1
|
Zhou H, He Y, Xiong W, Jing S, Duan X, Huang Z, Nahal GS, Peng Y, Li M, Zhu Y, Ye Q. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater 2023; 23:409-437. [PMCID: PMC9713256 DOI: 10.1016/j.bioactmat.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/08/2022] [Accepted: 11/13/2022] [Indexed: 12/05/2022] Open
|
2
|
Li Q, Sun L, Huang X, Liu S, Yong H, Wang C, Li J, Zhou D. Genetic Engineering of Adipose-Derived Stem Cells Using Biodegradable and Lipid-Like Highly Branched Poly(β-amino ester)s. ACS Macro Lett 2022; 11:636-642. [PMID: 35570814 DOI: 10.1021/acsmacrolett.2c00095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Biodegradable and lipid-like highly branched poly(β-amino ester)s, HPAESA, were developed to enhance the biological functions of adipose-derived stem cells by gene transfection. Biodegradability reduces the cytotoxicity of HPAESA and enables controlled DNA release. Lipid mimicry enhances cellular uptake and endosomal escape of HPAESA/DNA polyplexes. HPAESA are able to transfect rat adipose-derived stem cells (rADSs) and human ADSCs (hADSCs) with orders of magnitude higher efficiency than commercial gene transfection reagents, with cell viability exceeding 90%. Most importantly, HPAESA can effectively transfer the nerve growth factor (NGF)-encoding plasmid to rADSCs and induce high NGF secretion, which significantly promotes neurite outgrowth of PC12 cells.
Collapse
Affiliation(s)
- Qiuxia Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Litao Sun
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xiaobei Huang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Shuai Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haiyang Yong
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Chenfei Wang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jianzhong Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China
| | - Dezhong Zhou
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
3
|
Abstract
Bone regeneration is a central focus of maxillofacial research, especially when dealing with dental implants or critical sized wound sites. While bone has great regeneration potential, exogenous delivery of growth factors can greatly enhance the speed, duration, and quality of osseointegration, making a difference in a patient’s quality of life. Bone morphogenic protein 2 (BMP-2) is a highly potent growth factor that acts as a recruiting molecule for mesenchymal stromal cells, induces a rapid differentiation of them into osteoblasts, while also maintaining their viability. Currently, the literature data shows that the liposomal direct delivery or transfection of plasmids containing BMP-2 at the bone wound site often results in the overexpression of osteogenic markers and result in enhanced mineralization with formation of new bone matrix. We reviewed the literature on the scientific data regarding BMP-2 delivery with the help of liposomes. This may provide the ground for a future new bone regeneration strategy with real chances of reaching clinical practice.
Collapse
|
4
|
Biomaterial-based delivery systems of nucleic acid for regenerative research and regenerative therapy. Regen Ther 2019; 11:123-130. [PMID: 31338391 PMCID: PMC6626072 DOI: 10.1016/j.reth.2019.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/10/2019] [Accepted: 06/25/2019] [Indexed: 12/22/2022] Open
Abstract
Regenerative medicine is a new and promising medical method aiming at treating patients with defective or dysfunctional tissues by maintaining or enhancing the biological activity of cells. The development of biomaterial-based technologies, such as cell scaffolds and carriers for drug delivery system, are highly required to promote the regenerative research and regenerative therapy. Nucleic acids are one of the most feasible factors to efficiently modify the biological activity of cells. The effective and stable delivery of nucleic acids into cells is highly required to succeed in the modification. Biomaterials-based non-viral carriers or biological carriers, like exosomes, play an important role in the efficient delivery of nucleic acids. This review introduces the examples of regenerative research and regenerative therapy based on the delivery of nucleic acids with biomaterials technologies and emphasizes their importance to accomplish regenerative medicine. Modifying the activity of cells is important for regenerative medicine. Various nucleic acids regulate gene expression to modify the activity of cells. Intracellular delivery system is vital to the nucleic acids-based modification. Biomaterials are useful for the intracellular delivery of nucleic acids.
Collapse
Key Words
- Biomaterials
- CRISPR, clustered regularly interspaced short palindromic repeats
- Cas, CRISPR-associated systems
- Cell scaffold
- DDS, drug delivery system
- Drug delivery system
- ECM, extracellular matrix
- MSC, mesenchymal stem cells
- Nucleic acids
- PEG, polyethylene glycol
- PLGA, poly(d,l-lactic acid-co-glycolic acid)
- RISC, RNA-induced silencing complex
- RNAi, RNA interferince
- Regenerative research
- Regenerative therapy
- TALEN, transcription activator-like effector nuclease
- ZFN, zinc finger nucleases
- lncRNA, long non-coding RNA
- mRNA, messenger RNA
- miRNA, microRNA
- siRNA, small interfering RNA
Collapse
|
5
|
Marofi F, Vahedi G, hasanzadeh A, Salarinasab S, Arzhanga P, Khademi B, Farshdousti Hagh M. Mesenchymal stem cells as the game‐changing tools in the treatment of various organs disorders: Mirage or reality? J Cell Physiol 2018; 234:1268-1288. [DOI: 10.1002/jcp.27152] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Faroogh Marofi
- Department of Hematology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Ghasem Vahedi
- Faculty of Veterinary Medicine, University of Tehran Tehran Iran
| | - Ali hasanzadeh
- Department of Hematology Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | - Sadegh Salarinasab
- Department of Biochemistry and Clinical Laboratories Faculty of Medicine, Tabriz University of Medical Science Tabriz Iran
| | - Pishva Arzhanga
- Department of Biochemistry and Diet Therapy Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences Tabriz Iran
| | - Bahareh Khademi
- Department of Medical Genetic Faculty of Medicine, Tabriz University of Medical Sciences Tabriz Iran
| | | |
Collapse
|
6
|
Hong WG, Jeong GW, Nah JW. Evaluation of hyaluronic acid-combined ternary complexes for serum-resistant and targeted gene delivery system. Int J Biol Macromol 2018; 115:459-468. [PMID: 29680502 DOI: 10.1016/j.ijbiomac.2018.04.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/28/2018] [Accepted: 04/10/2018] [Indexed: 10/17/2022]
Abstract
Branched polyethylenimine (bPEI) was well known as high transfection agent, which has many amine group. However, utilization of bPEI was limited due to high toxicity. To solve these problems, bPEI was introduced to low molecular weight water-soluble chitosan (LMWSC) with coupling agent. In addition, hyaluronic acid (HA), one of natural anion polymer, was introduced to binary complex of pDNA/bPEI-grafted LMWSC (LMPEI) to target the specific cancer cell and impart the serum resistant. Ternary complexes of pDNA/LMPEI/HA were prepared by electrostatic charge interaction and their binding affinity and DNase protection assay were conducted by gel retardation assay. Particle size of ternary complexes showed that had each 482 ± 245.4 (pDNA/LMPEI2%/HA, 1:16:1, w/w/w) and 410 ± 78.5 nm (pDNA/LMPEI4%/HA, 1:16:2, w/w/w). Moreover, to demonstrate serum-resistant effect of ternary complexes, particle size of them was measured according to incubated time (0-10 h) under serum condition. Transfection assay of ternary complexes showed that their transfection efficiency in CD44-receptor overexpressed HCT116 cell was higher than CD44-receptor negative CT26 cell. Additionally, intracellular uptake of ternary complexes with propidium iodide (PI)-labeled pDNA was observed to confirm targeting effect and cellular internalization by fluorescence microscopy. These results suggest that ternary complexes are superb gene carrier with excellent serum-resistant and high gene transfection.
