are especially interested in the use of natural dietary supplements and herbal remedies to reduce symptoms’ intensity and ameliorate the quality of life. Carotenoids seem to be a group of natural compounds with particularly promising properties in relieving symptoms, mainly due to their strong antioxidant, anti-inflammatory, and neuroprotective properties. Moreover, carotenoids have been used in folk medicine to treat various diseases and alleviate the accompanying symptoms. In this narrative review, the authors decided to determine whether there is any scientific evidence supporting the rationale for carotenoid supplementation in advanced-stage cancer patients, with particular emphasis on the adjuvant treatment of cancer-related symptoms, such as neuropathic pain and cancer-related cachexia.
Collapse
|
8
|
Nahar N, Mohamed S, Mustapha NM, Fong LS. Protective effects of Labisia pumila against neuropathy in a diabetic rat model. J Diabetes Metab Disord 2022; 21:1-11. [PMID: 35673507 PMCID: PMC9167350 DOI: 10.1007/s40200-021-00905-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/20/2021] [Indexed: 12/15/2022]
Abstract
Purpose Diabetes accelerates peripheral, distal symmetric polyneuropathy, small fiber predominant neuropathy, radiculoplexopathy, and autonomic neuropathy. This study investigated the neuroprotective effects of gallic acid and myricetin-rich Labisia pumila extract in a diabetic neuropathy rat model and evaluated the neuropathy correlationship with serum inflammatory biomarkers. Methods Thirty male rats were divided into 5 groups (n = 6), namely: healthy control; non-treated diabetic control; and diabetic-rats treated with 200 mg/kg metformin; Labisia pumila ethanol extract (LP) at 150 mg/kg or 300 mg/kg doses. Diabetes was induced by 60 mg streptozotocin /kg intraperitoneal injection. Rats were orally treated daily for ten weeks. Their fasting blood glucose (FBG), neurological functions (hot plate and tail immersion; thermal hyperalgesia; cold allodynia; motor walking function), biomarkers for inflammation and oxidative stress, the neuro-histopathological changes, and brain somatic index were measured. Results The extract significantly prevented abnormal increases in FBG and decreases in body weight gain. It attenuated behavioral dysfunctions (hot plate and tail immersion; thermal hyperalgesia; cold allodynia; motor walking function), systemic inflammation (serum TNF-α, prostaglandin-E2) oxidative tension (malondialdehyde), histological brain and sciatic nerve injuries in the diabetic-rats, better than Metformin. Conclusion LP mitigated neural dysfunction better than metformin partly by amending diabetic systemic inflammation, oxidative tension, and diabetic abnormalities. The nerve injuries were strongly correlated to serum prostaglandin-E2, TNF-α levels, and walking functions. The motor function was correlated to sensory neuronal functions, inflammation, and oxidation. The sensory neuronal functions were more affected by TNF-α than prostaglandin-E2 or oxidation. Diabetic brain and sciatic nerve deteriorations were influenced by serum TNF-α, PGE2, and MDA levels. Supplementary Information The online version contains supplementary material available at 10.1007/s40200-021-00905-0.
Collapse
Affiliation(s)
- Nazmun Nahar
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | - Suhaila Mohamed
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor Malaysia
| | | | - Lau Seng Fong
- Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM, Serdang, Malaysia
| |
Collapse
|
9
|
Shen CL, Castro L, Fang CY, Castro M, Sherali S, White S, Wang R, Neugebauer V. Bioactive compounds for neuropathic pain: An update on preclinical studies and future perspectives. J Nutr Biochem 2022; 104:108979. [PMID: 35245654 DOI: 10.1016/j.jnutbio.2022.108979] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/21/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
Among different types of chronic pain, neuropathic pain (NP), arising from damage to the nervous system, including peripheral fibers and central neurons, is notoriously difficult to treat and affects 7-10% of the general population. Currently available treatment options for NP are limited and opioid analgesics have severe side effects and can result in opioid use disorder. Recent studies have exhibited the role of dietary bioactive compounds in the mitigation of NP. Here, we assessed the effects of commonly consumed bioactive compounds (ginger, curcumin, omega-3 polyunsaturated fatty acids, epigallocatechin gallate, resveratrol, soy isoflavones, lycopene, and naringin) on NP and NP-related neuroinflammation. Cellular studies demonstrated that these bioactive compounds reduce inflammation via suppression of NF-κB and MAPK signaling pathways that regulate apoptosis/cell survival, antioxidant, and anti-inflammatory responses. Animal studies strongly suggest that these regularly consumed bioactive compounds have a pronounced anti-NP effect as shown by decreased mechanical allodynia, mechanical hyperalgesia, thermal hyperalgesia, and cold hyperalgesia. The proposed molecular mechanisms include (1) the enhancement of neuron survival, (2) the reduction of neuronal hyperexcitability by activation of antinociceptive cannabinoid 1 receptors and opioid receptors, (3) the suppression of sodium channel current, and (4) enhancing a potassium outward current in NP-affected animals, triggering a cascade of chemical changes within, and between neurons for pain relief. Human studies administered in this area have been limited. Future randomized controlled trials are warranted to confirm the findings of preclinical efficacies using bioactive compounds in patients with NP.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas, USA.
| | - Luis Castro
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Chih-Yu Fang
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Maribel Castro
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Samir Sherali
- School of Medicine, Texas Tech University Health Sciences, Lubbock, Texas, USA
| | - Steely White
- Department of Microbiology, Texas Tech University, Lubbock, Texas, USA
| | - Rui Wang
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Volker Neugebauer
- Center of Excellence for Integrative Health, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
10
|
Srivastava R, Tripathi L, Swain SR, Singh J. Neuroprotective validation of pectin in T2DM-induced allodynia and hyperalgesia in diabetic peripheral neuropathic pain. Arch Physiol Biochem 2021:1-12. [PMID: 33618606 DOI: 10.1080/13813455.2021.1884725] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AIM To validate neuroprotective effect of pectin against neuropathic pain in diabetic rodents. MATERIAL AND METHOD Pectin was isolated and characterised from different sources to validate its neuroprotective effect against T2DM associated neuropathic pain. The antioxidant activity of pectins was done by the DPPH method. Type-2 diabetes mellitus (T2DM) was induced in Wistar albino rats by high-fat diet and high-fat emulsion feeding for 2 weeks followed by a single i.p. of Sterptozotocin in 3rd week. The animals were grouped as positive control and Citrus sinensis (L.) Osbeck peel pectin (CSL-OP) as test group and treated for the next 4 weeks. Body weight and blood glucose were measured up to 8 weeks; however, behavioural assessment was done at the end of 5th to 8th week. RESULT CSL-OP restored the reduced body weight and elevated blood glucose with increased pain threshold and improved walking performance. CONCLUSION CSL-OP prevented progression of early diabetic neuropathy with anti-oxidant activity.
