1
|
Yasmin-Karim S, Richards G, Fam A, Ogurek AM, Sridhar S, Makrigiorgos GM. Aerosol Delivery of Hesperetin-Loaded Nanoparticles and Immunotherapy Increases Survival in a Murine Lung Cancer Model. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:586. [PMID: 40278452 PMCID: PMC12029439 DOI: 10.3390/nano15080586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/26/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025]
Abstract
Flavonoids, like Hesperetin, have been shown to be an ACE2 receptor agonists with antioxidant and pro-apoptotic activity and can induce apoptosis in cancer cells. ACE2 receptors are abundant in lung cancer cells. Here, we explored the application of Hesperetin bound to PegPLGA-coated nanoparticles (Hesperetin nanoparticles, HNPs) and anti-CD40 antibody as an aerosol treatment for lung tumor-bearing mice. The Hesperetin nanoparticles (HNPs) were engineered using a nano-formulation microfluidic technique and polymeric nanoparticles. The in vitro studies were performed in human A549 (ATCC) and murine LL/2-Luc2 (ATCC) lung cancer cell lines. A syngeneic orthotopic murine model of lung cancer was generated in wild (+/+) C57/BL6 background mice with luciferase-positive cell line LL/2-Luc2 cells. Lung tumor-bearing mice were treated via aerosol inhalation with HNP, anti-CD40 antibody, or both. Survival was used to analyze the efficacy of the aerosol treatment. The cohorts were also analyzed for body condition score, weight, and liver and kidney function. Analysis of an orthotopic murine lung cancer model demonstrated a differential uptake of the HNPs and anti-CD40 by the cancer cells. A higher survival rate was observed when the combination of aerosol treatment with HNPs was added with the treatment with anti-CD40 (p < 0.001), as compared to anti-CD40 alone (p < 0.01). Moreover, two tumor-bearing mice survived long-term with the combination treatment, and their tumors were diminished. Subsequently, these two mice were shown to be refractory to the development of subcutaneous tumors, indicating systemic resilience to developing new tumors. Using an inhalation-based administration, we successfully established a treatment model of increased therapeutic efficacy with HNPs and anti-CD40 in an orthotopic murine lung cancer model. Our findings open the possibility of improved lung cancer treatment using nanoparticles like flavonoids and immunoadjuvants.
Collapse
Affiliation(s)
- Sayeda Yasmin-Karim
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA (S.S.)
| | - Geraud Richards
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA (S.S.)
| | - Amanda Fam
- Department of Biochemistry, Northeastern University, Boston, MA 02115, USA;
| | | | - Srinivas Sridhar
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA (S.S.)
- CaNCURE Program, Northeastern University, Boston, MA 02115, USA
- Department of Physics, Northeastern University, Boston, MA 02115, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| | - G. Mike Makrigiorgos
- Department of Radiation Oncology, Dana-Farber Cancer Institute and Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA (S.S.)
| |
Collapse
|
2
|
Salmasi Z, Kamali H, Rezaee H, Nazeran F, Jafari Z, Eisvand F, Teymouri M, Khordad E, Mosafer J. Simultaneous therapeutic and diagnostic applications of magnetic PLGA nanoparticles loaded with doxorubicin in rabbit. Drug Deliv Transl Res 2025; 15:770-785. [PMID: 39215953 DOI: 10.1007/s13346-024-01693-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
In this study, DOX (Doxorubicin) and Fe3O4 magnetic nanocrystals (SPIONs (Superparamagnetic iron oxide nanocrystals)) were encapsulated in the PLGA-PEG: poly(lactide-co-glycolide)-b-poly(ethylene glycol) nanoparticles for theranostic purposes. The final prepared formulation which is called NPs (Nanoparticles) exhibited a particle size with a mean diameter of ~ 209 nm and a sufficient saturation magnetization value of 1.65 emu/g. The NPs showed faster DOX release at pH 5.5 compared to pH 7.4. Also, the cytotoxicity effect of NPs increased compared to Free-DOX alone in C6 glioma cancer cells. For in vivo investigations, the 2.2 Kg rabbits were injected with NPs formulations via a central articular anterior vein in their ears. Furthermore, the images of rabbit organs were depicted via MR (Magnetic resonance) and fluorescent imaging techniques. A negative contrast (dark signal) was observed in T2 (Relaxation Time) weighted MR images of IV (Intravenously)-injected rabbits with NPs compared to the control ones. The organ's florescent images of NPs-injected rabbits showed a high density of red color related to the accumulation of DOX in liver and kidney organs. These data showed that the NPs have no cytotoxicity effect on the heart. Also, the results of histopathological tests of different organs showed that the groups receiving NPs and Free-DOX were almost similar and no significant difference was seen, except for the cardiac tissue in which the pathological effects of NPs were significantly less than the Free-DOX. Additionally, pharmacokinetic studies were also conducted at the sera and whole bloods of IV-injected rabbits with NPs and Free-DOX. The pharmacokinetic parameters showed that NPs could enhance the DOX retention in the serum compared to the Free-DOX. Altogether, we aimed to produce a powerful delivery nanosystem for its potential in dual therapeutic and diagnostic applications which are called theranostic agents.
Collapse
Affiliation(s)
- Zahra Salmasi
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hanieh Rezaee
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Faezeh Nazeran
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Jafari
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Frarhad Eisvand
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Manouchehr Teymouri
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, North Khorasan, Iran
| | - Elnaz Khordad
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.
- Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, P.O. Box 9516915169, Torbat Heydariyeh, Iran.
| |
Collapse
|
3
|
Nagpal S, Palaniappan T, Wang JW, Wacker MG. Revisiting nanomedicine design strategies for follow-on products: A model-informed approach to optimize performance. J Control Release 2024; 376:1251-1270. [PMID: 39510258 DOI: 10.1016/j.jconrel.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 10/27/2024] [Accepted: 11/03/2024] [Indexed: 11/15/2024]
Abstract
The field of nanomedicine is undergoing a seismic transformations with the rise of nanosimilars, reshaping the pharmaceutical landscape and expanding beyond traditional innovators and generic manufacturers. Nanodrugs are increasingly replacing conventional therapies, offering improved efficacy and safety, while the demand for follow-on products drives market diversification. However, the transition from preclinical to clinical stages presents challenges due to the complex biopharmaceutical behavior of nanodrugs. This review highlights the integration of Quality-by-Design (QbD), in vitro-in vivo correlations (IVIVCs), machine learning, and Model-Informed Drug Development (MIDD) as key strategies to address these complexities. Additionally, it discusses the role of high-throughput processes in the optimization of the nanodrug development pipelines. Covering generations of delivery systems from liposomes to RNA-loaded nanoparticles, this review underscores the evolving market dynamics driven by recent advances in nanomedicine.
Collapse
Affiliation(s)
- Shakti Nagpal
- National University of Singapore, Faculty of Science, Department of Pharmacy and Pharmaceutical Sciences, Singapore
| | | | - Jiong-Wei Wang
- National University of Singapore, Department of Surgery, Yong Loo Lin School of Medicine, Singapore 119228, Singapore; Cardiovascular Research Institute, National University Heart Centre Singapore, 14 Medical Drive, Singapore 117599, Singapore
| | - Matthias G Wacker
- National University of Singapore, Faculty of Science, Department of Pharmacy and Pharmaceutical Sciences, Singapore.
| |
Collapse
|
4
|
Akhtar H, Amara U, Mahmood K, Hanif M, Khalid M, Qadir S, Peng Q, Safdar M, Amjad M, Saif MZ, Tahir A, Yaqub M, Khalid K. Drug carrier wonders: Synthetic strategies of zeolitic imidazolates frameworks (ZIFs) and their applications in drug delivery and anti-cancer activity. Adv Colloid Interface Sci 2024; 329:103184. [PMID: 38781826 DOI: 10.1016/j.cis.2024.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/18/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
With the rapid advancement of nanotechnology, stimuli-responsive nanomaterials have emerged as a feasible choice for the designing of controlled drug delivery systems. Zeolitic imidazolates frameworks are a subclass of Metal-organic frameworks (MOFs) that are recognized by their excellent porosity, structural tunability and chemical modifications make them promising materials for loading targeted molecules and therapeutics agents. The biomedical industry uses these porous materials extensively as nano-carriers in drug delivery systems. These MOFs not only possess excellent targeted imaging ability but also cause the death of tumor cells drawing considerable attention in the current framework of anticancer drug delivery systems. In this review, the outline of stability, porosity, mechanism of encapsulation and release of anticancer drug have been reported extensively. In the end, we also discuss a brief outline of current challenges and future perspectives of ZIFs in the biomedical world.
Collapse
Affiliation(s)
- Hamza Akhtar
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Umay Amara
- School of Materials Science and Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei 230601, China; Department of Materials Science and Engineering, City University of Hong Kong, Kowloon 999077, China.
| | - Khalid Mahmood
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan.
| | - Muhammad Hanif
- Department of Pharmaceutics, faculty of Pharmacy, Bahauddin Zakariya University, Multan 608000, Pakistan.