Collapse
Affiliation(s)
- Woong-Gil Hong
- Department of Polymer Science and Engineering, Sunchon National University, Jeonnam 57922, Republic of Korea
| | - Gyeong-Won Jeong
- Department of Polymer Science and Engineering, Sunchon National University, Jeonnam 57922, Republic of Korea
| | - Jae-Woon Nah
- Department of Polymer Science and Engineering, Sunchon National University, Jeonnam 57922, Republic of Korea.
| |
Collapse
|
7
|
Khalil AS, Yu X, Xie AW, Fontana G, Umhoefer JM, Johnson HJ, Hookway TA, McDevitt TC, Murphy WL. Functionalization of microparticles with mineral coatings enhances non-viral transfection of primary human cells. Sci Rep 2017; 7:14211. [PMID: 29079806 PMCID: PMC5660152 DOI: 10.1038/s41598-017-14153-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/02/2017] [Indexed: 12/28/2022] Open
Abstract
Gene delivery to primary human cells is a technology of critical interest to both life science research and therapeutic applications. However, poor efficiencies in gene transfer and undesirable safety profiles remain key limitations in advancing this technology. Here, we describe a materials-based approach whereby application of a bioresorbable mineral coating improves microparticle-based transfection of plasmid DNA lipoplexes in several primary human cell types. In the presence of these mineral-coated microparticles (MCMs), we observed up to 4-fold increases in transfection efficiency with simultaneous reductions in cytotoxicity. We identified mechanisms by which MCMs improve transfection, as well as coating compositions that improve transfection in three-dimensional cell constructs. The approach afforded efficient transfection in primary human fibroblasts as well as mesenchymal and embryonic stem cells for both two- and three-dimensional transfection strategies. This MCM-based transfection is an advancement in gene delivery technology, as it represents a non-viral approach that enables highly efficient, localized transfection and allows for transfection of three-dimensional cell constructs.
Collapse
Affiliation(s)
- Andrew S Khalil
- Department of Biomedical Engineering-University of Wisconsin-Madison, Madison, WI, USA
| | - Xiaohua Yu
- Department of Orthopedics and Rehabilitation-University of Wisconsin-Madison, Madison, WI, USA
| | - Angela W Xie
- Department of Biomedical Engineering-University of Wisconsin-Madison, Madison, WI, USA
| | - Gianluca Fontana
- Department of Biomedical Engineering-University of Wisconsin-Madison, Madison, WI, USA
| | - Jennifer M Umhoefer
- Department of Biomedical Engineering-University of Wisconsin-Madison, Madison, WI, USA
| | - Hunter J Johnson
- Department of Biomedical Engineering-University of Wisconsin-Madison, Madison, WI, USA
| | - Tracy A Hookway
- Department of Bioengineering & Therapeutic Sciences-University of California, San Francisco, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology & Medicine-Gladstone Institutes, San Francisco, CA, USA
| | - Todd C McDevitt
- Department of Bioengineering & Therapeutic Sciences-University of California, San Francisco, San Francisco, CA, USA
- Roddenberry Center for Stem Cell Biology & Medicine-Gladstone Institutes, San Francisco, CA, USA
| | - William L Murphy
- Department of Biomedical Engineering-University of Wisconsin-Madison, Madison, WI, USA.
- Department of Orthopedics and Rehabilitation-University of Wisconsin-Madison, Madison, WI, USA.
- The Materials Science Program-University of Wisconsin-Madison, Madison, WI, USA.
- The Stem Cell and Regenerative Medicine Center-University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
Sessions JW, Skousen CS, Price KD, Hanks BW, Hope S, Alder JK, Jensen BD. CRISPR-Cas9 directed knock-out of a constitutively expressed gene using lance array nanoinjection. SPRINGERPLUS 2016; 5:1521. [PMID: 27652094 PMCID: PMC5017990 DOI: 10.1186/s40064-016-3037-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/10/2016] [Indexed: 11/23/2022]
Abstract
Background CRISPR-Cas9 genome editing and labeling has emerged as an important tool in biologic research, particularly in regards to potential transgenic and gene therapy applications. Delivery of CRISPR-Cas9 plasmids to target cells is typically done by non-viral methods (chemical, physical, and/or electrical), which are limited by low transfection efficiencies or with viral vectors, which are limited by safety and restricted volume size. In this work, a non-viral transfection technology, named lance array nanoinjection (LAN), utilizes a microfabricated silicon chip to physically and electrically deliver genetic material to large numbers of target cells. To demonstrate its utility, we used the CRISPR-Cas9 system to edit the genome of isogenic cells. Two variables related to the LAN process were tested which include the magnitude of current used during plasmid attraction to the silicon lance array (1.5, 4.5, or 6.0 mA) and the number of times cells were injected (one or three times). Results Results indicate that most successful genome editing occurred after injecting three times at a current control setting of 4.5 mA, reaching a median level of 93.77 % modification. Furthermore, we found that genome editing using LAN follows a non-linear injection-dose response, meaning samples injected three times had modification rates as high as nearly 12 times analogously treated single injected samples. Conclusions These findings demonstrate the LAN’s ability to deliver genetic material to cells and indicate that successful alteration of the genome is influenced by a serial injection method as well as the electrical current settings.
Collapse
Affiliation(s)
- John W Sessions
- Department of Mechanical Engineering, Brigham Young University, Provo, UT USA
| | - Craig S Skousen
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT USA
| | - Kevin D Price
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT USA
| | - Brad W Hanks
- Department of Mechanical Engineering, Brigham Young University, Provo, UT USA
| | - Sandra Hope
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT USA
| | - Jonathan K Alder
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT USA
| | - Brian D Jensen
- Department of Mechanical Engineering, Brigham Young University, Provo, UT USA
| |
Collapse
|
9
|
Raftery RM, Walsh DP, Castaño IM, Heise A, Duffy GP, Cryan SA, O'Brien FJ. Delivering Nucleic-Acid Based Nanomedicines on Biomaterial Scaffolds for Orthopedic Tissue Repair: Challenges, Progress and Future Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:5447-5469. [PMID: 26840618 DOI: 10.1002/adma.201505088] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 11/27/2015] [Indexed: 06/05/2023]
Abstract
As well as acting to fill defects and allow for cell infiltration and proliferation in regenerative medicine, biomaterial scaffolds can also act as carriers for therapeutics, further enhancing their efficacy. Drug and protein delivery on scaffolds have shown potential, however, supraphysiological quantities of therapeutic are often released at the defect site, causing off-target side effects and cytotoxicity. Gene therapy involves the introduction of foreign genes into a cell in order to exert an effect; either replacing a missing gene or modulating expression of a protein. State of the art gene therapy also encompasses manipulation of the transcriptome by harnessing RNA interference (RNAi) therapy. The delivery of nucleic acid nanomedicines on biomaterial scaffolds - gene-activated scaffolds -has shown potential for use in a variety of tissue engineering applications, but as of yet, have not reached clinical use. The current state of the art in terms of biomaterial scaffolds and delivery vector materials for gene therapy is reviewed, and the limitations of current procedures discussed. Future directions in the clinical translation of gene-activated scaffolds are also considered, with a particular focus on bone and cartilage tissue regeneration.