Collapse
Affiliation(s)
- Rajnish Srivastava
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, India
| | | | - Sudhansu Ranjan Swain
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, India
| | - Jagan Singh
- Moradabad Educational Trust Group of Institutions Faculty of Pharmacy, Moradabad, India
| |
Collapse
|
11
|
Uddin MS, Hasana S, Ahmad J, Hossain MF, Rahman MM, Behl T, Rauf A, Ahmad A, Hafeez A, Perveen A, Ashraf GM. Anti-Neuroinflammatory Potential of Polyphenols by Inhibiting NF-κB to Halt Alzheimer's Disease. Curr Pharm Des 2021; 27:402-414. [PMID: 33213314 DOI: 10.2174/1381612826666201118092422] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 10/01/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) is an irrevocable chronic brain disorder featured by neuronal loss, microglial accumulation, and progressive cognitive impairment. The proper pathophysiology of this life-threatening disorder is not completely understood and no exact remedies have been found yet. Over the last few decades, research on AD has mainly highlighted pathomechanisms linked to a couple of the major pathological hallmarks, including extracellular senile plaques made of amyloid-β (Aβ) peptides, and intracellular neurofibrillary tangles (NFTs) made of tau proteins. Aβ can induce apoptosis, trigger an inflammatory response, and inhibit the synaptic plasticity of the hippocampus, which ultimately contributes to reducing cognitive functions and memory impairment. Recently, a third disease hallmark, the neuroinflammatory reaction that is mediated by cerebral innate immune cells, has become a spotlight in the current research area, assured by pre-clinical, clinical, and genetic investigations. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), a cytokine producer, is significantly associated with physiological inflammatory proceedings and thus shows a promising candidate for inflammation- based AD therapy. Recent data reveal that phytochemicals, mainly polyphenol compounds, exhibit potential neuroprotective functions and these may be considered as a vital resource for discovering several drug candidates against AD. Interestingly, phytochemicals can easily interfere with the signaling pathway of NF-κB. This review represents the anti-neuroinflammatory potential of polyphenols as inhibitors of NF-κB to combat AD pathogenesis.
Collapse
Affiliation(s)
- Md Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Sharifa Hasana
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
| | - Jamil Ahmad
- Department of Human Nutrition, The University of Agriculture Peshawar, Khyber Pakhtunkhwa, Pakistan
| | | | | | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Swabi, Anbar, Khyber Pakhtunkhwa, Pakistan
| | - Ausaf Ahmad
- Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus, Uttar Pradesh, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Asma Perveen
- Glocal School of Life Sciences, Glocal University, Saharanpur, India
| | - Ghulam Md Ashraf
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Eid SA, El Massry M, Hichor M, Haddad M, Grenier J, Dia B, Barakat R, Boutary S, Chanal J, Aractingi S, Wiesel P, Szyndralewiez C, Azar ST, Boitard C, Zaatari G, Eid AA, Massaad C. Targeting the NADPH Oxidase-4 and Liver X Receptor Pathway Preserves Schwann Cell Integrity in Diabetic Mice. Diabetes 2020; 69:448-464. [PMID: 31882567 DOI: 10.2337/db19-0517] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/15/2019] [Indexed: 11/13/2022]
Abstract
Diabetes triggers peripheral nerve alterations at a structural and functional level, collectively referred to as diabetic peripheral neuropathy (DPN). This work highlights the role of the liver X receptor (LXR) signaling pathway and the cross talk with the reactive oxygen species (ROS)-producing enzyme NADPH oxidase-4 (Nox4) in the pathogenesis of DPN. Using type 1 diabetic (T1DM) mouse models together with cultured Schwann cells (SCs) and skin biopsies from patients with type 2 diabetes (T2DM), we revealed the implication of LXR and Nox4 in the pathophysiology of DPN. T1DM animals exhibit neurophysiological defects and sensorimotor abnormalities paralleled by defective peripheral myelin gene expression. These alterations were concomitant with a significant reduction in LXR expression and increase in Nox4 expression and activity in SCs and peripheral nerves, which were further verified in skin biopsies of patients with T2DM. Moreover, targeted activation of LXR or specific inhibition of Nox4 in vivo and in vitro to attenuate diabetes-induced ROS production in SCs and peripheral nerves reverses functional alteration of the peripheral nerves and restores the homeostatic profiles of MPZ and PMP22. Taken together, our findings are the first to identify novel, key mediators in the pathogenesis of DPN and suggest that targeting LXR/Nox4 axis is a promising therapeutic approach.
Collapse
Affiliation(s)
- Stéphanie A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| | - Mohamed El Massry
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| | - Mehdi Hichor
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| | - Mary Haddad
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Julien Grenier
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| | - Batoul Dia
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Rasha Barakat
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- INSERM U1016, Cochin Institute, University Paris Descartes, Faculty of Medicine, Sorbonne Paris Cité, Paris, France
| | - Suzan Boutary
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Johan Chanal
- INSERM U1016, Cochin Institute, University Paris Descartes, Faculty of Medicine, Sorbonne Paris Cité, Paris, France
| | - Selim Aractingi
- INSERM U1016, Cochin Institute, University Paris Descartes, Faculty of Medicine, Sorbonne Paris Cité, Paris, France
| | | | | | - Sami T Azar
- Department of Internal Medicine, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- AUB Diabetes, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Christian Boitard
- INSERM U1016, Cochin Institute, University Paris Descartes, Faculty of Medicine, Sorbonne Paris Cité, Paris, France
| | - Ghazi Zaatari
- Department of Pathology, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
- AUB Diabetes, American University of Beirut, Faculty of Medicine and Medical Center, Beirut, Lebanon
| | - Charbel Massaad
- INSERM UMR 1124, University Paris Descartes, Faculty of Basic and Biomedical Sciences, Paris, France
| |
Collapse
|
13
|
Consumption of lycopene-rich tomatoes improved glucose homeostasis in rats via an increase in leptin levels. J Nat Med 2019; 74:252-256. [DOI: 10.1007/s11418-019-01341-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/22/2019] [Indexed: 12/27/2022]
|
14
|
Ameliorative effect of gallic acid in paclitaxel-induced neuropathic pain in mice. Toxicol Rep 2019; 6:505-513. [PMID: 31211096 PMCID: PMC6562321 DOI: 10.1016/j.toxrep.2019.06.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 05/28/2019] [Accepted: 06/06/2019] [Indexed: 12/20/2022] Open
Abstract
Gallic acid (GA) is a natural phenolic type of neuroprotective compound. GA possesses anti-nociceptive action against paclitaxel-induced neurotoxicity. GA inhibits THF-α mediated neuropathic pain sensation.
The present study has been investigated the role of gallic acid (GA) in paclitaxel-induced neuropathic pain. The neuropathic pain was developed with paclitaxel (PT: 2 mg/kg, i.p.) administration in mice. GA (20 and 40 mg/kg) and pregabalin (PreG: 5 mg/kg) were administered intravenously for 10 consecutive days. The neuralgic sensations were investigated by assessing various pain tests like acetone drop, pinprick, plantar, tail flick, and tail pinch test. Mice pain behaviors were evaluated on 0, 4th, 8th, 12th and 16th days. The levels of sciatic nerve thiobarbituric acid reactive substances (TBARS), reduced glutathione (GSH), superoxide anion, calcium, myeloperoxidase (MPO), and TNF-α were estimated. Treatment of GA and PreG attenuate PT induced thermal &mechanical hyperalgesia and allodynia symptoms along with the reduction of TBARS, total calcium, TNF-α, superoxide anion, and MPO activity levels; and decreased GSH level. Therefore, it has been concluded that GA has potential neuroprotective actions against PT induced neuropathic pain due to it's anti-oxidant, anti-inflammation and regulation of intracellular calcium ion concentration.