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Sobia Qadir
- Department of Physics, Govt. Graduate College of Science Multan, 6FFJ+55F, Bosan Rd, Multan, Pakistan
| | - Qiaohong Peng
- Institute of Biomedical Materials and Engineering, College of Materials Science and Engineering, College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Muhammad Safdar
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Amjad
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Zubair Saif
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Aniqa Tahir
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Muhammad Yaqub
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Kiran Khalid
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan 60800, Pakistan
| |
Collapse
|
5
|
Mahmud MM, Pandey N, Winkles JA, Woodworth GF, Kim AJ. Toward the scale-up production of polymeric nanotherapeutics for cancer clinical trials. NANO TODAY 2024; 56:102314. [PMID: 38854931 PMCID: PMC11155436 DOI: 10.1016/j.nantod.2024.102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Nanotherapeutics have gained significant attention for the treatment of numerous cancers, primarily because they can accumulate in and/or selectively target tumors leading to improved pharmacodynamics of encapsulated drugs. The flexibility to engineer the nanotherapeutic characteristics including size, morphology, drug release profiles, and surface properties make nanotherapeutics a unique platform for cancer drug formulation. Polymeric nanotherapeutics including micelles and dendrimers represent a large number of formulation strategies developed over the last decade. However, compared to liposomes and lipid-based nanotherapeutics, polymeric nanotherapeutics have had limited clinical translation from the laboratory. One of the key limitations of polymeric nanotherapeutics formulations for clinical translation has been the reproducibility in preparing consistent and homogeneous large-scale batches. In this review, we describe polymeric nanotherapeutics and discuss the most common laboratory and scale-up formulation methods, specifically those proposed for clinical cancer therapies. We also provide an overview of the major challenges and opportunities for scaling polymeric nanotherapeutics to clinical-grade formulations. Finally, we will review the regulatory requirements and challenges in advancing nanotherapeutics to the clinic.
Collapse
Affiliation(s)
- Md Musavvir Mahmud
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Jeffrey A. Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Graeme F. Woodworth
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Anthony J. Kim
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, MD, 20742, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA
| |
Collapse
|
6
|
Jeshvaghani PA, Pourmadadi M, Yazdian F, Rashedi H, Khoshmaram K, Nigjeh MN. Synthesis and characterization of a novel, pH-responsive sustained release nanocarrier using polyethylene glycol, graphene oxide, and natural silk fibroin protein by a green nano emulsification method to enhance cancer treatment. Int J Biol Macromol 2023; 226:1100-1115. [PMID: 36435465 DOI: 10.1016/j.ijbiomac.2022.11.226] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
In this study, for the first time, by employing a simple and efficient double nano-emulsification method and using sweet almond oil as the organic phase, polyethylene glycol (PEG)/graphene oxide (GO)/silk fibroin (SF) hydrogel-nanocomposite was synthesized. The aim of the research was to fabricate a biocompatible targeted pH-sensitive sustained release carrier, improve the drug loading capacity and enhance the anticancer effect of doxorubicin (DOX) drug. The obtained values for the entrapment (%EE) and loading efficacy (%LE) were 87.75 ± 0.7 % and 46 ± 1 %, respectively, and these high values were due to the use of GO with a large specific surface area and the electrostatic interaction between the drug and SF. The Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses confirmed the presence of all the components in the nanocomposite and the suitable interaction between them. Based on the results of dynamic light scattering analysis (DLS) and zeta potential analysis, the mean size of the carrier particles and its surface charge were 293.7 nm and -102.9 mV, respectively. The high negative charge was caused by the presence of hydroxyl groups in GO and SF and it caused proper stability of the nanocomposite. The spherical core-shell structure with its homogeneous surface was also observed in the field emission scanning electron microscopy (FE-SEM) image. The cumulative release percentage of the nanocarrier reached 95.75 after 96 h and it is higher in the acidic environment at all times. The results of fitting the release data to the kinetic models suggested that the mechanism of release was dissolution-controlled anomalous at pH 7.4 and diffusion-controlled anomalous at pH 5.4. The results of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay and flow cytometry showed an increase in toxicity on MCF-7 cells and improved apoptotic cell death compared to the free drug. Consequently, the findings of this research introduced and confirmed PEG/GO/SF nanocomposite as an attractive novel drug delivery system for pH-sensitive and sustained delivery of chemotherapeutic agents in biomedicine.
Collapse
Affiliation(s)
| | - Mehrab Pourmadadi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Keyvan Khoshmaram
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Mona Navaei Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
7
|
Wu J, Ding J, Xiao B, Chen D, Huang D, Ma P, Xiong Z. A facile strategy for controlling porous PLGA microspheres via o/w emulsion method. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03369-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Ghosh A, Rajdev B, Parihar N, Ponneganti S, Das P, Naidu VGM, Krishnanand P R, USN M, Kumar J, Pemmaraju DB. Bio-nanoconjugates of lithocholic acid/IR 780 for ROS-mediated apoptosis and optoacoustic imaging applications in breast cancer. Colloids Surf B Biointerfaces 2022; 221:113023. [DOI: 10.1016/j.colsurfb.2022.113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/30/2022] [Accepted: 11/13/2022] [Indexed: 11/16/2022]
|
9
|
Design and scale-up of amorphous drug nanoparticles production via a one-step anhydrous continuous process. Int J Pharm 2022; 628:122304. [DOI: 10.1016/j.ijpharm.2022.122304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022]
|
10
|
Fahmy SA, Mahdy NK, Al Mulla H, ElMeshad AN, Issa MY, Azzazy HMES. PLGA/PEG Nanoparticles Loaded with Cyclodextrin- Peganum harmala Alkaloid Complex and Ascorbic Acid with Promising Antimicrobial Activities. Pharmaceutics 2022; 14:142. [PMID: 35057040 PMCID: PMC8780513 DOI: 10.3390/pharmaceutics14010142] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Antimicrobial drugs face numerous challenges, including drug resistance, systemic toxic effects, and poor bioavailability. To date, treatment choices are limited, which warrants the search for novel potent antivirals, including those extracted from natural products. The seeds of Peganum harmala L. (Zygophyllaceae family) have been reported to have antimicrobial, antifungal, and anticancer activities. In the present study, a 2-hydroxy propyl-β-cyclodextrin (HPβCD)/harmala alkaloid-rich fraction (HARF) host-guest complex was prepared using a thin-film hydration method to improve the water solubility and bioavailability of HARF. The designed complex was then co-encapsulated with ascorbic acid into PLGA nanoparticles coated with polyethylene glycol (HARF-HPßCD/AA@PLGA-PEG NPs) using the W/O/W multiple emulsion-solvent evaporation method. The average particle size, PDI, and zeta potential were 207.90 ± 2.60 nm, 0.17 ± 0.01, and 31.6 ± 0.20 mV, respectively. The entrapment efficiency for HARF was 81.60 ± 1.20% and for ascorbic acid was 88 ± 2.20%. HARF-HPßCD/AA@PLGA-PEG NPs had the highest antibacterial activity against Staphylococcus aureus and Escherichia coli (MIC of 0.025 mg/mL). They also exhibited high selective antiviral activity against the H1N1 influenza virus (IC50 2.7 μg/mL) without affecting the host (MDCK cells). In conclusion, the co-encapsulation of HPCD-HARF complex and ascorbic acid into PLGA-PEG nanoparticles significantly increased the selective H1N1 killing activity with minimum host toxic effects.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (S.A.F.); (N.K.M.); (H.A.M.)
| | - Noha Khalil Mahdy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (S.A.F.); (N.K.M.); (H.A.M.)
| | - Hadeer Al Mulla
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (S.A.F.); (N.K.M.); (H.A.M.)
| | - Aliaa Nabil ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt;
- Department of Pharmaceutics, Faculty of Pharmacy and Drug Technology, The Egyptian Chinese University, Gesr El Suez Street, Cairo 11786, Egypt
| | - Marwa Y. Issa
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt;
| | - Hassan Mohamed El-Said Azzazy
- Department of Chemistry, School of Sciences & Engineering, The American University in Cairo, AUC Avenue, P.O. Box 74, New Cairo 11835, Egypt; (S.A.F.); (N.K.M.); (H.A.M.)
| |
Collapse
|
11
|
Yang B, Wang X, Dong D, Pan Y, Wu J, Liu J. Existing Drug Repurposing for Glioblastoma to Discover Candidate Drugs as a New a Approach. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180818666210509141735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aims:
Repurposing of drugs has been hypothesized as a means of identifying novel
treatment methods for certain diseases.
Background:
Glioblastoma (GB) is an aggressive type of human cancer; the most effective treatment
for glioblastoma is chemotherapy, whereas, when repurposing drugs, a lot of time and money can be
saved.
Objective:
Repurposing of the existing drug may be used to discover candidate drugs for individualized
treatments of GB.
Method:
We used the bioinformatics method to obtain the candidate drugs. In addition, the drugs
were verified by MTT assay, Transwell® assays, TUNEL staining, and in vivo tumor formation experiments,
as well as statistical analysis.
Result:
We obtained 4 candidate drugs suitable for the treatment of glioma, camptothecin, doxorubicin,
daunorubicin and mitoxantrone, by the expression spectrum data IPAS algorithm analysis and
drug-pathway connectivity analysis. These validation experiments showed that camptothecin was
more effective in treating the GB, such as MTT assay, Transwell® assays, TUNEL staining, and in
vivo tumor formation.
Conclusion:
With regard to personalized treatment, this present study may be used to guide the research
of new drugs via verification experiments and tumor formation. The present study also provides
a guide to systematic, individualized drug discovery for complex diseases and may contribute
to the future application of individualized treatments.