Collapse
Affiliation(s)
- Rosanne M Raftery
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - David P Walsh
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Irene Mencía Castaño
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Andreas Heise
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
| | - Garry P Duffy
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| | - Sally-Ann Cryan
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Drug Delivery and Advanced Materials Research Team, School of Pharmacy, Royal College of Surgeons in Ireland, 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Galway, Ireland
| | - Fergal J O'Brien
- Tissue Engineering Research Group (TERG), Dept. of Anatomy, Royal College of Surgeons in Ireland (RCSI), 123, St. Stephens Green, Dublin 2, Dublin, Ireland
- Trinity Centre for Bioengineering (TCBE), Trinity College Dublin, Dublin 2, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland
| |
Collapse
|
10
|
GFP labelling and epigenetic enzyme expression of bone marrow-derived mesenchymal stem cells from bovine foetuses. Res Vet Sci 2015; 99:120-8. [PMID: 25637269 DOI: 10.1016/j.rvsc.2014.12.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/29/2014] [Accepted: 12/31/2014] [Indexed: 01/12/2023]
Abstract
Mesenchymal stem cells (MSC) are multipotent progenitor cells defined by their ability to self-renew and give rise to differentiated progeny. Since MSC from adult tissues represent a promising source of cells for a wide range of cellular therapies, there is high scientific interest in better understanding the potential for genetic modification and the mechanism underlying differentiation. The main objective of this study was to evaluate the potential for gene delivery using a GFP vector and lipofectamine, and to quantify the expression of epigenetic enzymes during foetal bMSC multilineage differentiation. Proportion of GFP-positive cells achieved (15.7% ± 3.5) indicated moderately low transfection efficiency. Analysis of DNA methyltransferase expression during MSC multilineage differentiation suggested no association with osteogenic and chondrogenic differentiation. However, up-regulation of KDM6B expression during osteogenic differentiation was associated with adoption of osteogenic lineage. Furthermore, increase in epigenetic enzyme expression suggested an intense epigenetic regulation during adipogenic differentiation.
Collapse
|
11
|
Yan J, Zhang C, Zhao Y, Cao C, Wu K, Zhao L, Zhang Y. Non-viral oligonucleotide antimiR-138 delivery to mesenchymal stem cell sheets and the effect on osteogenesis. Biomaterials 2014; 35:7734-49. [PMID: 24952983 DOI: 10.1016/j.biomaterials.2014.05.089] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Accepted: 05/29/2014] [Indexed: 01/04/2023]
Abstract
Cell-sheet technology has already constituted an important part in the regenerative medicine. Nonetheless, oligonucleotide delivery that has been widely performed on isolated stem cells to foster specific function is rarely conducted on the cell sheets. This study is designed with the two-fold aims of verifying the feasibility of non-viral oligonucleotide delivery for the cell sheets and confirming the osteogenesis enhancing effect of antimiR-138 on the cell sheets composed of bone marrow mesenchymal stem cells (BMSCs). The BMSC sheets are fabricated by a vitamin C inducing method, which can be successfully delivered with the oligonucleotides with a high delivery efficiency of nearly 100% by the properly adapted and optimized Lipofactamine2000 based formulation. The antimiR-138 delivery significantly enhances the in vitro osteogenic differentiation of BMSC sheets, indicated by the higher alkaline phosphatase (ALP) production, denser extracellular matrix mineralization and up-regulated osteogenesis related genes including runt-related transcription factor-2 (RUNX2), osterix, ALP, osteocalcin and bone morphogenetic protein-2 at both mRNA and protein levels, compared to controls. Regarding the underlying mechanism, the antimiR-138 delivery down-regulates the endogenous miR-138 levels in the BMSC sheets, consequently activates the extracellular signal regulated kinases 1/2 pathway and enhances the RUNX2 expression. The in vivo results indicate a robust enhancing effect of the antimiR-138 delivery on the bone regeneration ability of BMSC sheets. Massive bone with good vascularization is regenerated by the antimiR-138 delivered BMSC sheets, showing immense clinical significance for bone defect repair/regeneration applications. More importantly, the feasibility of non-viral oligonucleotide delivery system for the cell sheets as verified by our study shall hold a general significance for the cell sheets of various cell type and therapeutic purposes.
Collapse
Affiliation(s)
- Jun Yan
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China; The Second Artillery Engineering University, No. 2 Tongxin Road, Xi'an 710025, China
| | - Chengcheng Zhang
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | - Yantao Zhao
- Department of Orthopedics, The First Affiliated Hospital of CPLA General Hospital, Beijing 100048, China
| | - Can Cao
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | - Kaimin Wu
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China
| | - Lingzhou Zhao
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China.
| | - Yumei Zhang
- State Key Laboratory of Military Stomatology, Department of Prosthetic Dentistry, School of Stomatology, The Fourth Military Medical University, No. 145 West Changle Road, Xi'an 710032, China.
| |
Collapse
|
12
|
Xu L, Liu Y, Chen Z, Li W, Liu Y, Wang L, Ma L, Shao Y, Zhao Y, Chen C. Morphologically virus-like fullerenol nanoparticles act as the dual-functional nanoadjuvant for HIV-1 vaccine. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:5928-36. [PMID: 23963730 DOI: 10.1002/adma.201300583] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/17/2013] [Indexed: 05/18/2023]
Abstract
Fullerenol, which self-assembles into virus-sized nanoparticles, is designed as a dual-functional nanoadjuvant to generate comparable immune responses to the HIV DNA vaccine. It shows promising adjuvant activity via various immunization routes, decreasing the antigen dosage and immunization frequency while maintaining immunity levels and inducing TEM -biased immunity to combat the infection at early stage. The underlying mechanisms by which fullerenol-based formulation induces above-mentioned polyvalent immune responses are involved in activating multiple TLRs signaling pathways.
Collapse
Affiliation(s)
- Ligeng Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No.11 Beiyitiao, Zhongguancun, Beijing, 100190, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Zhang L, Hu C, Fan Y, Wu Y. Binary gene vectors based on hyperbranched poly(l-lactide-co-polyglycerol) and polyethylenimine for prolonged transgene expression via co-assembly with DNA into fiber core-shell triplexes. J Mater Chem B 2013; 1:6271-6282. [PMID: 32261700 DOI: 10.1039/c3tb21150a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hyper-branched PG6-PLA polymers based on hydrophilic hyperbranched polyglycerol (PG6) and the ester chain poly(l-lactide) (PLA) were synthesized and facilitated to develop a novel biocompatible release-controlled gene vector. The hyper-branched structure of PG6-PLA was verified by NMR, FT-IR and SEC-MALLS analysis. The co-assembly of PG6-PLA with high molecular weight polyethylenimine (PEI) of 25 kDa was discussed. The results of TEM, fluorescence tracking and size/zeta-potential analysis revealed that the PG6-PLA/PEI25k/DNA could co-assemble to generate a novel fiber core-shell conformation. In vitro cell experiment demonstrated that PG6-PLA significantly enhanced the ability of PEI25k to remain within cells and mediate luciferase and EGFP expression in the human embryonic kidney cell line 293T and human cervical carcinoma cell line HeLa, which was accompanied by improved cell biocompatibility and an extended period of transgene expression. Importantly, the binary vector PG6-PLA/PEI25k exhibited specific affinity to some tumour cell lines including HeLa and the HepG2 human hepatoma cell line. These results suggested that the novel gene delivery system based on fiber core-shell PG6-PLA/PEI25k/DNA can serve as a gene delivery system to mediate more efficient transgene expression.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China.