Collapse
|
15
|
Elkaradawy S, Nasr M, Elkerm Y, Deeb ME, Yassine O. The effect of multimodal balanced anaesthesia and long term gabapentin on neuropathic pain, nitric oxide and interleukin-1β following breast surgery. EGYPTIAN JOURNAL OF ANAESTHESIA 2019. [DOI: 10.1016/j.egja.2011.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Sahar Elkaradawy
- Department of Anaesthesia, Medical Research Institute Hospital , University of Alexandria , Egypt
| | - Magda Nasr
- Department of Pharmacology, Medical Research Institute Hospital , University of Alexandria , Egypt
| | - Yasser Elkerm
- Department of Cancer Management and Research, Medical Research Institute Hospital , University of Alexandria , Egypt
| | - Mona El Deeb
- Department of Chemical Pathology, Medical Research Institute Hospital , University of Alexandria , Egypt
| | - Omaima Yassine
- Department of Biomedical Informatics and Medical Statistics, Medical Research Institute Hospital , University of Alexandria , Egypt
| |
Collapse
|
16
|
Singh M, Vaishali, Singh A, Kumar A, Pandey K. Molecular diversity of tomato germplasm (Lycopersicum esculentum L.) using lycopene specific markers. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2018. [DOI: 10.1016/j.bcab.2018.08.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Dewanjee S, Das S, Das AK, Bhattacharjee N, Dihingia A, Dua TK, Kalita J, Manna P. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets. Eur J Pharmacol 2018; 833:472-523. [DOI: 10.1016/j.ejphar.2018.06.034] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 06/15/2018] [Accepted: 06/26/2018] [Indexed: 02/07/2023]
|
18
|
Singh AK, Kumar S, Vinayak M. Recent development in antihyperalgesic effect of phytochemicals: anti-inflammatory and neuro-modulatory actions. Inflamm Res 2018; 67:633-654. [PMID: 29767332 DOI: 10.1007/s00011-018-1156-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 02/08/2023] Open
Abstract
INTRODUCTION Pain is an unpleasant sensation triggered by noxious stimulation. It is one of the most prevalent conditions, limiting productivity and diminishing quality of life. Non steroidal anti inflammatory drugs (NSAIDs) are widely used as pain relievers in present day practice as pain is mostly initiated due to inflammation. However, due to potentially serious side effects, long term use of these antihyperalgesic drugs raises concern. Therefore there is a demand to search novel medicines with least side effects. Herbal products have been used for centuries to reduce pain and inflammation, and phytochemicals are known to cause fewer side effects. However, identification of active phytochemicals of herbal medicines and clear understanding of the molecular mechanism of their action is needed for clinical acceptance. MATERIALS AND METHODS In this review, we have briefly discussed the cellular and molecular changes during hyperalgesia via inflammatory mediators and neuro-modulatory action involved therein. The review includes 54 recently reported phytochemicals with antihyperalgesic action, as per the literature available with PubMed, Google Scholar and Scopus. CONCLUSION Compounds of high interest as potential antihyperalgesic agents are: curcumin, resveratrol, capsaicin, quercetin, eugenol, naringenin and epigallocatechin gallate (EGCG). Current knowledge about molecular targets of pain and their regulation by these phytochemicals is elaborated and the scope of further research is discussed.
Collapse
Affiliation(s)
- Ajeet Kumar Singh
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.,Department of Zoology, CMP Degree College, University of Allahabad, Allahabad, 211002, India
| | - Sanjay Kumar
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Manjula Vinayak
- Department of Zoology, Biochemistry and Molecular Biology Laboratory, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
19
|
Seo EJ, Fischer N, Efferth T. Phytochemicals as inhibitors of NF-κB for treatment of Alzheimer’s disease. Pharmacol Res 2018; 129:262-273. [DOI: 10.1016/j.phrs.2017.11.030] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/19/2017] [Accepted: 11/23/2017] [Indexed: 12/15/2022]
|
20
|
Kishore L, Kaur N, Singh R. Bacosine isolated from aerial parts of Bacopa monnieri improves the neuronal dysfunction in Streptozotocin-induced diabetic neuropathy. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.04.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
|
21
|
Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review. Biomed Pharmacother 2017; 91:31-42. [DOI: 10.1016/j.biopha.2017.04.057] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 01/19/2023] Open
|
22
|
Neuroprotective effect of cerium oxide nanoparticles in a rat model of experimental diabetic neuropathy. Brain Res Bull 2017; 131:117-122. [DOI: 10.1016/j.brainresbull.2017.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 03/29/2017] [Indexed: 01/05/2023]
|
23
|
Dureshahwar K, Mubashir M, Une HD. Quantification of Quercetin Obtained from Allium cepa Lam. Leaves and its Effects on Streptozotocin-induced Diabetic Neuropathy. Pharmacognosy Res 2017; 9:287-293. [PMID: 28827972 PMCID: PMC5541487 DOI: 10.4103/pr.pr_147_16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Objective: Antioxidant potential has protective effects in diabetic neuropathy (DN); hence, the present study was designed with an objective to quantify quercetin from shade-dried leaves of Allium cepa Lam. and to study its effects on streptozotocin (STZ)-induced chronic DN. Materials and Methods: The shade-dried leaves of A. cepa Lam. were extracted with methanol and then fractionated using ethyl acetate (ACEA). The quantification of quercetin in ACEA was evaluated by high-performance thin layer chromatography (HPTLC). The STZ (40 mg/kg) was administered to Sprague-Dawley rats (180–250 g) maintained at normal housing conditions. The STZ was administered once a day for 3 consecutive days. The elevation in blood glucose was monitored for 3 weeks periodically using flavin adenine dinucleotide-glucose dehydrogenase method by Contour TS glucometer. Rats showing blood glucose above 250 mg/dl were selected for the study. Animals were divided into eight groups. ACEA (25, 50, and 100 mg/kg), quercetin (40 mg/kg), metformin (120 mg/kg), and gabapentin (100 mg/kg) were given orally once a day for 2 weeks. The blood glucose level was again measured at the end of treatment to assess DN. Thermal hyperalgesia, cold allodynia, motor incoordination, and neurotoxicity were studied initially and at the end of 2-week treatment. Biochemical parameters were also evaluated after 2-week drug treatment. Results: The quercetin present in ACEA was 4.82% by HPTLC. All the ACEA treatment reduces blood glucose level at the end of the 2-week study and shows a significant neuroprotective effect in STZ-induced DN in the above experimental models. Conclusion: The quercetin present in ACEA proved protective effect in STZ-induced DN. SUMMARY High-performance thin layer chromatography reveals the presence of 4.82% quercetin in Allium cepa ethyl acetate. (ACEA). Its investigation against various diabetic neuropathy biomarkers has proved that ACEA has significant blood glucose reducing action shown neuroprotective action in thermal hyperalgesia, motor incoordination, and biochemical parameters.
Abbreviations Used: HPTLC: High-performance thin layer chromatography, TLC: Thin layer chromatography, UV: Ultraviolet, ACEA: Allium cepa ethyl acetate, STZ: Streptozotocin, LDL: Low-density lipids, HDL: High-density lipids.