Collapse
Affiliation(s)
- Bo Yang
- Department of Neurosurgery, Hangzhou Medical College Affiliated Lin’an People’s Hospital, The First People’s
Hospital of Hangzhou Lin’an District, Hangzhou, Zhejiang, 311300, China
| | - Xiande Wang
- Department of Neurosurgery, Hangzhou Medical College Affiliated Lin’an People’s Hospital, The First People’s
Hospital of Hangzhou Lin’an District, Hangzhou, Zhejiang, 311300, China
| | - Dong Dong
- Department of Neurosurgery, Hangzhou Medical College Affiliated Lin’an People’s Hospital, The First People’s
Hospital of Hangzhou Lin’an District, Hangzhou, Zhejiang, 311300, China
| | - Yunqing Pan
- Department of Neurosurgery, Hangzhou Medical College Affiliated Lin’an People’s Hospital, The First People’s
Hospital of Hangzhou Lin’an District, Hangzhou, Zhejiang, 311300, China
| | - Junhua Wu
- Department of Neurosurgery, Hangzhou Medical College Affiliated Lin’an People’s Hospital, The First People’s
Hospital of Hangzhou Lin’an District, Hangzhou, Zhejiang, 311300, China
| | - Jianjian Liu
- Department of Neurosurgery, Hangzhou Medical College Affiliated Lin’an People’s Hospital, The First People’s
Hospital of Hangzhou Lin’an District, Hangzhou, Zhejiang, 311300, China
| |
Collapse
|
12
|
Kalenichenko D, Nifontova G, Karaulov A, Sukhanova A, Nabiev I. Designing Functionalized Polyelectrolyte Microcapsules for Cancer Treatment. NANOMATERIALS 2021; 11:nano11113055. [PMID: 34835819 PMCID: PMC8620290 DOI: 10.3390/nano11113055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 12/22/2022]
Abstract
The engineering of delivery systems for drugs and contrasting labels ensuring the simultaneous imaging and treatment of malignant tumors is an important hurdle in developing new tools for cancer therapy and diagnosis. Polyelectrolyte microcapsules (MCs), formed by nanosized interpolymer complexes, represent a promising platform for the designing of multipurpose agents, functionalized with various components, including high- and low-molecular-weight substances, metal nanoparticles, and organic fluorescent dyes. Here, we have developed size-homogenous MCs with different structures (core/shell and shell types) and microbeads containing doxorubicin (DOX) as a model anticancer drug, and fluorescent semiconductor nanocrystals (quantum dots, QDs) as fluorescent nanolabels. In this study, we suggest approaches to the encapsulation of DOX at different stages of the MC synthesis and describe the optimal conditions for the optical encoding of MCs with water-soluble QDs. The results of primary characterization of the designed microcarriers, including particle analysis, the efficacy of DOX and QDs encapsulation, and the drug release kinetics are reported. The polyelectrolyte MCs developed here ensure a modified (prolonged) release of DOX, under conditions close to normal and tumor tissues; they possess a bright fluorescence that paves the way to their exploitation for the delivery of antitumor drugs and fluorescence imaging.
Collapse
Affiliation(s)
- Daria Kalenichenko
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France; (D.K.); (G.N.)
- Laboratory of Nano-Bioengineering, Institute for Physics and Engineering in Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Galina Nifontova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France; (D.K.); (G.N.)
- Laboratory of Nano-Bioengineering, Institute for Physics and Engineering in Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Alyona Sukhanova
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France; (D.K.); (G.N.)
- Correspondence: (A.S.); (I.N.)
| | - Igor Nabiev
- Laboratoire de Recherche en Nanosciences, LRN-EA4682, Université de Reims Champagne-Ardenne, 51100 Reims, France; (D.K.); (G.N.)
- Laboratory of Nano-Bioengineering, Institute for Physics and Engineering in Biomedicine (PhysBio), National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
- Correspondence: (A.S.); (I.N.)
| |
Collapse
|
13
|
Liu F, Wang X, Liu Q, Zhang H, Xie L, Wang Q, Li L, Li R. Biocompatible Nanoparticles as a Platform for Enhancing Antitumor Efficacy of Cisplatin-Tetradrine Combination. NANOSCALE RESEARCH LETTERS 2021; 16:61. [PMID: 33855646 PMCID: PMC8046896 DOI: 10.1186/s11671-021-03511-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Combination therapy has been a standard strategy in the clinical tumor treatment. We have demonstrated that combination of Tetradrine (Tet) and Cisplatin (CDDP) presented a marked synergistic anticancer activity, but inevitable side effects limit their therapeutic concentration. Considering the different physicochemical and pharmacokinetic properties of the two drugs, we loaded them into a nanovehicle together by the improved double emulsion method. The nanoparticles (NPs) were prepared from the mixture of poly(ethyleneglycol)-polycaprolactone (PEG-PCL) and polycarprolactone (HO-PCL), so CDDP and Tet can be located into the NPs simultaneously, resulting in low interfering effect and high stability. Images from fluorescence microscope revealed the cellular uptake of both hydrophilic and hydrophobic agents delivered by the NPs. In vitro studies on different tumor cell lines and tumor tissue revealed increased tumor inhibition and apoptosis rates. As to the in vivo studies, superior antitumor efficacy and reduced side effects were observed in the NPs group. Furthermore, 18FDG-PET/CT imaging demonstrated that NPs reduced metabolic activities of tumors more prominently. Our results suggest that PEG-PCL block copolymeric NPs could be a promising carrier for combined chemotherapy with solid efficacy and minor side effects.
Collapse
Affiliation(s)
- Fangcen Liu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xinyue Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qin Liu
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Huan Zhang
- Center for Personalized Medicine, Linköping University, 58183, Linköping, Sweden
| | - Li Xie
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qin Wang
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Lin Li
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Rutian Li
- The Comprehensive Cancer Centre of Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
14
|
Tsai LH, Yen CH, Hsieh HY, Young TH. Doxorubicin Loaded PLGA Nanoparticle with Cationic/Anionic Polyelectrolyte Decoration: Characterization, and Its Therapeutic Potency. Polymers (Basel) 2021; 13:693. [PMID: 33668941 PMCID: PMC7956616 DOI: 10.3390/polym13050693] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
Optimized Doxorubicin hydrochloride (DOX) loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (DPN) were prepared by controlling the water/oil distribution of DOX at different pH solutions and controlling the electrostatic interaction between DOX and different terminated-end PLGAs. Furthermore, cationic polyethylenimine (PEI) and anionic poly (acrylic acid) (PAA) were alternately deposited on DPN surface to form PEI-DPN (IDPN) and PAA-PEI-DPN (AIDPN) to enhance cancer therapy potency. Compared to DPN, IDPN exhibited a slower release rate in physiological conditions but PEI was demonstrated to increase the efficiency of cellular uptake and endo/lysosomal escape ability. AIDPN, with the outermost negatively charged PAA layer, still retained better endo/lysosomal escape ability compared to DPN. In addition, AIDPN exhibited the best pH-dependent release profile with 1.6 times higher drug release in pH 5.5 than in pH 7.4. Therefore, AIDPN with the characteristics of PEI and PAA simultaneously was the most optional cancer therapy choice within these three PLGA nanoparticles. As the proposed nanoparticles integrated optimal procedure factors, and possessed cationic and anionic outlayer, our drug delivery nanoparticles can provide an alternative solution to current drug delivery technologies.
Collapse
Affiliation(s)
- Li-Hui Tsai
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan; (L.-H.T.); (C.-H.Y.); (H.-Y.H.)
| | - Chia-Hsiang Yen
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan; (L.-H.T.); (C.-H.Y.); (H.-Y.H.)
| | - Hao-Ying Hsieh
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan; (L.-H.T.); (C.-H.Y.); (H.-Y.H.)
- Department of Dentistry, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Tai-Horng Young
- Department of Biomedical Engineering, National Taiwan University, Taipei 100, Taiwan; (L.-H.T.); (C.-H.Y.); (H.-Y.H.)
- Department of Biomedical Engineering, National Taiwan University Hospital, Taipei 100, Taiwan
| |
Collapse
|
15
|
Influence of PLGA nanoparticles on the deposition of model water-soluble biocompatible polymers by dip coating. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Quijia CR, Bonatto CC, Silva LP, Andrade MA, Azevedo CS, Lasse Silva C, Vega M, de Santana JM, Bastos IMD, Carneiro MLB. Liposomes Composed by Membrane Lipid Extracts from Macrophage Cell Line as a Delivery of the Trypanocidal N, N'-Squaramide 17 towards Trypanosoma cruzi. MATERIALS 2020; 13:ma13235505. [PMID: 33276688 PMCID: PMC7730638 DOI: 10.3390/ma13235505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/21/2020] [Accepted: 10/23/2020] [Indexed: 12/20/2022]
Abstract
Chagas is a neglected tropical disease caused by Trypanosoma cruzi, and affects about 25 million people worldwide. N, N’-Squaramide 17 (S) is a trypanocidal compound with relevant in vivo effectiveness. Here, we produced, characterized, and evaluated cytotoxic and trypanocidal effects of macrophage-mimetic liposomes from lipids extracted of RAW 264.7 cells to release S. As results, the average hydrodynamic diameter and Zeta potential of mimetic lipid membranes containing S (MLS) was 196.5 ± 11 nm and −61.43 ± 2.3 mV, respectively. Drug entrapment efficiency was 73.35% ± 2.05%. After a 72 h treatment, MLS was observed to be active against epimastigotes in vitro (IC50 = 15.85 ± 4.82 μM) and intracellular amastigotes (IC50 = 24.92 ± 4.80 μM). Also, it induced low cytotoxicity with CC50 of 1199.50 ± 1.22 μM towards VERO cells and of 1973.97 ± 5.98 μM in RAW 264.7. MLS also induced fissures in parasite membrane with a diameter of approximately 200 nm in epimastigotes. MLS showed low cytotoxicity in mammalian cells and high trypanocidal activity revealing this nanostructure a promising candidate for the development of Chagas disease treatment.