| | | | | | | |
Collapse
|
14
|
Liu BR, Liou JS, Chen YJ, Huang YW, Lee HJ. Delivery of nucleic acids, proteins, and nanoparticles by arginine-rich cell-penetrating peptides in rotifers. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2013; 15:584-95. [PMID: 23715807 DOI: 10.1007/s10126-013-9509-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 04/09/2013] [Indexed: 06/02/2023]
Abstract
Cell-penetrating peptides (CPPs) are a group of short, membrane-permeable cationic peptides that represent a nonviral technology for delivering nanomaterials and macromolecules into live cells. In this study, two arginine-rich CPPs, HR9 and IR9, were found to be capable of entering rotifers. CPPs were able to efficiently deliver noncovalently associated with cargoes, including plasmid DNAs, red fluorescent proteins (RFPs), and semiconductor quantum dots, into rotifers. The functional reporter gene assay demonstrated that HR9-delivered plasmid DNAs containing the enhanced green fluorescent protein and RFP coding sequences could be actively expressed in rotifers. The 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan assay further confirmed that CPP-mediated cargo delivery was not toxic to rotifers. Thus, these two CPPs hold a great potential for the delivery of exogenous genes, proteins, and nanoparticles in rotifers.
Collapse
Affiliation(s)
- Betty Revon Liu
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, 1, Sec. 2, Da-Hsueh Road, Shoufeng, Hualien, 97401, Taiwan
| | | | | | | | | |
Collapse
|
15
|
Salomone F, Cardarelli F, Signore G, Boccardi C, Beltram F. In vitro efficient transfection by CM₁₈-Tat₁₁ hybrid peptide: a new tool for gene-delivery applications. PLoS One 2013; 8:e70108. [PMID: 23922923 PMCID: PMC3726494 DOI: 10.1371/journal.pone.0070108] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 06/18/2013] [Indexed: 12/24/2022] Open
Abstract
Cell penetrating peptides (CPPs) are actively researched as non-viral molecular carriers for the controlled delivery of nucleic acids into cells, but widespread application is severely hampered by their trapping into endosomes. Here we show that the recently introduced endosomolytic CM18-Tat11 hybrid peptide (KWKLFKKIGAVLKVLTTG-YGRKKRRQRRR, residues 1-7 of Cecropin-A, 2-12 of Melittin, and 47-57 of HIV-1 Tat protein) can be exploited to obtain a self-assembled peptide-DNA vector which maintains the CM18-Tat11 ability to enter cells and destabilize vesicular membranes, concomitantly yielding high DNA transfection efficiency with no detectable cytotoxic effects. Different peptide-DNA stoichiometric ratios were tested to optimize vector size, charge, and stability characteristics. The transfection efficiency of selected candidates is quantitatively investigated by the luciferase-reporter assay. Vector intracellular trafficking is monitored in real time and in live cells by confocal microscopy. In particular, fluorescence resonant energy transfer (FRET) between suitably-labeled peptide and DNA modules was exploited to monitor complex disassembly during endocytosis, and this process is correlated to transfection timing and efficiency. We argue that these results can open the way to the rational design and application of CM18-Tat11–based systems for gene-delivery purposes.
Collapse
Affiliation(s)
- Fabrizio Salomone
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | - Francesco Cardarelli
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
- * E-mail:
| | - Giovanni Signore
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | - Claudia Boccardi
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| | - Fabio Beltram
- NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Pisa, Italy
- Center for Nanotechnology Innovation @NEST, Istituto Italiano di Tecnologia, Pisa, Italy
| |
Collapse
|
16
|
Chu M, Dong C, Zhu H, Cai X, Dong H, Ren T, Su J, Li Y. Biocompatible polyethylenimine-graft-dextran catiomer for highly efficient gene delivery assisted by a nuclear targeting ligand. Polym Chem 2013. [DOI: 10.1039/c3py21092h] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Physical non-viral gene delivery methods for tissue engineering. Ann Biomed Eng 2012; 41:446-68. [PMID: 23099792 DOI: 10.1007/s10439-012-0678-1] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 10/08/2012] [Indexed: 12/12/2022]
Abstract
The integration of gene therapy into tissue engineering to control differentiation and direct tissue formation is not a new concept; however, successful delivery of nucleic acids into primary cells, progenitor cells, and stem cells has proven exceptionally challenging. Viral vectors are generally highly effective at delivering nucleic acids to a variety of cell populations, both dividing and non-dividing, yet these viral vectors are marred by significant safety concerns. Non-viral vectors are preferred for gene therapy, despite lower transfection efficiencies, and possess many customizable attributes that are desirable for tissue engineering applications. However, there is no single non-viral gene delivery strategy that "fits-all" cell types and tissues. Thus, there is a compelling opportunity to examine different non-viral vectors, especially physical vectors, and compare their relative degrees of success. This review examines the advantages and disadvantages of physical non-viral methods (i.e., microinjection, ballistic gene delivery, electroporation, sonoporation, laser irradiation, magnetofection, and electric field-induced molecular vibration), with particular attention given to electroporation because of its versatility, with further special emphasis on Nucleofection™. In addition, attributes of cellular character that can be used to improve differentiation strategies are examined for tissue engineering applications. Ultimately, electroporation exhibits a high transfection efficiency in many cell types, which is highly desirable for tissue engineering applications, but electroporation and other physical non-viral gene delivery methods are still limited by poor cell viability. Overcoming the challenge of poor cell viability in highly efficient physical non-viral techniques is the key to using gene delivery to enhance tissue engineering applications.
Collapse
|
18
|
The transfection efficiency of photosensitizer-induced gene delivery to human MSCs and internalization rates of EGFP and Runx2 genes. Biomaterials 2012; 33:6485-94. [DOI: 10.1016/j.biomaterials.2012.05.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 05/17/2012] [Indexed: 12/11/2022]
|
19
|
Liu BR, Lin MD, Chiang HJ, Lee HJ. Arginine-rich cell-penetrating peptides deliver gene into living human cells. Gene 2012; 505:37-45. [PMID: 22669044 DOI: 10.1016/j.gene.2012.05.053] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/12/2012] [Accepted: 05/28/2012] [Indexed: 10/28/2022]
Abstract
Transgenesis is a process that introduces exogenous nucleic acids into the genome of an organism to produce desired traits or evaluate function. Improvements of transgenic technologies are always important pursuit in the last decades. Recently, cell-penetrating peptides (CPPs) were studied as shuttles that can internalize into cells directly and serve as carriers to deliver different cargoes into cells. In the present study, we evaluate whether arginine-rich CPPs can be used for gene delivery into human cells in a noncovalent fashion. We demonstrate that three arginine-rich CPPs (SR9, HR9, and PR9) are able to transport plasmid DNA into human A549 cells. For the functional gene assay, the CPP-delivered plasmid DNA containing the enhanced green fluorescent protein (EGFP) coding sequence could be actively expressed in cells. The treatment of calcium chloride did not facilitate the CPP-mediated transfection efficiency, but enhance the gene expression intensity. Mechanistic studies further revealed that HR9/DNA complexes mediate the direct membrane translocation pathway for gene delivery. Our results suggest that arginine-rich CPPs, especially HR9, appear to be a high efficient and promising tool for gene transfer.