Collapse
Affiliation(s)
- Khan Dureshahwar
- Department of Pharmacology, Y B Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, Maharashtra, India
| | - Mohammed Mubashir
- Department of Pharmacology, SDMVM's Dr. Vedprakash Patil Pharmacy College, Aurangabad, Maharashtra, India
| | - Hemant Devidas Une
- Department of Pharmacology, Y B Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, Maharashtra, India
| |
Collapse
|
24
|
Food-Derived Natural Compounds for Pain Relief in Neuropathic Pain. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7917528. [PMID: 27891521 PMCID: PMC5116524 DOI: 10.1155/2016/7917528] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/29/2016] [Accepted: 10/16/2016] [Indexed: 12/17/2022]
Abstract
Neuropathic pain, defined as pain caused by a lesion or disease of the somatosensory nervous system, is characterized by dysesthesia, hyperalgesia, and allodynia. The number of patients with this type of pain has increased rapidly in recent years. Yet, available neuropathic pain medicines have undesired side effects, such as tolerance and physical dependence, and do not fully alleviate the pain. The mechanisms of neuropathic pain are still not fully understood. Injury causes inflammation and immune responses and changed expression and activity of receptors and ion channels in peripheral nerve terminals. Additionally, neuroinflammation is a known factor in the development and maintenance of neuropathic pain. During neuropathic pain development, the C-C motif chemokine receptor 2 (CCR2) acts as an important signaling mediator. Traditional plant treatments have been used throughout the world for treating diseases. We and others have identified food-derived compounds that alleviate neuropathic pain. Here, we review the natural compounds for neuropathic pain relief, their mechanisms of action, and the potential benefits of natural compounds with antagonistic effects on GPCRs, especially those containing CCR2, for neuropathic pain treatment.
Collapse
|
25
|
Zhang FF, Morioka N, Kitamura T, Fujii S, Miyauchi K, Nakamura Y, Hisaoka-Nakashima K, Nakata Y. Lycopene ameliorates neuropathic pain by upregulating spinal astrocytic connexin 43 expression. Life Sci 2016; 155:116-22. [DOI: 10.1016/j.lfs.2016.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/02/2016] [Accepted: 05/14/2016] [Indexed: 12/16/2022]
|
26
|
Murillo AG, Fernandez ML. Potential of Dietary Non-Provitamin A Carotenoids in the Prevention and Treatment of Diabetic Microvascular Complications. Adv Nutr 2016; 7:14-24. [PMID: 26773012 PMCID: PMC4717886 DOI: 10.3945/an.115.009803] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diabetes is a chronic metabolic disease that affects a substantial part of the population around the world. Whether type I or type II, this disease has serious macro- and microvascular complications that constitute the primary cause of death in diabetic patients. Microvascular complications include diabetic retinopathy, nephropathy, and neuropathy. Although these complications are clinically and etiologically diverse, they share a common factor: glucose-induced damage. In the progression of diabetic complications, oxidative stress, inflammation, and the formation of glycation end products play an important role. Previous studies have shown that a healthy diet is vital in preventing these complications; in particular, the intake of antioxidants has been studied for their potential effect in ameliorating hyperglycemic injuries. Carotenoids are lipid-soluble pigments synthesized by plants, bacteria, and some kinds of algae that are responsible for the yellow, red, and orange colors in food. These compounds are part of the antioxidant machinery in plants and have also shown their efficacy in quenching free radicals, scavenging reactive oxygen species, modulating gene expression, and reducing inflammation in vitro and in vivo, showing that they can potentially be used as part of a preventive strategy for metabolic disorders, including diabetes and its related complications. This review highlights the potential protective effects of 4 non-provitamin A carotenoids--lutein, zeaxanthin, lycopene, and astaxanthin--in the development and progression of diabetic microvascular complications.
Collapse
|
27
|
Zou J, Feng D. Lycopene reduces cholesterol absorption through the downregulation of Niemann-Pick C1-like 1 in Caco-2 cells. Mol Nutr Food Res 2015; 59:2225-30. [DOI: 10.1002/mnfr.201500221] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 07/24/2015] [Accepted: 08/05/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Jun Zou
- Department of Cardiology; Affiliated NanHai Hospital of Southern Medical University; Guangdong P. R. China
| | - Dan Feng
- Guangdong Provincial Key Laboratory of Food Nutrition and Health; Department of Preventive Medicine; School of Public Health; Sun Yat-Sen University; Guangzhou P. R. China
| |
Collapse
|
28
|
Empirically derived dietary patterns and incident type 2 diabetes mellitus: a systematic review and meta-analysis on prospective observational studies. Public Health Nutr 2015; 19:230-41. [PMID: 25917191 DOI: 10.1017/s1368980015001251] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To systematically review prospective cohort studies about the association between dietary patterns and type 2 diabetes mellitus (T2DM) incidence, and to quantify the effects using a meta-analysis. DESIGN Databases such as PubMed, ISI Web of Science, SCOPUS and Google Scholar were searched up to 15 January 2015. Cohort studies which tried to examine the association between empirically derived dietary patterns and incident T2DM were selected. The relative risks (RR) and their 95 % confidence intervals for diabetes among participants with highest v. lowest adherence to derived dietary patterns were incorporated into meta-analysis using random-effects models. RESULTS Ten studies (n 404 528) were enrolled in the systematic review and meta-analysis; our analysis revealed that adherence to the 'healthy' dietary patterns significantly reduced the risk of T2DM (RR=0·86; 95 % CI 0·82, 0·90), while the 'unhealthy' dietary patterns adversely affected diabetes risk (RR=1·30; 95 % CI 1·18, 1·43). Subgroup analysis showed that unhealthy dietary patterns in which foods with high phytochemical content were also loaded did not significantly increase T2DM risk (RR=1·06; 95 % CI 0·87, 1·30). CONCLUSIONS 'Healthy' dietary patterns containing vegetables, fruits and whole grains can lower diabetes risk by 14 %. Consuming higher amounts of red and processed meats, high-fat dairy and refined grains in the context of 'unhealthy' dietary patterns will increase diabetes risk by 30 %; while including foods with high phytochemical content in these patterns can modify this effect.
Collapse
|
29
|
Sachdeva AK, Chopra K. Lycopene abrogates Aβ(1-42)-mediated neuroinflammatory cascade in an experimental model of Alzheimer's disease. J Nutr Biochem 2015; 26:736-44. [PMID: 25869595 DOI: 10.1016/j.jnutbio.2015.01.012] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 12/19/2014] [Accepted: 01/29/2015] [Indexed: 12/31/2022]
Abstract
BACKGROUND Neuroinflammation characterized by glial activation and release of proinflammatory mediators is considered to play a critical role in the pathogenesis of Alzheimer's disease (AD). β-Amyloid1-42 (Aβ1-42)-induced learning and memory impairment in rats is believed to be associated with neuronal inflammation. OBJECTIVES The present study was designed to investigate the effect of lycopene, a potent antioxidant and anti-inflammatory carotenoid, in intracerebroventricular (i.c.v.) Aβ1-42-induced neuroinflammatory cascade along with learning and memory impairment in rats. MATERIAL AND METHODS I.c.v. Aβ1-42 was injected bilaterally followed by treatment with lycopene or rivastigmine for 14 days. Morris water maze and elevated plus maze tests were used to assess the memory function. Rats were sacrificed and brains harvested to evaluate various biochemical parameters and mitochondrial complex activities in postmitochondrial supernatant fractions of cerebral cortex and hippocampus of rat brains. The levels of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), tumor growth factor β (TGF-β), nuclear factor-κB (NF-κB) and caspase-3 were assessed by enzyme-linked immunosorbent assay analysis. RESULTS Lycopene remediated Aβ-induced learning and memory deficits in a dose-dependent manner. Aβ1-42-induced mitochondrial dysfunction along with surge of proinflammatory cytokines TNF-α, TGF-β and IL-1β as well as NF-κB and caspase-3 activity in rat brain was significantly reduced with lycopene treatment. CONCLUSION The amelioration of Aβ1-42-induced spatial learning and memory impairment by lycopene could be linked, at least in part, to the inhibition of NF-κB activity and the down-regulation of expression of neuroinflammatory cytokines, suggesting that lycopene may be a potential candidate for AD treatment.