Collapse
Affiliation(s)
- Christian Rafael Quijia
- Microscopy Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil;
- Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília DF 70.770-917, Brazil; (C.C.B.); (L.P.S.)
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Cínthia Caetano Bonatto
- Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília DF 70.770-917, Brazil; (C.C.B.); (L.P.S.)
| | - Luciano Paulino Silva
- Laboratory of Nanobiotechnology, Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, PqEB, Av. W5 Norte (Final) Caixa Postal 02372, Brasília DF 70.770-917, Brazil; (C.C.B.); (L.P.S.)
| | - Milene Aparecida Andrade
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Clenia Santos Azevedo
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Camila Lasse Silva
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Manel Vega
- Department of Chemistry, University of the Balearic Islands, Palma on the Island of Majorca, Carretera de Valldemossa, km 7.5, 07122 Palma, Illes Balears, Spain;
| | - Jaime Martins de Santana
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
| | - Izabela Marques Dourado Bastos
- Pathogen-Host Interface Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil; (M.A.A.); (C.S.A.); (C.L.S.); (J.M.d.S.)
- Correspondence: (I.M.D.B.); (M.L.B.C.); Tel.: +55-61-3107-3051 (I.M.D.B.)
| | - Marcella Lemos Brettas Carneiro
- Microscopy Laboratory, Department of Cell Biology, Institute of Biology, University of Brasília, UnB—Brasilia, Federal District, Brasília DF 70910-900, Brazil;
- Correspondence: (I.M.D.B.); (M.L.B.C.); Tel.: +55-61-3107-3051 (I.M.D.B.)
| |
Collapse
|
17
|
Doxorubicin-Loaded PLGA Nanoparticles for Cancer Therapy: Molecular Weight Effect of PLGA in Doxorubicin Release for Controlling Immunogenic Cell Death. Pharmaceutics 2020; 12:pharmaceutics12121165. [PMID: 33260446 PMCID: PMC7759870 DOI: 10.3390/pharmaceutics12121165] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022] Open
Abstract
Direct local delivery of immunogenic cell death (ICD) inducers to a tumor site is an attractive approach for leading ICD effectively, due to enabling the concentrated delivery of ICD inducers to the tumor site. Herein, we prepared doxorubicin (DOX)-loaded poly(lactic-co-glycolic acid) (PLGA) nanoparticles (NPs) using different molecular weight PLGA (7000 g/mol and 12,000 g/mol), showing different drug release kinetics. The different release kinetics of DOX might differently stimulate a tumor cell-specific immune response by releasing damage-associated molecular patterns (DAMPs), resulting in showing a different antitumor response in the living body. DOX-PLGA7K NPs showed faster DOX release kinetics than DOX-PLGA12K NPs in the physiological condition. DOX-PLGA7K NPs and DOX-PLGA12K NPs were successfully taken up by the CT-26 tumor cells, subsequently showing different DOX localization times at the nucleus. Released DOX successfully lead to cytotoxicity and HMGB1 release in vitro. Although the DOX-PLGA7K NPs and DOX-PLGA12K NPs showed different sustained DOX release kinetics in vitro, tumor growth of the CT-26 tumor was similarly inhibited for 28 days post-direct tumor injection. Furthermore, the immunological memory effect was successfully established by the ICD-based tumor-specific immune responses, including DC maturation and tumor infiltration of cytotoxic T lymphocytes (CTLs). We expect that the controlled release of ICD-inducible chemotherapeutic agents, using different types of nanomedicines, can provide potential in precision cancer immunotherapy by controlling the tumor-specific immune responses, thus improving the therapeutic efficacy.
Collapse
|
18
|
|
19
|
Simon A, Moreira MLA, Costa IFDJB, de Sousa VP, Rodrigues CR, da Rocha E Lima LMT, Sisnande T, do Carmo FA, Leal ICR, Dos Santos KRN, da Silva LCRP, Cabral LM. Vancomycin-loaded nanoparticles against vancomycin intermediate and methicillin resistant Staphylococcus aureus strains. NANOTECHNOLOGY 2020; 31:375101. [PMID: 32470951 DOI: 10.1088/1361-6528/ab97d7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bacterial infections represent one of the leading causes of mortality in the world. Among causative pathogens, S. aureus is prominently known as the underlying cause of many multidrug resistant infections that are often treated with the first-line choice antibiotic vancomycin (VCM). Loading antibiotics into polymeric nanoparticles (Np) displays promise as an alternative method to deliver therapy due to the greater access and accumulation of the antibiotic at the site of the infection as well as reducing toxicity, irritation and degradation. The aim of this work was to prepare, characterize and evaluate VCM-loaded nanoparticles (VNp) for use against S. aureus strains. Moreover, conjugation of Nps with holo-transferrin (h-Tf) was investigated as an approach for improving targeted drug delivery. VNp were prepared by double emulsion solvent evaporation method using PLGA and PVA or DMAB as surfactants. The particles were characterized for size distribution, Zeta Potential, morphology by transmission electron microscopy, encapsulation yield and protein conjugation efficiency. Process yield and drug loading were also investigated along with an in vitro evaluation of VNp antimicrobial effects against S. aureus strains. Results showed that Np were spontaneously formed with a mean diameter lower than 300 nm in a narrow size distribution that presented a spherical shape. The bioconjugation with h-Tf did not appear to increase the antimicrobial effect of VNp. However, non-bioconjugated Np presented a minimal inhibitory concentration lower than free VCM against a MRSA (Methicillin-resistant S. aureus) strain, and slightly higher against a VISA (VCM intermediate S. aureus) strain. VNp without h-Tf showed potential to assist in the development of new therapies against S. aureus infections.
Collapse
Affiliation(s)
- Alice Simon
- Laboratório de Tecnologia Industrial Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro - UFRJ, CCS, Lss20, Ilha do Fundão, 21941-590, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Munnier E, Al Assaad A, David S, Mahut F, Vayer M, Van Gheluwe L, Yvergnaux F, Sinturel C, Soucé M, Chourpa I, Bonnier F. Homogeneous distribution of fatty ester-based active cosmetic ingredients in hydrophilic thin films by means of nanodispersion. Int J Cosmet Sci 2020; 42:512-519. [PMID: 32700394 DOI: 10.1111/ics.12652] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Cosmetic films and patches are interesting forms to promote skin penetration of active ingredients as they ensure their long stay on the treated zone of the skin. Nevertheless, currently developed films and patches are most of all hydrophilic and are not adapted to the hydrophobic molecules. The aim of this study was to establish whether nanodispersion of fatty acid-based active cosmetic ingredients (ACI) could be a manner to introduce high concentrations of those ACI in hydrophilic films. METHODS Punica granatum seed oil hydroxyphenethyl esters (PHE) constitute a commercialized lipolytic cosmetic ingredient obtained by enzymatic conjugation of tyrosol to long-chain fatty acids and to enhance its skin diffusion. Nanodispersions of PHE were prepared by a green emulsion-solvent evaporation process and dispersed in polyvinyl alcohol films. Raman imaging coupled to multivariate analysis was used to study the distribution of PHE in the films. RESULTS Nanodispersions of PHE combined with antioxidant vitamin E and stabilized by Pluronic® F127 were successfully prepared. The nanodispersions show a spherical shape and a hydrodynamic diameter close to 100 nm. Raman images analysis with multivariate approaches showed a very homogeneous distribution of PHE nanodispersions in the films compared to free PHE introduced as an ethanol solution. CONCLUSION Nanodispersions of hydrophobic fatty acid-based ingredients seem to be relevant method to introduce this type of ingredient in hydrophilic film matrix. The co-suspension with vitamin E limits their degradation in time.
Collapse
Affiliation(s)
- Emilie Munnier
- EA 6295 Nanomédicaments et Nanosondes (NMNS), Faculté de Pharmacie, Université de Tours, 31 avenue Monge 37200, Tours, France
| | - Almar Al Assaad
- EA 6295 Nanomédicaments et Nanosondes (NMNS), Faculté de Pharmacie, Université de Tours, 31 avenue Monge 37200, Tours, France
| | - Stephanie David
- EA 6295 Nanomédicaments et Nanosondes (NMNS), Faculté de Pharmacie, Université de Tours, 31 avenue Monge 37200, Tours, France
| | - Frédéric Mahut
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b, Rue de la Férollerie, C.S. 40059, Orléans Cedex 2, 45071, France
| | - Marylène Vayer
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b, Rue de la Férollerie, C.S. 40059, Orléans Cedex 2, 45071, France
| | - Louise Van Gheluwe
- EA 6295 Nanomédicaments et Nanosondes (NMNS), Faculté de Pharmacie, Université de Tours, 31 avenue Monge 37200, Tours, France
| | | | - Christophe Sinturel
- Interfaces, Confinement, Matériaux et Nanostructures (ICMN), CNRS-Université d'Orléans, UMR 7374, 1b, Rue de la Férollerie, C.S. 40059, Orléans Cedex 2, 45071, France
| | - Martin Soucé
- EA 6295 Nanomédicaments et Nanosondes (NMNS), Faculté de Pharmacie, Université de Tours, 31 avenue Monge 37200, Tours, France
| | - Igor Chourpa
- EA 6295 Nanomédicaments et Nanosondes (NMNS), Faculté de Pharmacie, Université de Tours, 31 avenue Monge 37200, Tours, France
| | - Franck Bonnier
- EA 6295 Nanomédicaments et Nanosondes (NMNS), Faculté de Pharmacie, Université de Tours, 31 avenue Monge 37200, Tours, France
| |
Collapse
|
21
|
Pontrelli G, Carr EJ, Tiribocchi A, Succi S. Modeling drug delivery from multiple emulsions. Phys Rev E 2020; 102:023114. [PMID: 32942448 DOI: 10.1103/physreve.102.023114] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
We present a mechanistic model of drug release from a multiple emulsion into an external surrounding fluid. We consider a single multilayer droplet where the drug kinetics are described by a pure diffusive process through different liquid shells. The multilayer problem is described by a system of diffusion equations coupled via interlayer conditions imposing continuity of drug concentration and flux. Mass resistance is imposed at the outer boundary through the application of a surfactant at the external surface of the droplet. The two-dimensional problem is solved numerically by finite volume discretization. Concentration profiles and drug release curves are presented for three typical round-shaped (circle, ellipse, and bullet) droplets and the dependency of the solution on the mass transfer coefficient at the surface analyzed. The main result shows a reduced release time for an increased elongation of the droplets.