Collapse
Affiliation(s)
- Betty Revon Liu
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Hualien 97401, Taiwan
| | | | | | | |
Collapse
|
20
|
Low Charge Density Cationic Polymers for Gene Delivery: Exploring the Influence of Structural Elements on in vitro Transfection. Macromol Biosci 2012; 12:840-8. [DOI: 10.1002/mabi.201100480] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 02/28/2012] [Indexed: 12/22/2022]
|
21
|
Xu L, Liu Y, Chen Z, Li W, Liu Y, Wang L, Liu Y, Wu X, Ji Y, Zhao Y, Ma L, Shao Y, Chen C. Surface-engineered gold nanorods: promising DNA vaccine adjuvant for HIV-1 treatment. NANO LETTERS 2012; 12:2003-12. [PMID: 22372996 DOI: 10.1021/nl300027p] [Citation(s) in RCA: 219] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
With the intense international response to the AIDS pandemic, HIV vaccines have been extensively investigated but have failed due to issues of safety or efficacy in humans. Adjuvants for HIV/AIDS vaccines are under intense research but a rational design approach is still lacking. Nanomaterials represent an obvious opportunity in this field due to their unique physicochemical properties. Gold nanostructures are being actively studied as a promising and versatile platform for biomedical application. Herein, we report novel surface-engineered gold nanorods (NRs) used as promising DNA vaccine adjuvant for HIV treatment. We have exploited the effects of surface chemistry on the adjuvant activity of the gold nanorod by placing three kinds of molecules, that is, cetyltrimethylammonium bromide (CTAB), poly(diallydimethylammonium chloride) (PDDAC), and polyethyleneimine (PEI) on the surface of the nanorod. These PDDAC- or PEI-modified Au NRs can significantly promote cellular and humoral immunity as well as T cell proliferation through activating antigen-presenting cells if compared to naked HIV-1 Env plasmid DNA treatment in vivo. These findings have shed light on the rational design of low-toxic nanomaterials as a versatile platform for vaccine nanoadjuvants/delivery systems.
Collapse
Affiliation(s)
- Ligeng Xu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, 100190, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Colosimo A, Curini V, Russo V, Mauro A, Bernabò N, Marchisio M, Alfonsi M, Muttini A, Mattioli M, Barboni B. Characterization, GFP gene Nucleofection, and allotransplantation in injured tendons of ovine amniotic fluid-derived stem cells. Cell Transplant 2012; 22:99-117. [PMID: 22507078 DOI: 10.3727/096368912x638883] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Amniotic fluid has drawn increasing attention in the recent past as a cost-effective and accessible source of fetal stem cells. Amniotic fluid-derived mesenchymal stem cells (AFMSCs) that display high proliferation rate, large spectrum of differentiation potential, and immunosuppressive features are considered optimal candidates for allogeneic repair of mesenchymal damaged tissues. In this study, ovine AFMSCs (oAFMSCs) isolated from 3-month-old sheep fetuses were characterized for their proliferation rate, specific surface antigen and pluripotency marker expression, genomic stability, and mesenchymal lineage differentiation during their in vitro expansion (12 passages) and after nucleofection. The high proliferation rate of oAFMSCs gradually decreased during the first six subculture passages while the expression of surface molecules (CD29, CD58, CD166) and of pluripotency-associated markers (OCT4, TERT, NANOG, SOX2), the in vitro osteogenic differentiation potential, and a normal karyotype were maintained. Afterwards, oAFMSCs were nucleofected with a selectable plasmid coding for green fluorescent protein (GFP) using two different programs, U23 and C17, previously optimized for human mesenchymal stem cells. Transfection efficiencies were ∼63% and ∼37%, while cell recoveries were ∼10% and ∼22%, respectively. Nucleofected oAFMSCs expressing the GFP transgene conserved their pluripotency marker profile and retained a normal karyotype and the osteogenic differentiation ability. Seven single clones with a GFP expression ranging from 80% to 97% were then isolated and expanded over 1 month, thus providing stably transfected cells with long-term therapeutic potential. The in vivo behavior of GFP-labeled oAFMSCs was tested on a previously validated preclinical model of experimentally induced Achille's tendon defect. The allotransplanted oAFMSCs were able to survive within the host tissue for 1 month enhancing the early phase of tendon healing as indicated by morphological and biomechanical results. Altogether these data suggest that genetically modified oAFMSCs might represent a valuable tool for in vivo preclinical studies in a highly valid translational model.
Collapse
Affiliation(s)
- A Colosimo
- Department of Comparative Biomedical Sciences, University of Teramo, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Jo JI, Nagane K, Yamamoto M, Tabata Y. Effect of Amine Type on the Expression of Plasmid DNA by Cationized Dextran. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 21:225-36. [DOI: 10.1163/156856209x415549] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Jun-ichiro Jo
- a Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kentaro Nagane
- b Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masaya Yamamoto
- c Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan, PRESTO, JST, 4-1-8 Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Yasuhiko Tabata
- d Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan;,
| |
Collapse
|
24
|
Ribeiro S, Mairhofer J, Madeira C, Diogo MM, Lobato da Silva C, Monteiro G, Grabherr R, Cabral JM. Plasmid DNA Size Does Affect Nonviral Gene Delivery Efficiency in Stem Cells. Cell Reprogram 2012; 14:130-7. [DOI: 10.1089/cell.2011.0093] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Affiliation(s)
- Sofia Ribeiro
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Técnico (IST), Lisboa, Portugal
| | - Juergen Mairhofer
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Catarina Madeira
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Técnico (IST), Lisboa, Portugal
| | - Maria Margarida Diogo
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Técnico (IST), Lisboa, Portugal
| | - Cláudia Lobato da Silva
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Técnico (IST), Lisboa, Portugal
| | - Gabriel Monteiro
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Técnico (IST), Lisboa, Portugal
| | - Reingard Grabherr
- Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Joaquim M. Cabral
- Department of Bioengineering and Institute for Biotechnology and Bioengineering (IBB), Centre for Biological and Chemical Engineering, Instituto Superior Técnico (IST), Lisboa, Portugal
| |
Collapse
|
25
|
Asuri P, Bartel MA, Vazin T, Jang JH, Wong TB, Schaffer DV. Directed evolution of adeno-associated virus for enhanced gene delivery and gene targeting in human pluripotent stem cells. Mol Ther 2012; 20:329-38. [PMID: 22108859 PMCID: PMC3277219 DOI: 10.1038/mt.2011.255] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 10/27/2011] [Indexed: 12/12/2022] Open
Abstract
Efficient approaches for the precise genetic engineering of human pluripotent stem cells (hPSCs) can enhance both basic and applied stem cell research. Adeno- associated virus (AAV) vectors are of particular interest for their capacity to mediate efficient gene delivery to and gene targeting in various cells. However, natural AAV serotypes offer only modest transduction of human embryonic and induced pluripotent stem cells (hESCs and hiPSCs), which limits their utility for efficiently manipulating the hPSC genome. Directed evolution is a powerful means to generate viral vectors with novel capabilities, and we have applied this approach to create a novel AAV variant with high gene delivery efficiencies (~50%) to hPSCs, which are importantly accompanied by a considerable increase in gene-targeting frequencies, up to 0.12%. While this level is likely sufficient for numerous applications, we also show that the gene-targeting efficiency mediated by an evolved AAV variant can be further enhanced (>1%) in the presence of targeted double- stranded breaks (DSBs) generated by the co-delivery of artificial zinc finger nucleases (ZFNs). Thus, this study demonstrates that under appropriate selective pressures, AAV vectors can be created to mediate efficient gene targeting in hPSCs, alone or in the presence of ZFN- mediated double-stranded DNA breaks.