Collapse
Affiliation(s)
- Anand Kamal Sachdeva
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, 160 014 India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Study, Panjab University, Chandigarh, 160 014 India.
| |
Collapse
|
30
|
Babarinde GO, Adegoke GO. Effect of Xylopia aethiopica aqueous extract on antioxidant properties of refrigerated Roma tomato variety packaged in low density polyethylene bags. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2015; 52:1790-1795. [PMID: 25745258 PMCID: PMC4348261 DOI: 10.1007/s13197-013-1157-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/12/2013] [Accepted: 08/25/2013] [Indexed: 06/04/2023]
Abstract
Effects of Xylopia aethiopica (Dunal) A. Richard aqueous extract on the antioxidants of matured tomato fruits at red stage were investigated at 13 ± 2 °C and 80 ± 5 % relative humidity. A sample treated with sodium bicarbonate and untreated samples were included. Samples packaged in low density polyethylene (30 μm thickness) bags were analysed at intervals of 5 days. The treatments revealed statistically significant differences in ascorbic acid content of stored tomato fruits. Fruits treated with 5 % X. aethiopica on day 5 of storage had 21.0 mg/100 g which was significantly (p < 0.05) higher than 18.2 mg/100 g in untreated control samples. At 15th day of storage, ascorbic acid was 10.0 and 14.2 mg/100 g in tomato fruits treated with sodium bicarbonate and 5 % X. aethiopica respectively. The carotenoid and lycopene contents were lower in sodium bicarbonate-treated and the untreated control samples than in X. aethiopica-treated sample. The total phenolic contents were better retained in X. aethiopica-treated tomato than in control. Treatment of tomato fruits with X. aethiopica at 4 & 5 % levels significantly retained the qualities evaluated.
Collapse
Affiliation(s)
- Grace Oluwakemi Babarinde
- />Department of Food Science and Engineering, Ladoke Akintola University of Technology (LAUTECH), Ogbomoso, Nigeria
| | | |
Collapse
|
31
|
Pereira YCL, do Nascimento GC, Iyomasa DM, Iyomasa MM. Muscle characterization of reactive oxygen species in oral diseases. Acta Odontol Scand 2015; 73:81-6. [PMID: 25205230 DOI: 10.3109/00016357.2014.954267] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
IMPORTANCE AND OBJECTIVE Reactive Oxygen Species (ROS) are oxygen-derived molecules that are unstable and highly reactive. They are important signaling mediators of biological processes. In contrast, excessive ROS generation, defective oxidant scavenging or both have been implicated in the pathogenesis of several conditions. This biological paradox of ROS function contributes to the integrity of cells and tissues. So, the aim of this review was examined for published literature related to 'reactive oxygen species and dentistry and muscle'. MATERIALS AND METHODS A PubMed search was performed by using the following key words: 'reactive oxygen species and dentistry and muscle'. RESULTS Involvement of ROS in pathologic conditions can be highlighted in oral diseases like periodontitis, orofacial pain, temporomandibular disorders and oral cancer. Also, several studies have correlated the increase in ROS production with the initiation of the muscle fatigue process and the process of muscle injury. However, studies evaluating the relation of ROS and orofacial muscles, which can prove very important to understand the fatigue muscle in this region during oral movements, have not yet been conducted. CONCLUSIONS It is concluded that the data on skeletal muscles, especially those of mastication, are not commonly published in this data source; therefore, further studies in this field are strongly recommended.
Collapse
|
32
|
Dietary Influence on Pain via the Immune System. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 131:435-69. [PMID: 25744682 DOI: 10.1016/bs.pmbts.2014.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Seto SW, Yang GY, Kiat H, Bensoussan A, Kwan YW, Chang D. Diabetes Mellitus, Cognitive Impairment, and Traditional Chinese Medicine. Int J Endocrinol 2015; 2015:810439. [PMID: 26060494 PMCID: PMC4427766 DOI: 10.1155/2015/810439] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/15/2015] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder affecting a large number of people worldwide. Numerous studies have demonstrated that DM can cause damage to multiple systems, leading to complications such as heart disease, cancer, and cerebrovascular disorders. Numerous epidemiological studies have shown that DM is closely associated with dementia and cognition dysfunction, with recent research focusing on the role of DM-mediated cerebrovascular damage in dementia. Despite the therapeutic benefits of antidiabetic agents for the treatment of DM-mediated cognitive dysfunction, most of these pharmaceutical agents are associated with various undesirable side-effects and their long-term benefits are therefore in doubt. Early evidence exists to support the use of traditional Chinese medicine (TCM) interventions, which tend to have minimal toxicity and side-effects. More importantly, these TCM interventions appear to offer significant effects in reducing DM-related complications beyond blood glucose control. However, more research is needed to further validate these claims and to explore their relevant mechanisms of action. The aims of this paper are (1) to provide an updated overview on the association between DM and cognitive dysfunction and (2) to review the scientific evidence underpinning the use of TCM interventions for the treatment and prevention of DM-induced cognitive dysfunction and dementia.
Collapse
Affiliation(s)
- S. W. Seto
- National Institute of Complementary Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia
| | - G. Y. Yang
- National Institute of Complementary Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia
| | - H. Kiat
- Faculty of Medicine, University of New South Wales, Kensington, NSW 2052, Australia
- School of Medicine, University of Western Sydney, Locked Bag 1797, Penrith, NSW 2751, Australia
- Faculty of Medicine and Health Sciences, Macquarie University, NSW 2109, Australia
| | - A. Bensoussan
- National Institute of Complementary Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia
| | - Y. W. Kwan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - D. Chang
- National Institute of Complementary Medicine, University of Western Sydney, Campbelltown, NSW 2560, Australia
- *D. Chang:
| |
Collapse
|
34
|
Bayramoglu G, Bayramoglu A, Altuner Y, Uyanoglu M, Colak S. The effects of lycopene on hepatic ischemia/reperfusion injury in rats. Cytotechnology 2014; 67:487-91. [PMID: 24590927 PMCID: PMC4371567 DOI: 10.1007/s10616-014-9706-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/18/2014] [Indexed: 01/22/2023] Open
Abstract
There is a very little information about the protective effect of lycopene (LYC) against hepatic ischemia–reperfusion injury. The present study was designed to examine the possible protective effect of the strong antioxidant and anti-inflammatory agent, LYC, on hepatic ischemia/reperfusion injury. For this purpose, rats were subjected to 45 min of hepatic ischemia followed by 60 min of reperfusion period. LYC at the doses of 2.5 and 5 mg/kg body weight (bw) were injected intraperitoneally, 60 min prior to ischemia. Upon sacrification, hepatic tissue samples were used for the measurement of catalase (CAT) activity and malondialdehyde (MDA) levels. Also, aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) were assayed in serum samples. As a result of the use of LYC at the doses of 2.5 and 5 mg/kg bw; while improvements of the ALT, AST, LDH and MDA values were partial and dose-dependent, the improvement of CAT activity was total and dose-independent (p < 0.05). Our findings suggest that LYC has a protective effect against ischemia/reperfusion injury on the liver.