Collapse
Affiliation(s)
- G Pontrelli
- Istituto per le Applicazioni del Calcolo, CNR, Via dei Taurini 19, 00185 Rome, Italy
| | - E J Carr
- School of Mathematical Sciences, Queensland University of Technology (QUT), Brisbane, Australia
| | - A Tiribocchi
- Istituto per le Applicazioni del Calcolo, CNR, Via dei Taurini 19, 00185 Rome, Italy
- Italian Institute of Technology, CNLS@Sapienza, Rome, Italy
| | - S Succi
- Istituto per le Applicazioni del Calcolo, CNR, Via dei Taurini 19, 00185 Rome, Italy
- Italian Institute of Technology, CNLS@Sapienza, Rome, Italy
| |
Collapse
|
22
|
Aldawsari HM, Fahmy UA, Abd-Allah F, Ahmed OAA. Formulation and Optimization of Avanafil Biodegradable Polymeric Nanoparticles: A Single-Dose Clinical Pharmacokinetic Evaluation. Pharmaceutics 2020; 12:E596. [PMID: 32604853 PMCID: PMC7356025 DOI: 10.3390/pharmaceutics12060596] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
Avanafil (AVA) is a second-generation phosphodiesterase-5 (PDE5) inhibitor. AVA shows high selectivity to penile tissues and fast absorption, but has a bioavailability of about 36%. The aim was to formulate and optimize AVA-biodegradable nanoparticles (NPs) to enhance AVA bioavailability. To assess the impact of variables, the Box-Behnken design was utilized to investigate and optimize the formulation process variables: the AVA:poly (lactic-co-glycolic acid) (PLGA) ratio (w/w, X1); sonication time (min, X2); and polyvinyl alcohol (PVA) concentration (%, X3). Particle size (nm, Y1) and EE% (%, Y2) were the responses. The optimized NPs were characterized for surface morphology and permeation. Furthermore, a single-oral dose (50 mg AVA) pharmacokinetic investigation on healthy volunteers was carried out. Statistical analysis revealed that all the investigated factors exhibited a significant effect on the particle size. Furthermore, the entrapment efficiency (Y2) was significantly affected by both the AVA:PLGA ratio (X1) and PVA concentration (X3). Pharmacokinetic data showed a significant increase in the area under the curve (1.68 folds) and plasma maximum concentration (1.3-fold) for the AVA NPs when compared with raw AVA. The optimization and formulation of AVA as biodegradable NPs prepared using solvent evaporation (SE) proves a successful way to enhance AVA bioavailability.
Collapse
Affiliation(s)
- Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.)
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.)
| | - Fathy Abd-Allah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11865, Egypt;
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (U.A.F.); (O.A.A.A.)
- Department of Pharmaceutics & Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia 61111, Egypt
| |
Collapse
|
23
|
Scheeren LE, Nogueira-Librelotto DR, Macedo LB, de Vargas JM, Mitjans M, Vinardell MP, Rolim CMB. Transferrin-conjugated doxorubicin-loaded PLGA nanoparticles with pH-responsive behavior: a synergistic approach for cancer therapy. JOURNAL OF NANOPARTICLE RESEARCH 2020; 22:72. [PMID: 0 DOI: 10.1007/s11051-020-04798-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/28/2020] [Indexed: 05/20/2023]
|
24
|
Khine YY, Batchelor R, Raveendran R, Stenzel MH. Photo‐Induced Modification of Nanocellulose: The Design of Self‐Fluorescent Drug Carriers. Macromol Rapid Commun 2019; 41:e1900499. [DOI: 10.1002/marc.201900499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/02/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yee Yee Khine
- Center for Advanced Macromolecular DesignSchool of ChemistryThe University of New South Wales Sydney 2052 Australia
| | - Rhiannon Batchelor
- Center for Advanced Macromolecular DesignSchool of ChemistryThe University of New South Wales Sydney 2052 Australia
| | - Radhika Raveendran
- Center for Advanced Macromolecular DesignSchool of ChemistryThe University of New South Wales Sydney 2052 Australia
| | - Martina H. Stenzel
- Center for Advanced Macromolecular DesignSchool of ChemistryThe University of New South Wales Sydney 2052 Australia
| |
Collapse
|
25
|
Pieper S, Onafuye H, Mulac D, Cinatl J, Wass MN, Michaelis M, Langer K. Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:2062-2072. [PMID: 31728254 PMCID: PMC6839550 DOI: 10.3762/bjnano.10.201] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/02/2019] [Indexed: 05/30/2023]
Abstract
Background: Nanoparticles are under investigation as carrier systems for anticancer drugs. The expression of efflux transporters such as the ATP-binding cassette (ABC) transporter ABCB1 is an important resistance mechanism in therapy-refractory cancer cells. Drug encapsulation into nanoparticles has been shown to bypass efflux-mediated drug resistance, but there are also conflicting results. To investigate whether easy-to-prepare nanoparticles made of well-tolerated polymers may circumvent transporter-mediated drug efflux, we prepared poly(lactic-co-glycolic acid) (PLGA), polylactic acid (PLA), and PEGylated PLGA (PLGA-PEG) nanoparticles loaded with the ABCB1 substrate doxorubicin by solvent displacement and emulsion diffusion approaches and assessed their anticancer efficiency in neuroblastoma cells, including ABCB1-expressing cell lines, in comparison to doxorubicin solution. Results: The resulting nanoparticles covered a size range between 73 and 246 nm. PLGA-PEG nanoparticle preparation by solvent displacement led to the smallest nanoparticles. In PLGA nanoparticles, the drug load could be optimised using solvent displacement at pH 7 reaching 53 µg doxorubicin/mg nanoparticle. These PLGA nanoparticles displayed sustained doxorubicin release kinetics compared to the more burst-like kinetics of the other preparations. In neuroblastoma cells, doxorubicin-loaded PLGA-PEG nanoparticles (presumably due to their small size) and PLGA nanoparticles prepared by solvent displacement at pH 7 (presumably due to their high drug load and superior drug release kinetics) exerted the strongest anticancer effects. However, nanoparticle-encapsulated doxorubicin did not display increased efficacy in ABCB1-expressing cells relative to doxorubicin solution. Conclusion: Doxorubicin-loaded nanoparticles made by different methods from different materials displayed substantial discrepancies in their anticancer activity at the cellular level. Optimised preparation methods resulted in PLGA nanoparticles characterised by increased drug load, controlled drug release, and high anticancer efficacy. The design of drug-loaded nanoparticles with optimised anticancer activity at the cellular level is an important step in the development of improved nanoparticle preparations for anticancer therapy. Further research is required to understand under which circumstances nanoparticles can be used to overcome efflux-mediated resistance in cancer cells.
Collapse
Affiliation(s)
- Sebastian Pieper
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Hannah Onafuye
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Dennis Mulac
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| | - Jindrich Cinatl
- Institute for Medical Virology, University Hospital, Goethe-University, Paul Ehrlich-Straße 40, 60596 Frankfurt am Main, Germany
| | - Mark N Wass
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Martin Michaelis
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury CT2 7NJ, United Kingdom
| | - Klaus Langer
- Institute of Pharmaceutical Technology and Biopharmacy, University of Muenster, Corrensstraße 48, 48149 Muenster, Germany
| |
Collapse
|
26
|
Zhang LX, Sun XM, Xu ZP, Liu RT. Development of Multifunctional Clay-Based Nanomedicine for Elimination of Primary Invasive Breast Cancer and Prevention of Its Lung Metastasis and Distant Inoculation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35566-35576. [PMID: 31496214 DOI: 10.1021/acsami.9b11746] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Cancer recurrence and metastasis are worldwide challenges but current bimodular strategies such as combined radiotherapy and chemotherapy (CTX), and photothermal therapy (PTT) and immunotherapy have succeeded only in some limited cases. Thus in the present study, a multifunctional nanomedicine has been rationally designed via elegantly integrating three FDA-approved therapeutics, that is, indocyanine green (for PTT), doxorubicin (for CTX), and CpG (for immunotherapy) into the structure of layered double hydroxide (LDH) nanoparticles, aiming to completely prevent the recurrence and metastasis of invasive breast cancer. This multifunctional hybrid nanomedicine has been demonstrated to eliminate the primary tumor and efficiently prevent tumor recurrence and lung metastasis through combined PTT/CTX and induction of specific and strong immune responses mediated by the hybrid nanomedicine in a 4T1 breast cancer mouse model. Furthermore, the promoted in situ immunity has significantly inhibited the growth of reinoculated distant tumors. Altogether, our multifunctional LDH-based nanomedicine has showed an excellent efficacy in invasive cancer treatment using much lower doses of three FDA-approved therapeutics, providing a preclinical/clinical alternative to cost-effectively treat invasive breast cancer.