Collapse
Affiliation(s)
- Prashanth Asuri
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720-1462, USA
| | | | | | | | | | | |
Collapse
|
26
|
Liao ZX, Peng SF, Ho YC, Mi FL, Maiti B, Sung HW. Mechanistic study of transfection of chitosan/DNA complexes coated by anionic poly(γ-glutamic acid). Biomaterials 2012; 33:3306-15. [PMID: 22281422 DOI: 10.1016/j.biomaterials.2012.01.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 01/05/2012] [Indexed: 11/24/2022]
Abstract
Chitosan (CS) has been investigated as a non-viral carrier for gene delivery, but resulting in a relatively low transfection. To address this concern, we developed a ternary system comprised the core of CS/DNA complex and the outer coating of an anionic polymer, poly(γ-glutamic acid) (γ-PGA). In molecular dynamic (MD) simulations, we found that γ-PGA was entangle tightly with the excess CS emanating from the surface of test complexes, thus making them more compact. With γ-PGA coating, the extent of test complexes internalized and their transfection efficiency were evidently enhanced. Trypsin treatment induced a concentration-dependent decrease in internalization of the γ-PGA-coated complexes, suggesting a specific protein-mediated endocytosis. The endocytosis inhibition study indicates that the γ-glutamyl transpeptidase (GGT) present on cell membranes was responsible for the uptake of test complexes. The amine group in the N-terminal γ-glutamyl unit on γ-PGA played an essential role in the interaction with GGT. When entangled with CS, the free N-terminal γ-glutamyl unit of γ-PGA on test complexes was exposed and might thus be accommodated within the γ-glutamyl binding pocket of the membrane GGT. Above results suggest that the γ-PGA coating on CS/DNA complexes can significantly enhance their cellular uptake via a specific GGT-mediated pathway. Knowledge of the uptake mechanism is crucial for the development of an efficient vector for gene transfection.
Collapse
Affiliation(s)
- Zi-Xian Liao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
| | | | | | | | | | | |
Collapse
|
27
|
Magnetically enhanced adeno-associated viral vector delivery for human neural stem cell infection. Biomaterials 2011; 32:8654-62. [DOI: 10.1016/j.biomaterials.2011.07.075] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 07/24/2011] [Indexed: 11/24/2022]
|
28
|
Peng LH, Fung KP, Leung PC, Gao JQ. Genetically manipulated adult stem cells for wound healing. Drug Discov Today 2011; 16:957-66. [PMID: 21824528 DOI: 10.1016/j.drudis.2011.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2011] [Revised: 04/20/2011] [Accepted: 07/25/2011] [Indexed: 12/17/2022]
Abstract
New knowledge of the signal controls and activities of adult stem cells (ASCs) involved in wound repair have led to extensive investigation of the topical delivery of biomacromolecules and multipotent stem cells to injured tissues for scar-less regeneration. The transplantation of genetically recombinant stem cells, which have roles as both therapeutics and carriers for gene delivery to wound sites, represents an attractive strategy for wound treatment. Here, we compare viral and non-viral vectors and three-dimensional scaffold-based transfection strategies in terms of their biosafety, recombinant efficiency and influence on the differentiation of ASCs, to indicate the future direction of the application of recombinant ASCs in wound treatment.
Collapse
Affiliation(s)
- Li-Hua Peng
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, PR China
| | | | | | | |
Collapse
|
29
|
Gauglitz GG, Jeschke MG. Combined gene and stem cell therapy for cutaneous wound healing. Mol Pharm 2011; 8:1471-9. [PMID: 21657247 DOI: 10.1021/mp2001457] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In current medical practice, wound therapy remains a clinical challenge and much effort has been focused on the development of novel therapeutic approaches for wound treatment. Gene therapy, initially developed for treatment of congenital defects, represents a promising option for enhancing wound repair. In order to accelerate wound closure, genes encoding for growth factors or cytokines have shown the most potential. The majority of gene delivery systems are based on viral transfection, naked DNA application, high pressure injection, and liposomal vectors. Besides advances stemming from breakthroughs in recombinant growth factors and bioengineered skin, there has been a significant increase in the understanding of stem cell biology in the field of cutaneous wound healing. A variety of sources, such as bone marrow, umbilical cord blood, adipose tissue and skin/hair follicles, have been utilized to isolate stem cells and to modulate the healing response of acute and chronic wounds. Recent data have demonstrated the feasibility of autologous adult stem cell therapy in cutaneous repair and regeneration. Very recently, stem cell based skin engineering in conjunction with gene recombination, in which the stem cells act as both the seed cells and the vehicle for gene delivery to the wound site, represents the most attractive field for generating a regenerative strategy for wound therapy. The aim of this article is to discuss the use and the potential of these novel technologies in order to improve wound healing capacities.
Collapse
Affiliation(s)
- Gerd G Gauglitz
- Department of Dermatology and Allergy, Ludwig Maximilian University, Munich, Germany
| | | |
Collapse
|
30
|
Balmayor ER, Azevedo HS, Reis RL. Controlled delivery systems: from pharmaceuticals to cells and genes. Pharm Res 2011; 28:1241-58. [PMID: 21424163 DOI: 10.1007/s11095-011-0392-y] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 02/03/2011] [Indexed: 11/26/2022]
Abstract
During the last few decades, a fair amount of scientific investigation has focused on developing novel and efficient drug delivery systems. According to different clinical needs, specific biopharmaceutical carriers have been proposed. Micro- and nanoparticulated systems, membranes and films, gels and even microelectronic chips have been successfully applied in order to deliver biopharmaceuticals via different anatomical routes. The ultimate goal is to deliver the potential drugs to target tissues, where regeneration or therapies (chemotherapy, antibiotics, and analgesics) are needed. Thereby, the bioactive molecule should be protected against environmental degradation. Delivery should be achieved in a dose- and time-correct manner. Drug delivery systems (DDS) have been conceived to provide improvements in drug administration such as ability to enhance the stability, absorption and therapeutic concentration of the molecules in combination with a long-term and controlled release of the drug. Moreover, the adverse effects related with some drugs can be reduced, and patient compliance could be improved. Recent advances in biotechnology, pharmaceutical sciences, molecular biology, polymer chemistry and nanotechnology are now opening up exciting possibilities in the field of DDS. However, it is also recognized that there are several key obstacles to overcome in bringing such approaches into routine clinical use. This review describes the present state-of-the-art DDS, with examples of current clinical applications, and the promises and challenges for the future in this innovative field.