Collapse
Affiliation(s)
- Gokhan Bayramoglu
- Department of Biology, Faculty of Art and Sciences, Artvin Coruh University, 08000, Artvin, Turkey,
| | | | | | | | | |
Collapse
|
35
|
Wang D, Couture R, Hong Y. Activated microglia in the spinal cord underlies diabetic neuropathic pain. Eur J Pharmacol 2014; 728:59-66. [PMID: 24508519 DOI: 10.1016/j.ejphar.2014.01.057] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/23/2014] [Accepted: 01/29/2014] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus is an increasingly common chronic medical condition. Approximately 30% of diabetic patients develop neuropathic pain, manifested as spontaneous pain, hyperalgesia and allodynia. Hyperglycemia induces metabolic changes in peripheral tissues and enhances oxidative stress in nerve fibers. The damages and subsequent reactive inflammation affect structural properties of Schwann cells and axons leading to the release of neuropoietic mediators, such as pro-inflammatory cytokines and pro-nociceptive mediators. Therefore, diabetic neuropathic pain (DNP) shares some histological features and underlying mechanisms with traumatic neuropathy. DNP displays, however, other distinct features; for instance, sensory input to the spinal cord decreases rather than increasing in diabetic patients. Consequently, development of central sensitization in DNP involves mechanisms that are distinct from traumatic neuropathic pain. In DNP, the contribution of spinal cord microglia activation to central sensitization and pain processes is emerging as a new concept. Besides inflammation in the periphery, hyperglycemia and the resulting production of reactive oxygen species affect the local microenvironment in the spinal cord. All these alterations could trigger resting and sessile microglia to the activated phenotype. In turn, microglia synthesize and release pro-inflammatory cytokines and neuroactive molecules capable of inducing hyperactivity of spinal nociceptive neurons. Hence, it is imperative to elucidate glial mechanisms underlying DNP for the development of effective therapeutic agents. The present review highlights the recent developments regarding the contribution of spinal microglia as compelling target for the treatment of DNP.
Collapse
Affiliation(s)
- Dongmei Wang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, New campus, Fuzhou, Fujian 350108, People׳s Republic of China
| | - Réjean Couture
- Department of Physiology, Faculty of Medicine, Université de Montréal, C.P. 6128, Succursale Downtown, Montréal, Québec, Canada H3C 3J7
| | - Yanguo Hong
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, New campus, Fuzhou, Fujian 350108, People׳s Republic of China.
| |
Collapse
|
36
|
Diabetic peripheral neuropathy: Current perspective and future directions. Pharmacol Res 2014; 80:21-35. [DOI: 10.1016/j.phrs.2013.12.005] [Citation(s) in RCA: 201] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 11/26/2013] [Accepted: 12/16/2013] [Indexed: 01/17/2023]
|
37
|
Jain D, Bansal MK, Dalvi R, Upganlawar A, Somani R. Protective effect of diosmin against diabetic neuropathy in experimental rats. JOURNAL OF INTEGRATIVE MEDICINE-JIM 2014; 12:35-41. [DOI: 10.1016/s2095-4964(14)60001-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
38
|
Quintans JSS, Antoniolli AR, Almeida JRGS, Santana-Filho VJ, Quintans-Júnior LJ. Natural products evaluated in neuropathic pain models - a systematic review. Basic Clin Pharmacol Toxicol 2013; 114:442-50. [PMID: 24252102 DOI: 10.1111/bcpt.12178] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/06/2013] [Indexed: 11/29/2022]
Abstract
Chronic pain conditions, such as neuropathic pain, are a common problem that poses a major challenge to health-care providers due to its complex natural history, unclear aetiology and poor response towards therapy. Despite the large number of drugs available, the adherence is limited by the large range of side effects and pharmacological ineffectiveness. Thus, the search for new chemical entities that can act as promising molecules to treat chronic pain conditions has emerged. The natural products remain as the most promising sources of new chemical entities with applicability for the medical approach. Hence, we performed a systematic review analysing pre-clinical studies shown to be promising in a possible applicability in neuropathic pain. The search terms neuropathic pain, phytotherapy and medicinal plants were used to retrieve English language articles in LILACS, PUBMED and EMBASE published until 10 April 2013. From a total of 1529 articles surveyed, 28 met the inclusion and exclusion criteria established. The main chemical compounds studied were flavonoids (28%), terpenes (17%), alkaloids (14%), phenols (10%), carotenoids (10%) and others (21%). The mostly described animal models for the study of neuropathic pain included were chronic constriction injury (CCI - 32%), partial sciatic nerve ligation (PSNL - 28%), streptozotocin - induced diabetic (28%), alcoholic neuropathy (3.5%), sodium monoiodoacetate (MIA - 3.5%) and neuropathic pain induced by paclitaxel (3.5%). The opioids, serotonergic and cannabinoid systems are suggested as the most promising targets for the natural products described. Therefore, the data reviewed here suggest that these compounds are possible candidates for the treatment of chronic painful conditions, such as neuropathic pain.
Collapse
|
39
|
Sato H, Shibata M, Shimizu T, Shibata S, Toriumi H, Ebine T, Kuroi T, Iwashita T, Funakubo M, Kayama Y, Akazawa C, Wajima K, Nakagawa T, Okano H, Suzuki N. Differential cellular localization of antioxidant enzymes in the trigeminal ganglion. Neuroscience 2013; 248:345-58. [PMID: 23774632 DOI: 10.1016/j.neuroscience.2013.06.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 05/31/2013] [Accepted: 06/01/2013] [Indexed: 01/30/2023]
Abstract
Because of its high oxygen demands, neural tissue is predisposed to oxidative stress. Here, our aim was to clarify the cellular localization of antioxidant enzymes in the trigeminal ganglion. We found that the transcriptional factor Sox10 is localized exclusively in satellite glial cells (SGCs) in the adult trigeminal ganglion. The use of transgenic mice that express the fluorescent protein Venus under the Sox10 promoter enabled us to distinguish between neurons and SGCs. Although both superoxide dismutases 1 and 2 were present in the neurons, only superoxide dismutase 1 was identified in SGCs. The enzymes relevant to hydrogen peroxide degradation displayed differential cellular localization, such that neurons were endowed with glutathione peroxidase 1 and thioredoxin 2, and catalase and thioredoxin 2 were present in SGCs. Our immunohistochemical finding showed that only SGCs were labeled by the oxidative damage marker 8-hydroxy-2'-deoxyguanosine, which indicates that the antioxidant systems of SGCs were less potent. The transient receptor potential vanilloid subfamily member 1 (TRPV1), the capsaicin receptor, is implicated in inflammatory hyperalgesia, and we demonstrated that topical capsaicin application causes short-lasting mechanical hyperalgesia in the face. Our cell-based assay revealed that TRPV1 agonist stimulation in the presence of TRPV1 overexpression caused reactive oxygen species-mediated caspase-3 activation. Moreover, capsaicin induced the cellular demise of primary TRPV1-positive trigeminal ganglion neurons in a dose-dependent manner, and this effect was inhibited by a free radical scavenger and a pancaspase inhibitor. This study delineates the localization of antioxidative stress-related enzymes in the trigeminal ganglion and reveals the importance of the pivotal role of reactive oxygen species in the TRPV1-mediated caspase-dependent cell death of trigeminal ganglion neurons. Therapeutic measures for antioxidative stress should be taken to prevent damage to trigeminal primary sensory neurons in inflammatory pain disorders.