Collapse
Affiliation(s)
- Ling-Xiao Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering , Chinese Academy of Sciences , Haidian District, Beijing 100190 , China
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St Lucia , Queensland 4072 , Australia
- School of Chemical Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xia-Mei Sun
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering , Chinese Academy of Sciences , Haidian District, Beijing 100190 , China
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology , The University of Queensland , St Lucia , Queensland 4072 , Australia
| | - Rui-Tian Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering , Chinese Academy of Sciences , Haidian District, Beijing 100190 , China
| |
Collapse
|
27
|
Synthesis and engineering of mesoporous ZnO@HAP heterostructure as a pH-sensitive nano-photosensitizer for chemo-photodynamic therapy of malignant tumor cells. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101200] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Saravanakumar K, Hu X, Shanmugam S, Chelliah R, Sekar P, Oh DH, Vijayakumar S, Kathiresan K, Wang MH. Enhanced cancer therapy with pH-dependent and aptamer functionalized doxorubicin loaded polymeric (poly D, L-lactic-co-glycolic acid) nanoparticles. Arch Biochem Biophys 2019; 671:143-151. [PMID: 31283911 DOI: 10.1016/j.abb.2019.07.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/02/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
Aptamer based drug delivery systems are gaining the importance in anticancer therapy due to their targeted drug delivery efficiency without harming the normal cells. The present work formulated the pH-dependent aptamer functionalized polymer-based drug delivery system against human lung cancer. The prepared aptamer functionalized doxorubicin (DOX) loaded poly (D, L-lactic-co-glycolic acid) (PLGA), poly (N-vinylpyrrolidone) (PVP) nanoparticles (APT-DOX-PLGA-PVP NPs) were spherical in shape with an average size of 87.168 nm. The crystallography and presence of the PLGA (poly (D, L-lactic-co-glycolic acid)) and DOX (doxorubicin) in APT-DOX-PLGA-PVP NPs were indicated by the X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), and 1H and 13C nuclear magnetic resonance spectrometer (NMR). The pH-dependent aptamer AS1411 based drug release triggered the cancer cell death was evidenced by cytotoxicity assay, flow cytometry, and fluorescent microscopic imaging. In addition, the cellular uptake of the DOX was determined and the apoptosis-related signaling pathway in the A549 cells was studied by Western blot analysis. Further, the in vivo study revealed that mice treated with APT-DOX-PLGA-PVP NPs were significantly recovered from cancer as evident by mice weight and tumor size followed by the histopathological study. It was reported that the APT-DOX-PLGA-PVP NPs induced the apoptosis through the activation of the apoptosis-related proteins. Hence, the present study revealed that the APT-DOX-PLGA-PVP NPs improved the therapeutic efficiency through the nucleolin receptor endocytosis targeted drug release.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Xiaowen Hu
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Sabarathinam Shanmugam
- Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Ramachandran Chelliah
- Department of Food Science and Biotechnology College of Biotechnology and Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| | - Ponarulselvam Sekar
- Bioprocess Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Deog-Hwan Oh
- Department of Food Science and Biotechnology College of Biotechnology and Bioscience, Kangwon National University, Chuncheon, Republic of Korea
| | - Sekar Vijayakumar
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea
| | - Kandasamy Kathiresan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, 608 502, Tamil Nadu, India
| | - Myeong-Hyeon Wang
- Department of Medical Biotechnology, College of Biomedical Sciences, Kangwon National University, Chuncheon, 200-701, Republic of Korea.
| |
Collapse
|
29
|
A phase 0 study of the pharmacokinetics, biodistribution, and dosimetry of 188Re-liposome in patients with metastatic tumors. EJNMMI Res 2019; 9:46. [PMID: 31119414 PMCID: PMC6531516 DOI: 10.1186/s13550-019-0509-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 04/17/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Liposomes are drug nano-carriers that are capable of targeting therapeutics to tumor sites because of enhanced permeability retention (EPR). In several preclinical studies with various tumor-bearing mice models, 188Re-liposome that has been developed by the Institute of Nuclear Energy Research (INER) demonstrates favorable in vivo tumor targeting, biodistribution, pharmacokinetics, and dosimetry. It inhibits the growth of tumors, increased survival, demonstrates good synergistic combination, and was safe to use. This study conducts a phase 0 low-radioactivity clinical trial of nano-targeted radiotherapeutics 188Re-liposome to evaluate the effectiveness with which it targets tumors and the pharmacokinetics, biodistribution, dosimetry, and its safety in use. Twelve patients with metastatic cancers are studied in this trial. Serial whole-body scans and SPECT/CT are taken at 1, 4, 8, 24, 48, and 72 h after intravenous injection of 111 MBq of 188Re-liposome. The effectiveness with which tumors are targeted, the pharmacokinetics, biodistribution, dosimetry, and safety are evaluated using the VelocityAI and OLINDA/EXM software. Blood samples are collected at different time points for a pharmacokinetics study and a safety evaluation that involves monitoring changes in liver, renal, and hematological functions. RESULTS The T½z for 188Re-liposome in blood and plasma are 36.73 ± 14.00 h and 52.02 ± 45.21 h, respectively. The doses of radiation that are absorbed to vital organs such as the liver, spleen, lung, kidney, and bone marrow are 0.92 ± 0.35, 1.38 ± 1.81, 0.58 ± 0.28, 0.32 ± 0.09, and 0.06 ± 0.01 mGy/MBq, respectively, which is far less than the reference maximum tolerance dose after injection of 188Re-liposome. 188Re-liposome is absorbed by metastatic tumor lesions and the normal reticuloendothelial (RES) system. Certain patients exhibit a therapeutic response. CONCLUSION This phase 0 exploratory IND study shows that nanocarrier 188Re-liposome achieves favorable tumor accumulation and tumor to normal organ uptake ratios for a subset of cancer patients. The clinical pharmacokinetic, biodistribution, and dosimetry results justify a further dose-escalating phase 1 clinical trial. TRIAL REGISTRATION Taiwan FDA MA1101G0 (Jan 31, 2012).
Collapse
|
30
|
Single-needle electroporation and interstitial electrochemotherapy: in vivo safety and efficacy evaluation of a new system. Eur Radiol 2019; 29:6300-6308. [DOI: 10.1007/s00330-019-06251-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/12/2019] [Accepted: 04/24/2019] [Indexed: 12/18/2022]
|
31
|
Li Y, Xiao Y, Lin HP, Reichel D, Bae Y, Lee EY, Jiang Y, Huang X, Yang C, Wang Z. In vivo β-catenin attenuation by the integrin α5-targeting nano-delivery strategy suppresses triple negative breast cancer stemness and metastasis. Biomaterials 2019; 188:160-172. [DOI: 10.1016/j.biomaterials.2018.10.019] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 12/13/2022]
|
32
|
Mehta P, Zaman A, Smith A, Rasekh M, Haj‐Ahmad R, Arshad MS, der Merwe S, Chang M, Ahmad Z. Broad Scale and Structure Fabrication of Healthcare Materials for Drug and Emerging Therapies via Electrohydrodynamic Techniques. ADVANCED THERAPEUTICS 2018. [DOI: 10.1002/adtp.201800024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Prina Mehta
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | - Aliyah Zaman
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | - Ashleigh Smith
- School of Pharmacy and Biomedical SciencesSt. Michael's BuildingUniversity of Portsmouth White Swan Road Portsmouth PO1 2DT UK
| | - Manoochehr Rasekh
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | - Rita Haj‐Ahmad
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| | | | - Susanna der Merwe
- School of Pharmacy and Biomedical SciencesSt. Michael's BuildingUniversity of Portsmouth White Swan Road Portsmouth PO1 2DT UK
| | - M.‐W. Chang
- College of Biomedical Engineering and Instrument ScienceZhejiang University Hangzhou 310027 China
- Zhejiang Provincial Key Laboratory of Cardio‐Cerebral Vascular Detection Technology and Medicinal Effectiveness AppraisalZhejiang University Hangzhou 310027 China
| | - Z. Ahmad
- Leicester School of PharmacyDe Montfort University Leicester LE1 9BH UK
| |
Collapse
|
33
|
Pang L, Zhu Y, Qin J, Zhao W, Wang J. Primary M1 macrophages as multifunctional carrier combined with PLGA nanoparticle delivering anticancer drug for efficient glioma therapy. Drug Deliv 2018; 25:1922-1931. [PMID: 30465444 PMCID: PMC6263108 DOI: 10.1080/10717544.2018.1502839] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/16/2018] [Accepted: 07/17/2018] [Indexed: 12/14/2022] Open
Abstract
Glioma remains difficult to treat because of the infiltrative growth of tumor cells and their resistance to standard therapy. Despite rapid development of targeted drug delivery system, the current therapeutic efficacy is still challenging. Based on our previous studies, macrophages have been proved to be promising drug carrier for active glioma delivery. To make full use of macrophage carrier, primary M1 macrophages were proposed to replace regular macrophage to deliver nanodrugs into glioma, because M1 macrophages not only have the natural ability to home into tumor tissues, but they also have stronger phagocytic capability than other types of macrophage, which can enable them to uptake enough drug-loaded nanoparticles for therapy. In addition, M1 macrophages are not easily affected by harsh tumor microenvironment and inhibit tumor growth themselves. In this study, M1 macrophage-loaded nanoparticles (M1-NPs) were prepared by incubating poly(lactide-co-glycolide) (PLGA) nanoparticles with primary M1 macrophages. In vitro cell assays demonstrated M1 macrophage still maintained good tumor tropism capability after particle loading, and could efficiently carry particles across endothelial barrier into tumor tissues. In vivo imaging verified that M1-NPs exhibited higher brain tumor distribution than free nanoparticles. DOX@M1-NPs (doxorubicin-loaded M1-NPs) presented significantly enhanced anti-glioma effect with prolonged survival median and increased cell apoptosis. In conclusion, the results provided a new strategy exploiting M1 macrophage as carrier for drug delivery, which improved targeting efficiency and therapeutic efficacy of chemodrugs for glioma therapy.