Collapse
Affiliation(s)
- Elizabeth Rosado Balmayor
- 3B's Research Group-Biomaterials, Biodegradables and Biomimetics Headquarters of the European Institute of Excellence on Tissue Engineering & Regenerative Medicine, University of Minho, AvePark, 4806-909 Taipas, Guimarães, Portugal.
| | | | | |
Collapse
|
31
|
Liu BR, Huang YW, Winiarz JG, Chiang HJ, Lee HJ. Intracellular delivery of quantum dots mediated by a histidine- and arginine-rich HR9 cell-penetrating peptide through the direct membrane translocation mechanism. Biomaterials 2011; 32:3520-37. [PMID: 21329975 DOI: 10.1016/j.biomaterials.2011.01.041] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 01/13/2011] [Indexed: 11/25/2022]
Abstract
Functional peptides that transfer biomaterials, such as semiconductor quantum dots (QDs), into cells in biomaterial research have been developed in recent years. Delivery of QDs conjugated with cell-penetrating peptides (CPPs) into cells by the endocytic pathway was problematic in biomedical applications because of lysosomal trapping. Here, we demonstrate that histidine- and arginine-rich CPPs (HR9 peptides) stably and noncovalently combined with QDs are able to enter into cells in an extremely short period (4 min). Interrupting both F-actin polymerization and active transport did not inhibit the entry of HR9/QD complexes into cells, indicating that HR9 penetrates cell membrane directly. Subcellular colocalization studies indicated that QDs delivered by HR9 stay in cytosol without any organelle capture. Dimethyl sulphoxide, ethanol and oleic acid, but not pyrenebutyrate, enhanced HR9-mediated intracellular delivery of QDs by promoting the direct membrane translocation pathway. HR9 and HR9/QDs were not cytotoxic. These findings suggest that HR9 could be an efficient carrier to deliver drugs without interfering with their therapeutic activity.
Collapse
Affiliation(s)
- Betty R Liu
- Department of Natural Resources and Environmental Studies, National Dong Hwa University, Shoufeng, Hualien, Taiwan
| | | | | | | | | |
Collapse
|
32
|
An evolved adeno-associated viral variant enhances gene delivery and gene targeting in neural stem cells. Mol Ther 2011; 19:667-75. [PMID: 21224831 DOI: 10.1038/mt.2010.287] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Gene delivery to, and gene targeting in, stem cells would be a highly enabling technology for basic science and biomedical application. Adeno-associated viral (AAV) vectors have demonstrated the capacity for efficient delivery to numerous cells, but their application to stem cells has been limited by low transduction efficiency. Due to their considerable advantages, however, engineering AAV delivery systems to enhance gene delivery to stem cells may have an impact in stem cell biology and therapy. Therefore, using several diverse AAV capsid libraries-including randomly mutagenized, DNA shuffled, and random peptide insertion variants-we applied directed evolution to create a "designer" AAV vector with enhanced delivery efficiency for neural stem cells (NSCs). A novel AAV variant, carrying an insertion of a selected peptide sequence on the surface of the threefold spike within the heparin-binding site, emerged from this evolution. Importantly, this evolved AAV variant mediated efficient gene delivery to rat, mouse, and human NSCs, as well as efficient gene targeting within adult NSCs, and it is thus promising for applications ranging from basic stem cell biology to clinical translation.
Collapse
|
33
|
|
34
|
Zhang LH, Luo T, Zhang C, Luo P, Jin X, Song CX, Gao RL. Anti-DNA antibody modified coronary stent for plasmid gene delivery: results obtained from a porcine coronary stent model. J Gene Med 2010; 13:37-45. [PMID: 21259407 DOI: 10.1002/jgm.1529] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 07/05/2010] [Accepted: 11/14/2010] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Previous work in our laboratory has demonstrated that the anti-DNA antibody-immobilized stent results in highly site-specific gene delivery in a rabbit carotid model. As a result of the similarity in the anatomy and physiology of the pig and human cardiovascular systems, the porcine coronary stent model was used in the present study to evaluate the site-specificity, efficiency and long-term therapeutic effect of this gene delivery system in pig coronary arteries. METHODS A reporter plasmid pEGFP (pEGFP-C1) was tethered on the antibody-immobilized stents and assessed for site-specificity and efficiency in a pig coronary stent model. Inducible nitric oxide synthase (NOS) cDNA (pcDNA3.1-iNOS) was tethered on the stent as a therapeutic gene to evaluate the site-specificity and long-term therapeutic effect of this novel gene delivery system for the inhibition of restenosis after coronary stenting for 28 days. RESULTS Both the pEGFP-C1 and pcDNA3.1-iNOS tethered stents achieved site-specific gene transfection without distal spreading in the porcine coronary model. The overall GFP transfection efficiency was 2.6 ± 0.9% of the total cells, whereas the neointimal transfection was more than 6%. Histology and morphology studies showed no significant artery stenosis and intimal proliferation for 28 days after coronary stenting using pcDNA3.1-iNOS tethered stents. CONCLUSIONS For the first time, we report the successful use of anti-DNA antibody-immobilized stent as plasmid gene delivery system that possess high efficiency and site-specificity in a porcine coronary stent model. The novel system showed long-term therapeutic effects on the inhibition of restenosis when pcDNA3.1-iNOS was tethered on the stent.
Collapse
Affiliation(s)
- Lin-Hua Zhang
- Tianjin Key Laboratory of Biomaterials, Institute of Biomedical Engineering, Peking Union Medical College & Chinese Academy of Medical Sciences, Tianjin, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Holladay CA, O'Brien T, Pandit A. Non-viral gene therapy for myocardial engineering. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2010; 2:232-48. [PMID: 20063367 DOI: 10.1002/wnan.60] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Despite significant advances in surgical and pharmacological techniques, myocardial infarction (MI) remains the main cause of morbidity in the developed world because no remedy has been found for the regeneration of infarcted myocardium. Once the blood supply to the area in question is interrupted, the inflammatory cascade, among other mechanisms, results in the damaged tissue becoming a scar. The goals of cardiac gene therapy are essentially to minimize damage, to promote regeneration, or some combination thereof. While the vector is, in theory, less important than the gene being delivered, the choice of vector can have a significant impact. Viral therapies can have very high transfection efficiencies, but disadvantages include immunogenicity, retroviral-mediated insertional mutagenesis, and the expense and difficulty of manufacture. For these reasons, researchers have focused on non-viral gene therapy as an alternative. In this review, naked plasmid delivery, or the delivery of complexed plasmids, and cell-mediated gene delivery to the myocardium will be reviewed. Pre-clinical and clinical trials in the cardiac tissue will form the core of the discussion. While unmodified stem cells are sometimes considered therapeutic vectors on the basis of paracrine mechanisms of action basic understanding is limited. Thus, only genetically modified cells will be discussed as cell-mediated gene therapy.
Collapse
Affiliation(s)
- Carolyn A Holladay
- Network of Excellence for Functional Biomaterials, National University of Ireland, Galway, Ireland
| | | | | |
Collapse
|
36
|
Gene transfer into the lung by nanoparticle dextran-spermine/plasmid DNA complexes. J Biomed Biotechnol 2010; 2010:284840. [PMID: 20617146 PMCID: PMC2896664 DOI: 10.1155/2010/284840] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 04/21/2010] [Accepted: 05/05/2010] [Indexed: 11/17/2022] Open
Abstract
A novel cationic polymer, dextran-spermine (D-SPM), has been found to mediate gene expression in a wide variety of cell lines and in vivo through systemic delivery. Here, we extended the observations by determining the optimal conditions for gene expression of D-SPM/plasmid DNA (D-SPM/pDNA) in cell lines and in the lungs of BALB/c mice via instillation delivery. In vitro studies showed that D-SPM could partially protect pDNA from degradation by nuclease and exhibited optimal gene transfer efficiency at D-SPM to pDNA weight-mixing ratio of 12. In the lungs of mice, the levels of gene expression generated by D-SPM/pDNA are highly dependent on the weight-mixing ratio of D-SPM to pDNA, amount of pDNA in the complex, and the assay time postdelivery. Readministration of the complex at day 1 following the first dosing showed no significant effect on the retention and duration of gene expression. The study also showed that there was a clear trend of increasing size of the complexes as the amount of pDNA was increased, where the sizes of the D-SPM/pDNA complexes were within the nanometer range.