Collapse
Affiliation(s)
- H Sato
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Department of Dentistry and Oral Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; Japan Society for the Promotion of Science, 8 Ichiban-cho, Chiyoda-ku, Tokyo 102-8472, Japan
| | - M Shibata
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan.
| | - T Shimizu
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - S Shibata
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - H Toriumi
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - T Ebine
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - T Kuroi
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - T Iwashita
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - M Funakubo
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Y Kayama
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - C Akazawa
- Department of Biochemistry and Biophysics, Graduate School of Health and Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - K Wajima
- Department of Dentistry and Oral Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - T Nakagawa
- Department of Dentistry and Oral Surgery, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - H Okano
- Department of Physiology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| | - N Suzuki
- Department of Neurology, School of Medicine, Keio University, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
40
|
Bayramoglu A, Bayramoglu G, Senturk H. Lycopene Partially Reverses Symptoms of Diabetes in Rats with Streptozotocin-Induced Diabetes. J Med Food 2013; 16:128-32. [DOI: 10.1089/jmf.2012.2277] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Aysegul Bayramoglu
- Department of Biology, Science and Arts Faculty, Artvin Coruh University, Artvin, Turkey
| | - Gokhan Bayramoglu
- Department of Biology, Science and Arts Faculty, Artvin Coruh University, Artvin, Turkey
| | - Hakan Senturk
- Department of Biology, Science and Arts Faculty, Eskisehir Osmangazi University, Eskisehir, Turkey
| |
Collapse
|
41
|
Ranjithkumar R, Prathab Balaji S, Balaji B, Ramesh RV, Ramanathan M. Standardized Aqueous Tribulus terristris (nerunjil) extract attenuates hyperalgesia in experimentally induced diabetic neuropathic pain model: role of oxidative stress and inflammatory mediators. Phytother Res 2012; 27:1646-57. [PMID: 23280817 DOI: 10.1002/ptr.4915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 11/17/2012] [Accepted: 11/27/2012] [Indexed: 12/31/2022]
Abstract
The present study aimed to evaluate standardized aqueous Tribulus terristris (nerunjil) extract on the pain threshold response in streptozotocin (STZ)-induced diabetic neuropathic pain model in rats. After a single injection of STZ (40 mg/kg; i.p.), Wistar male rats were tested by the thermal and chemical-induced pain models. Diabetic rats exhibited significant hyperalgesia, and these rats were left untreated for the first four weeks. Thereafter, treatment was initiated and continued up to week-8. All the rats except the vehicle-treated group received insulin 5 IU/kg/day to maintain plasma glucose levels. Treatment with nerunjil (100 and 300 mg/kg; p.o.) for 4 weeks significantly attenuated the nociception in behavioural models. Nerunjil also inhibited the tumour necrosis factor-α and interleukin-1 beta levels. The effect of nerunjil (300 mg/kg) is comparable to the standard drug Pregabalin (100 mg/kg). Nerunjil increased the superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, and decreased the lipid peroxide levels in dose-dependent manner. Insulin alone-treated rats failed to attenuate hyperalgesic response. In comparison to insulin alone-treated rats, nerunjil exhibited significant increase in the pain threshold response. It could be concluded that in controlled diabetic states, nerunjil attenuated the neuropathic pain through modulation of oxidative stress and inflammatory cytokine release.
Collapse
|
42
|
Chen JY, Chang CY, Lin YS, Hu ML. Nutritional Factors in Herpes Zoster, Postherpetic Neuralgia, and Zoster Vaccination. Popul Health Manag 2012; 15:391-7. [DOI: 10.1089/pop.2012.1563] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jen-Yin Chen
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Food Science and Applied Biotechnology, National Chung Hsing University, Taichung, Taiwan
- Department of the Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chia-Yu Chang
- Department of Neurology, Chi Mei Medical Center, Tainan, Taiwan
- Institute of Biotechnology, Southern Taiwan University, Tainan, Taiwan
| | - Yung-Song Lin
- Department of Otolaryngology, Chi Mei Medical Center, Tainan, Taiwan
- Department of Otolaryngology, Taipei Medical University, Taiwan
| | - Miao-Lin Hu
- Department of Food Science and Applied Biotechnology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
43
|
Antioxidant, antinociceptive, and anti-inflammatory effects of carotenoids extracted from dried pepper (Capsicum annuum L.). J Biomed Biotechnol 2012; 2012:524019. [PMID: 23091348 PMCID: PMC3468166 DOI: 10.1155/2012/524019] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 08/21/2012] [Indexed: 01/21/2023] Open
Abstract
Carotenoids extracted from dried peppers were evaluated for their antioxidant, analgesic, and anti-inflammatory activities. Peppers had a substantial carotenoid content: guajillo 3406 ± 4 μg/g, pasilla 2933 ± 1 μg/g, and ancho 1437 ± 6 μg/g of sample in dry weight basis. A complex mixture of carotenoids was discovered in each pepper extract. The TLC analysis revealed the presence of chlorophylls in the pigment extract from pasilla and ancho peppers. Guajillo pepper carotenoid extracts exhibited good antioxidant activity and had the best scavenging capacity for the DPPH(+) cation (24.2%). They also exhibited significant peripheral analgesic activity at 5, 20, and 80 mg/kg and induced central analgesia at 80 mg/kg. The results suggest that the carotenoids in dried guajillo peppers have significant analgesic and anti-inflammatory benefits and could be useful for pain and inflammation relief.
Collapse
|
44
|
El Boghdady NA, Badr GA. Evaluation of oxidative stress markers and vascular risk factors in patients with diabetic peripheral neuropathy. Cell Biochem Funct 2012; 30:328-34. [DOI: 10.1002/cbf.2808] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Revised: 01/13/2012] [Accepted: 01/18/2012] [Indexed: 12/22/2022]
Affiliation(s)
| | - Gamal Ali Badr
- Faculty of Medicine, Department of Internal Medicine; Al Azhar University; Cairo; Egypt
| |
Collapse
|
45
|
Chauhan N, Taliyan R, Sharma PL. Effect of dipyrone and thalidomide alone and in combination on STZ-induced diabetic neuropathic pain. Naunyn Schmiedebergs Arch Pharmacol 2012; 385:527-38. [PMID: 22249337 DOI: 10.1007/s00210-011-0724-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 12/28/2011] [Indexed: 02/07/2023]
Abstract
Diabetic neuropathy is recognized as one of the most common complications of chronic diabetes, but its pathophysiological mechanism is complex and yet to be completely explored. Monotherapy with conventional analgesics fails to provide adequate pain relief in peripheral diabetic neuropathy. There are a number of evidence suggesting that tumor necrosis factor (TNF-α) plays an important role in the pathogenesis of peripheral diabetic neuropathy. TNF-α up-regulation activates nuclear factor κB, which further up-regulates cyclooxygenase (COX)-2 leading to altered prostaglandin profile. Inhibition of TNF-α and COX-2 provides beneficial effect on diabetic neuropathy by decreasing the oxidative stress level and by preventing neuronal hypersensitivity due to an increased prostaglandin level. The present study was designed to assess the effect of dipyrone and thalidomide on streptozotocin (STZ)-induced neuropathic pain behavior in rats. STZ 50 mg/kg, i.p. was administered to induce experimental diabetes in the rats. Three weeks following STZ, dipyrone (300 and 600 mg/kg, i.p.) and thalidomide (25 and 50 mg/kg, i.p.) alone and subeffective dose combination of dipyrone and thalidomide (300 and 25 mg/kg(-1), i.p.) administered daily for 2 weeks significantly attenuated thermal hyperalgesia, mechanical allodynia, and formalin-induced phase-2 flinching response. Moreover, the subeffective dose combination of dipyrone and thalidomide and preemptive treatment with thalidomide (50 mg/kg) reduces oxidative stress in diabetic rats. In conclusion, the combination of subeffective dose of dipyrone and thalidomide prevented the development and maintenance of experimental diabetic neuropathy. The combination of thalidomide (TNF-α inhibitor) and dipyrone (COX inhibitor) may be used as a potential therapeutic agent for the treatment of diabetic neuropathy.