Collapse
Affiliation(s)
- Liang Pang
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, Schoolof Pharmacy, Fudan University, Shanghai, China
- Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Ying Zhu
- Insitituteof Clinical Pharmacology, Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Jing Qin
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, Schoolof Pharmacy, Fudan University, Shanghai, China
| | - Wenjie Zhao
- Shanghai Institute of Pharmaceutical Industry, Shanghai, China
| | - Jianxin Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education & Department of Pharmaceutics, Schoolof Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
34
|
Lim JH, Na YG, Lee HK, Kim SJ, Lee HJ, Bang KH, Wang M, Pyo YC, Huh HW, Cho CW. Effect of surfactant on the preparation and characterization of gemcitabine-loaded particles. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2018. [DOI: 10.1007/s40005-018-0402-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
35
|
Improvement of N-Acetylcysteine Loaded in PLGA Nanoparticles by Nanoprecipitation Method. JOURNAL OF NANOTECHNOLOGY 2018. [DOI: 10.1155/2018/3620373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
N-Acetylcysteine (NAC) is a hydrophilic compound with a low bioavailability. It has been used as an effective antioxidant agent. This research seeks to enhance the entrapment of NAC in PLGA nanoparticles for drug delivery systems. The nanoparticles were made using the nanoprecipitation method and changing the following parameters: the solvent/nonsolvent nature, its viscosity, pH, NAC addition to the nonsolvent, the polymer concentration and molecular weight, and NAC concentration in the solvent. The results showed that an increase in the nonsolvent viscosity produces NAC concentration in the solvent, and the nonsolvent rises its entrapment in the nanoparticles. Nanoparticles with 235.5 ± 11.4 nm size with an entrapment efficiency of 0.4 ± 0.04% and a specific load of 3.14 ± 0.33% were obtained. The results suggest that besides efficiently entrapping hydrophobic compounds, the nanoprecipitation method also has a high potential as an alternative entrapment method for hydrophilic compounds as well. However, its use in the pharmaceutical industry, as a proper specific load vehicle, still depends on the improvement of the load capacity.
Collapse
|
36
|
Doxorubicin loaded carboxymethyl cellulose/graphene quantum dot nanocomposite hydrogel films as a potential anticancer drug delivery system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 87:50-59. [DOI: 10.1016/j.msec.2018.02.010] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/01/2017] [Accepted: 02/16/2018] [Indexed: 01/16/2023]
|
37
|
Ruan S, Gu Y, Liu B, Gao H, Hu X, Hao H, Jin L, Cai T. Long-Acting Release Microspheres Containing Novel GLP-1 Analog as an Antidiabetic System. Mol Pharm 2018; 15:2857-2869. [PMID: 29763559 DOI: 10.1021/acs.molpharmaceut.8b00344] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) has recently received significant attention as an efficacious way to treat diabetes mellitus. However, the short half-life of the peptide limits its clinical application in diabetes. In our previous study, a novel GLP-1 analog (PGLP-1) with a longer half-life was synthesized and evaluated. Herein, we prepared the PGLP-1-loaded poly(d,l-lactide- co-glycolide) microspheres to achieve long-term effects on blood glucose control. The incorporation of zinc ion into the formulation can effectively decrease the initial burst release, and a uniform drug distribution was obtained, in contrast to native PGLP-1 encapsulated microspheres. We demonstrated that the solubility of the drug encapsulated in microspheres played an important role in in vitro release behavior and drug distribution inside the microspheres. The Zn-PGLP-1 microspheres had a prominent acute glucose reduction effect in the healthy mice. A hypoglycemic effect was observed in the streptozotocin (STZ) induced diabetic mice through a 6-week treatment of Zn-PGLP-1-loaded microspheres. Meanwhile, the administration of Zn-PGLP-1 microspheres led to the β-cell protection and stimulation of insulin secretion. The novel GLP-1 analog-loaded sustained microspheres may greatly improve patient compliance along with a desirable safety feature.
Collapse
|
38
|
Nothnagel L, Wacker MG. How to measure release from nanosized carriers? Eur J Pharm Sci 2018; 120:199-211. [PMID: 29751101 DOI: 10.1016/j.ejps.2018.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 05/07/2018] [Indexed: 12/28/2022]
Abstract
Novel drug delivery systems exhibit great potential in the formulation of poorly soluble compounds but have also been applied to reduce side effects of highly active drug molecules. Despite all efforts, there are only few technologies available to investigate the in vitro release of next-generation nanotherapeutics. In the following, different approaches for testing the drug release from nanoparticles in the fields of formulation development and quality control will be discussed. A variety of methods is available, starting from dialysis-based equipment, in situ measurements, flow-through devices and sample and separate setups. If possible, these methods should enable a more rapid formulation development and quality control of nanosized carriers as well as improve the prediction of in vivo performance and clinical outcomes.
Collapse
Affiliation(s)
- Lisa Nothnagel
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), 60438 Frankfurt am Main, Germany
| | - Matthias G Wacker
- Department of Pharmaceutical Technology and Nanosciences, Fraunhofer-Institute for Molecular Biology and Applied Ecology (IME), 60438 Frankfurt am Main, Germany; Institute of Pharmaceutical Technology, Goethe University, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
39
|
Loya-Castro MF, Sánchez-Mejía M, Sánchez-Ramírez DR, Domínguez-Ríos R, Escareño N, Oceguera-Basurto PE, Figueroa-Ochoa ÉB, Quintero A, del Toro-Arreola A, Topete A, Daneri-Navarro A. Preparation of PLGA/Rose Bengal colloidal particles by double emulsion and layer-by-layer for breast cancer treatment. J Colloid Interface Sci 2018; 518:122-129. [DOI: 10.1016/j.jcis.2018.02.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/02/2018] [Accepted: 02/04/2018] [Indexed: 12/27/2022]
|
40
|
Şahin A, Eke G, Buyuksungur A, Hasirci N, Hasirci V. Nuclear targeting peptide-modified, DOX-loaded, PHBV nanoparticles enhance drug efficacy by targeting to Saos-2 cell nuclear membranes. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:507-519. [DOI: 10.1080/09205063.2018.1423812] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ayla Şahin
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| | - Gozde Eke
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Faculty of Arts and Sciences, Department of Chemistry, Ahi Evran University, Kirsehir, Turkey
| | - Arda Buyuksungur
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| | - Nesrin Hasirci
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Department of Chemistry, Middle East Technical University (METU), Ankara, Turkey
| | - Vasif Hasirci
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Department of Biological Sciences, Middle East Technical University (METU), Ankara, Turkey
| |
Collapse
|
41
|
Pang L, Qin J, Han L, Zhao W, Liang J, Xie Z, Yang P, Wang J. Exploiting macrophages as targeted carrier to guide nanoparticles into glioma. Oncotarget 2018; 7:37081-37091. [PMID: 27213597 PMCID: PMC5095060 DOI: 10.18632/oncotarget.9464] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 04/24/2016] [Indexed: 11/25/2022] Open
Abstract
The restriction of anti-cancer drugs entry to tumor sites in the brain is a major impediment to the development of new strategies for the treatment of glioma. Based on the finding that macrophages possess an intrinsic homing property enabling them to migrate to tumor sites across the endothelial barriers in response to the excretion of cytokines/chemokines in the diseased tissues, we exploited macrophages as 'Trojan horses' to carry drug-loading nanoparticles (NPs), pass through barriers, and offload them into brain tumor sites. Anticancer drugs were encapsulated in nanoparticles to avoid their damage to the cells. Drug loading NPs was then incubated with RAW264.7 cells in vitro to prepare macrophage-NPs (M-NPs). The release of NPs from M-NPs was very slow in medium of DMEM and 10% FBS and significantly accelerated when LPS and IFN-γ were added to mimic tumor inflammation microenvironment. The viability of macrophages was not affected when the concentration of doxorubicin lower than 25 μg/ml. The improvement of cellular uptake and penetration into the core of glioma spheroids of M-NPs compared with NPs was verified in in vitro studies. The tumor-targeting efficiency of NPs was also significantly enhanced after loading into macrophages in nude mice bearing intracranial U87 glioma. Our results provided great potential of macrophages as an active biocarrier to deliver anticancer drugs to the tumor sites in the brain and improve therapeutic effects of glioma.
Collapse
Affiliation(s)
- Liang Pang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jing Qin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Limei Han
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Wenjie Zhao
- Shanghai Institute of Pharmaceutical Industry, Shanghai, 201203, China
| | - Jianming Liang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhongyi Xie
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Pei Yang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Jianxin Wang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| |
Collapse
|
42
|
Gutiérrez-Valenzuela CA, Esquivel R, Guerrero-Germán P, Zavala-Rivera P, Rodríguez-Figueroa JC, Guzmán-Z R, Lucero-Acuña A. Evaluation of a combined emulsion process to encapsulate methylene blue into PLGA nanoparticles. RSC Adv 2018. [DOI: 10.1039/c7ra12296a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The delivery of photosensitizer compounds using biodegradable nanoparticles could improve dosage, controlled release and its bioavailability.