Collapse
|
37
|
Yoshida M, Jo JI, Tabata Y. Augmented anti-tumor effect of dendritic cells genetically engineered by interleukin-12 plasmid DNA. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2010; 21:659-75. [PMID: 20338099 DOI: 10.1163/156856209x434674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The objective of this study was to genetically engineer dendritic cells (DC) for biological activation and evaluate their anti-tumor activity in a tumor-bearing mouse model. Mouse DC were incubated on the surface of culture dishes which had been coated with the complexes of a cationized dextran and luciferase plasmid DNA complexes plus a cell adhesion protein, Pronectin, for gene transfection (reverse transfection). When compared with the conventional transfection where DC were transfected in the medium containing the complexes, the level of gene expression by the reverse method was significantly higher and the time period of gene expression was prolonged. Following the reverse transfection of DC by a plasmid DNA of mouse interleukin-12 (mIL-12) complexed with the cationized dextran, the mIL-12 protein was secreted at higher amounts for a longer time period. When injected intratumorally into mice carrying a mass of B16 tumor cells, the DC genetically activated showed significant anti-tumor activity.
Collapse
Affiliation(s)
- Masataka Yoshida
- Department of Biomaterials, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
38
|
Mesenchymal stem cells: a promising targeted-delivery vehicle in cancer gene therapy. J Control Release 2010; 147:154-62. [PMID: 20493219 DOI: 10.1016/j.jconrel.2010.05.015] [Citation(s) in RCA: 131] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Accepted: 05/12/2010] [Indexed: 01/12/2023]
Abstract
The targeting drug delivery systems (TDDS) have attracted extensive attention of researchers in recent years. More and more drug/gene targeted delivery carriers, such as liposome, magnetic nanoparticles, ligand-conjugated nanoparticles, microbubbles, etc., have been developed and under investigation for their application. However, the currently investigated drug/gene carriers have several disadvantages, which limit their future use in clinical practice. Therefore, design and development of novel drug/gene delivery vehicles has been a hot area of research. Recent studies have shown the ability of mesenchymal stem cells (MSCs) to migrate towards and engraft into the tumor sites, which make them a great hope for efficient targeted-delivery vehicles in cancer gene therapy. In this review article, we examine the promising of using mesenchymal stem cells as a targeted-delivery vehicle for cancer gene therapy, and summarize various challenges and concerns regarding these therapies.
Collapse
|
39
|
Ribeiro S, Mendes R, Madeira C, Monteiro G, da Silva C, Cabral J. A quantitative method to evaluate mesenchymal stem cell lipofection using real-time PCR. Biotechnol Prog 2010; 26:1501-4. [DOI: 10.1002/btpr.451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
40
|
Design of iron oxide nanoparticles with different sizes and surface charges for simple and efficient labeling of mesenchymal stem cells. J Control Release 2010; 142:465-73. [DOI: 10.1016/j.jconrel.2009.11.014] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Revised: 11/04/2009] [Accepted: 11/15/2009] [Indexed: 01/05/2023]
|
41
|
Nagane K, Jo JI, Tabata Y. Promoted Adipogenesis of Rat Mesenchymal Stem Cells by Transfection of Small Interfering RNA Complexed with a Cationized Dextran. Tissue Eng Part A 2010; 16:21-31. [DOI: 10.1089/ten.tea.2009.0170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Kentaro Nagane
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Jun-ichiro Jo
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| | - Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
42
|
Abstract
Tissue engineering is a newly emerging biomedical technology and methodology to assist and accelerate the regeneration and repairing of defective and damaged tissues based on the natural healing potentials of patients themselves. For the new therapeutic strategy, it is indispensable to provide cells with a local environment that enhances and regulates their proliferation and differentiation for cell-based tissue regeneration. Biomaterial technology plays an important role in the creation of this cell environment. For example, the biomaterial scaffolds and the drug delivery system (DDS) of biosignalling molecules have been investigated to enhance the proliferation and differentiation of cell potential for tissue regeneration. In addition, the scaffold and DDS technologies contribute to develop the basic research of stem cell biology and medicine as well as obtain a large number of cells with a high quality for cell transplantation therapy. A technology to genetically engineer cells for their functional manipulation is also useful for cell research and therapy. Several examples of tissue engineering applications with the cell scaffold and DDS of growth factors and genes are introduced to emphasize the significance of biomaterial technology in new therapeutic and research fields.
Collapse
Affiliation(s)
- Yasuhiko Tabata
- Department of Biomaterials, Field of Tissue Engineering, Institute for Frontier Medical Sciences, Kyoto University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
43
|
A matrix reservoir for improved control of non-viral gene delivery. J Control Release 2009; 136:220-5. [PMID: 19233237 DOI: 10.1016/j.jconrel.2009.02.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Revised: 01/08/2009] [Accepted: 02/10/2009] [Indexed: 11/27/2022]
Abstract
Non-viral gene delivery suffers from a number of limitations including short transgene expression times and low transfection efficiency. Collagen scaffolds have previously been investigated as in vitro DNA reservoirs, which allow sustained release of genetic information. Efficient viral gene-transfer from these scaffolds has previously been demonstrated. However, due to concerns about the safety of viral gene therapy, the use of non-viral vectors may be preferable. In this study a DNA-dendrimer complex embedded in a cross-linked collagen scaffold was investigated as a reservoir for non-viral delivery. Elution from the scaffolds and transfection of seeded rat mesenchymal stem cells were used to evaluate the scaffold's ability to act as a reservoir for the complexes. Elution from the scaffolds was minimal after 2 days with a total of 25% of the complexes released after 7 days. Extended transgene expression after DNA-dendrimer complex delivery from the scaffolds in comparison to direct delivery to cells was observed. The elongated transfection period and relatively high levels of reporter gene expression are significant advantages over other non-viral gene therapy techniques. This platform has the potential to be an effective method of scaffold-mediated gene delivery suitable for in vitro and in vivo applications.
Collapse
|
44
|
Wang YH, Ho ML, Chang JK, Chu HC, Lai SC, Wang GJ. Microporation is a valuable transfection method for gene expression in human adipose tissue-derived stem cells. Mol Ther 2008; 17:302-8. [PMID: 19066595 DOI: 10.1038/mt.2008.267] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stem cells are a promising resource for gene therapy. Adipose tissue-derived stem cells (ADSCs) offer advantages because of their abundance and ease of isolation. However, it is difficult to transduce genes into ADSCs by common transfection methods, especially nonviral methods. We report here the use of a new electroporation method, termed "microporation," to transduce plasmids into human ADSCs (hADSCs). We determined optimal conditions that led to efficient transfection of >76.1% of the microporated hADSCs with only minimal cell damage or cytotoxicity. We demonstrated the expression of both enhanced green fluorescent protein (EGFP) and luciferase from different promoters in microporated hADSCs. More important, the microporated hADSCs retained their multipotency and reporter gene expression was maintained for >2 weeks in vitro and in vivo. We further showed that a Tet-ON-inducible gene expression system could be microporated into hADSCs and that this system was functional following transplantation of the microporated cells into nude mice. Taken together, our data demonstrate that microporation allows a highly efficient transfection of hADSCs, without impairing their stem cell properties.
Collapse
Affiliation(s)
- Yan-Hsiung Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|