Collapse
Affiliation(s)
- Neha Chauhan
- Department of Pharmacology, I.S.F College of Pharmacy, Moga, 142001, Punjab, India
| | | | | |
Collapse
|
46
|
Palozza P, Catalano A, Simone R, Mele M, Cittadini A. Effect of Lycopene and Tomato Products on Cholesterol Metabolism. ANNALS OF NUTRITION AND METABOLISM 2012; 61:126-34. [DOI: 10.1159/000342077] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/17/2012] [Indexed: 01/01/2023]
|
47
|
Bhanot A, Shri R. A comparative profile of methanol extracts of Allium cepa and Allium sativum in diabetic neuropathy in mice. Pharmacognosy Res 2011; 2:374-84. [PMID: 21713142 PMCID: PMC3111698 DOI: 10.4103/0974-8490.75460] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/21/2010] [Accepted: 01/12/2011] [Indexed: 12/22/2022] Open
Abstract
Introduction: Diabetic Neuropathy (DN) is a major microvascular complication of uncontrolled diabetes. This may result from increased oxidative stress that accompanies diabetes. Hence plants with antioxidant action play an important role in management of diabetes and its complications. Materials and Methods: This study was designed to evaluate preventive as well as curative effect of methanol extracts of outer scales and edible portions of two plants with established antioxidant action - Allium cepa and Allium sativum, in induced DN in albino mice. Mice were divided into control, diabetic and test extracts treated groups. Test extracts were administered daily at a dose of 200 mg/kg p.o. for 21 days, in the preventive group prior to onset of DN, and in the curative group after the onset of DN. Hyperalgesia and oxidative stress markers were assessed. STZ-diabetic mice showed a significant thermal hyperalgesia (as assessed by the tail-flick test), indicating development of DN. Results: Treatment with test extracts prevented loss in body weight, decreased plasma glucose level, and significantly ameliorated the hyperalgesia, TBARS, serum nitrite and GSH levels in diabetic mice. Conclusion: Methanol extract of outer scales of onion has shown most significant improvement; may be due to higher content of phenolic compounds in outer scales of A. cepa.
Collapse
Affiliation(s)
- Abhishek Bhanot
- Amar Shaheed Baba Ajit Singh Jujhar Singh Memorial (ASBASJSM) College of Pharmacy, BELA, Ropar - 1401 11, Punjab, India
| | | |
Collapse
|
48
|
Abstract
Neuropathic pain continues to be a difficult and challenging clinical issue to deal with effectively. Painful diabetic polyneuropathy is a complex pain condition that occurs with reasonable frequency in the population and it may be extremely difficult for clinicians to provide patients with effective analgesia. Chronic neuropathic pain may occur in approximately one of every four diabetic patients. The pain may be described as burning or a deep-seated ache with sporadic paroxysms of lancinating painful exacerbations. The pain is often constant, moderate to severe in intensity, usually primarily involves the feet and generally tends to worsen at night. Treatment may be multimodal but largely involves pharmacological approaches. Pharmacological therapeutic options include antidepressants (tricyclic antidepressants, serotonin-norepinephrine reuptake inhibitors), α2δ ligands and topical (5%) lidocaine patch. Other agents may be different antiepileptic drugs (carbamazepine, lamotrigine, topiramate), topical capsaicin, tramadol and other opioids. Progress continues with respect to understanding various mechanisms that may contribute to painful diabetic neuropathy. Agents that may hold some promise include neurotrophic factors, growth factors, immunomodulators, gene therapy and poly (adenosine diphosphate-ribose) polymerase inhibitors. It is hoped that in the future clinicians will be able to assess patient pathophysiology, which may help them to match optimal therapeutic agents to target individual patient aberrant mechanisms.
Collapse
Affiliation(s)
- Howard S Smith
- Albany Medical College, Department of Anesthesiology, Albany, New York 12208, USA.
| | | |
Collapse
|
49
|
Gupta SC, Kim JH, Kannappan R, Reuter S, Dougherty PM, Aggarwal BB. Role of nuclear factor κB-mediated inflammatory pathways in cancer-related symptoms and their regulation by nutritional agents. Exp Biol Med (Maywood) 2011; 236:658-71. [PMID: 21565893 PMCID: PMC3141285 DOI: 10.1258/ebm.2011.011028] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cancer is a disease characterized by dysregulation of multiple genes and is associated with symptoms such as cachexia, anorexia, fatigue, depression, neuropathic pain, anxiety, cognitive impairment, sleep disorders and delirium (acute confusion state) in medically ill patients. These symptoms are caused by either the cancer itself or the cancer treatment. During the past decade, increasing evidence has shown that the dysregulation of inflammatory pathways contributes to the expression of these symptoms. Cancer patients have been found to have higher levels of proinflammatory cytokines such as interleukin-6. The nuclear factor (NF)-κB is a major mediator of inflammatory pathways. Therefore, anti-inflammatory agents that can modulate the NF-κB activation and inflammatory pathways may have potential in improving cancer-related symptoms in patients. Because of their multitargeting properties, low cost, low toxicity and immediate availability, natural agents have gained considerable attention for prevention and treatment of cancer-related symptoms. How NF-κB and inflammatory pathways contribute to cancer-related symptoms is the focus of this review. We will also discuss how nutritional agents such as curcumin, genistein, resveratrol, epigallocatechin gallate and lycopene can modulate inflammatory pathways and thereby reduce cancer-related symptoms in patients.
Collapse
Affiliation(s)
- Subash C Gupta
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ji Hye Kim
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ramaswamy Kannappan
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Simone Reuter
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrick M Dougherty
- The Department of Anesthesiology and Pain Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Bharat B Aggarwal
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
50
|
Abstract
Postherpetic neuralgia (PHN) is the most common complication of herpes zoster (HZ). The aim of the present study was to compare the nutritional status of PHN patients with that of healthy controls, and then to identify risk factors for PHN using multivariate multiple logistic regressions. In the present cross-sectional study, we prospectively enrolled fifty PHN patients for at least 3 months and fifty healthy controls. We selected nine circulating nutrients including ionised Ca, Zn, retinol, folic acid, vitamin B12, vitamin C, α-tocopherol, γ-tocopherol and lycopene associated with both immunity and the modulation of neuropathic pain, and measured their concentrations in plasma/serum. Concentrations of ionised Ca, Zn, vitamin C and vitamin B12 were significantly lower in PHN patients than in controls after excluding those patients receiving supplements since the outbreak of HZ. The prevalence of either mild/marginal or severe deficiencies for any of the nine selected circulating nutrients in PHN patients (92 %) was much higher than that in controls (46 %) (P < 0·001). Lower concentrations of vitamin C ( ≤ 45·0 μmol/l), ionised Ca ( ≤ 1·05 mmol/l) and Zn ( ≤ 0·91 g/l) were found to increase independently the risk of PHN using binary variable (dichotomy) analyses with both PHN patients and controls in a multivariate logistic regression analysis. No significant correlations existed between the risks of PHN and the concentrations of retinol, folic acid, vitamin B12, lycopene or α:γ-tocopherol ratios. Thus, lower concentrations of circulating nutrients, namely vitamin C, ionised Ca or Zn, are probably a risk factor in Taiwanese patients with PHN.
Collapse
|