Collapse
Affiliation(s)
| | - Reynaldo Esquivel
- National Council of Science and Technology of Mexico
- Ciudad de Mexico
- Mexico
| | | | - Paul Zavala-Rivera
- Department of Chemical and Metallurgical Engineering
- University of Sonora
- Hermosillo
- Mexico
| | | | - Roberto Guzmán-Z
- Department of Chemical and Environmental Engineering
- University of Arizona
- Tucson
- USA
| | - Armando Lucero-Acuña
- Department of Chemical and Metallurgical Engineering
- University of Sonora
- Hermosillo
- Mexico
| |
Collapse
|
43
|
Deng C, Xu X, Tashi D, Wu Y, Su B, Zhang Q. Co-administration of biocompatible self-assembled polylactic acid–hyaluronic acid block copolymer nanoparticles with tumor-penetrating peptide-iRGD for metastatic breast cancer therapy. J Mater Chem B 2018; 6:3163-3180. [DOI: 10.1039/c8tb00319j] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The safe and efficient targeted delivery of chemotherapeutic drugs has remained a challenge in metastatic breast cancer therapy.
Collapse
Affiliation(s)
- Caifeng Deng
- School of Pharmacy
- Chengdu Medical College
- Chengdu 610500
- China
- Key Laboratory of Drug Targeting and Drug Delivery Systems
| | - Xiaohong Xu
- School of Pharmacy
- Chengdu Medical College
- Chengdu 610500
- China
| | - Drunp Tashi
- School of Tibetan Medicine
- Qinghai University
- Xining 810016
- China
| | - Yongmei Wu
- Development and Regeneration Key Lab of Sichuan Province
- Department of Pathology
- Department of Anatomy and Histology and Embryology
- Chengdu Medical College
- Chengdu 610500
| | - Bingyin Su
- Development and Regeneration Key Lab of Sichuan Province
- Department of Pathology
- Department of Anatomy and Histology and Embryology
- Chengdu Medical College
- Chengdu 610500
| | - Quan Zhang
- School of Pharmacy
- Chengdu Medical College
- Chengdu 610500
- China
| |
Collapse
|
44
|
Kiew SF, Ho YT, Kiew LV, Kah JCY, Lee HB, Imae T, Chung LY. Preparation and characterization of an amylase-triggered dextrin-linked graphene oxide anticancer drug nanocarrier and its vascular permeability. Int J Pharm 2017; 534:297-307. [DOI: 10.1016/j.ijpharm.2017.10.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 12/17/2022]
|
45
|
Kudryavtseva VL, Zhao L, Tverdokhlebov SI, Sukhorukov GB. Fabrication of PLA/CaCO3 hybrid micro-particles as carriers for water-soluble bioactive molecules. Colloids Surf B Biointerfaces 2017; 157:481-489. [DOI: 10.1016/j.colsurfb.2017.06.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 05/27/2017] [Accepted: 06/11/2017] [Indexed: 12/13/2022]
|
46
|
Efficacious cellular codelivery of doxorubicin and EGFP siRNA mediated by the composition of PLGA and PEI protected gold nanoparticles. Bioorg Med Chem Lett 2017; 27:4288-4293. [PMID: 28838699 DOI: 10.1016/j.bmcl.2017.08.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023]
Abstract
This study reports the simultaneous delivery of EGFP siRNA and the chemotherapeutic drug, doxorubicin by means of the composition that results from the electrostatic interaction between positively charged siRNA-complexes of gold nanoparticles (AuNPs) capped with PEI, 25kDa (P25-AuNPs) and negatively charged carboxymethyl cellulose formulated PLGA nanoparticles loaded with doxorubicin. The nanoparticles and their facile interaction were studied by means of dynamic light scattering (DLS), zeta potential, transmission electron microscopic (TEM) measurements. The flow cytometric and confocal microscopic analysis evidenced the simultaneous internalization of both labelled siRNA and doxorubin into around 55% of the HeLa cancer cell population. Fluorescence microscopic studies enabled the visual analysis of EGFP expressing HeLa cells which suggested that the composition mediated codelivery resulted in a substantial downregulation of EGFP expression and intracellular accumulation of doxorubicin. Interestingly, codelivery treatment resulted in an increased cellular delivery of doxorubicin when compared to PLGA-DOX alone treatment. On the other hand, the activity of siRNA complexes of PEI-AuNPs was completely retained even when they were part of composition. The results suggest that this formulation can serve as promising tool for delivery applications in combinatorial anticancer therapy.
Collapse
|
47
|
Mosafer J, Teymouri M. Comparative study of superparamagnetic iron oxide/doxorubicin co-loaded poly (lactic-co-glycolic acid) nanospheres prepared by different emulsion solvent evaporation methods. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1146-1155. [DOI: 10.1080/21691401.2017.1362415] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jafar Mosafer
- Research Center of Advanced Technologies in Medicine, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | |
Collapse
|
48
|
Yalcin TE, Ilbasmis-Tamer S, Ibisoglu B, Özdemir A, Ark M, Takka S. Gemcitabine hydrochloride-loaded liposomes and nanoparticles: comparison of encapsulation efficiency, drug release, particle size, and cytotoxicity. Pharm Dev Technol 2017; 23:76-86. [DOI: 10.1080/10837450.2017.1357733] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tahir Emre Yalcin
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Sibel Ilbasmis-Tamer
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Burçin Ibisoglu
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Aysun Özdemir
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Mustafa Ark
- Department of Pharmacology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Sevgi Takka
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
49
|
Xu J, Zhang S, Machado A, Lecommandoux S, Sandre O, Gu F, Colin A. Controllable Microfluidic Production of Drug-Loaded PLGA Nanoparticles Using Partially Water-Miscible Mixed Solvent Microdroplets as a Precursor. Sci Rep 2017; 7:4794. [PMID: 28684775 PMCID: PMC5500499 DOI: 10.1038/s41598-017-05184-5] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 05/25/2017] [Indexed: 11/22/2022] Open
Abstract
We present a versatile continuous microfluidic flow-focusing method for the production of Doxorubicin (DOX) or Tamoxifen (TAM)-loaded poly(D,L-lactic-co-glycolic acid) (PLGA) nanoparticles (NPs). We use a partially water-miscible solvent mixture (dimethyl sulfoxide DMSO+ dichloromethane DCM) as precursor drug/polymer solution for NPs nucleation. We extrude this partially water-miscible solution into an aqueous medium and synthesized uniform PLGA NPs with higher drug loading ability and longer sustained-release ability than conventional microfluidic or batch preparation methods. The size of NPs could be precisely tuned by changing the flow rate ratios, polymer concentration, and volume ratio of DCM to DMSO (VDCM/VDMSO) in the precursor emulsion. We investigated the mechanism of the formation of NPs and the effect of VDCM/VDMSO on drug release kinetics. Our work suggests that this original, rapid, facile, efficient and low-cost method is a promising technology for high throughput NP fabrication. For the two tested drugs, one hydrophilic (Doxorubicin) the other one hydrophobic (Tamoxifen), encapsulation efficiency (EE) as high as 88% and mass loading content (LC) higher than 25% were achieved. This new process could be extended as an efficient and large scale NP production method to benefit to fields like controlled drug release and nanomedicine.
Collapse
Affiliation(s)
- Jiang Xu
- Centre de Recherche Paul Pascal, CNRS, Univ. Bordeaux, 115 Avenue Schweitzer, 33600, Pessac, France
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
- CNRS, Solvay, LOF (UMR 5258), Univ. Bordeaux, F-33600, Pessac, France
| | - Shusheng Zhang
- CNRS, Univ. Bordeaux, Bordeaux-INP, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 Avenue Pey Berland, 33607, Pessac, France
| | - Anais Machado
- CNRS, Univ. Bordeaux, Bordeaux-INP, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 Avenue Pey Berland, 33607, Pessac, France
| | - Sébastien Lecommandoux
- CNRS, Univ. Bordeaux, Bordeaux-INP, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 Avenue Pey Berland, 33607, Pessac, France
| | - Olivier Sandre
- CNRS, Univ. Bordeaux, Bordeaux-INP, Laboratoire de Chimie des Polymères Organiques (UMR5629), 16 Avenue Pey Berland, 33607, Pessac, France
| | - Frank Gu
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada
| | - Annie Colin
- Centre de Recherche Paul Pascal, CNRS, Univ. Bordeaux, 115 Avenue Schweitzer, 33600, Pessac, France.
- ESPCI Paris, PSL Research University, Sciences et Ingénierie de la matière Molle, CNRS(UMR 7615), 10, Rue Vauquelin, 75231, Paris Cedex 05, France.
| |
Collapse
|
50
|
Jaimes-Aguirre L, Morales-Avila E, Ocampo-García BE, Medina LA, López-Téllez G, Gibbens-Bandala BV, Izquierdo-Sánchez V. Biodegradable poly(D,L-lactide-co-glycolide)/poly(L-γ-glutamic acid) nanoparticles conjugated to folic acid for targeted delivery of doxorubicin. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:743-751. [DOI: 10.1016/j.msec.2017.03.145] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/08/2017] [Accepted: 03/13/2017] [Indexed: 10/19/2022]
|