1
|
Filipić B, Ušjak D, Rambaher MH, Oljacic S, Milenković MT. Evaluation of novel compounds as anti-bacterial or anti-virulence agents. Front Cell Infect Microbiol 2024; 14:1370062. [PMID: 38510964 PMCID: PMC10951914 DOI: 10.3389/fcimb.2024.1370062] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Antimicrobial resistance is a global threat, leading to an alarming increase in the prevalence of bacterial infections that can no longer be treated with available antibiotics. The World Health Organization estimates that by 2050 up to 10 million deaths per year could be associated with antimicrobial resistance, which would equal the annual number of cancer deaths worldwide. To overcome this emerging crisis, novel anti-bacterial compounds are urgently needed. There are two possible approaches in the fight against bacterial infections: a) targeting structures within bacterial cells, similar to existing antibiotics; and/or b) targeting virulence factors rather than bacterial growth. Here, for the first time, we provide a comprehensive overview of the key steps in the evaluation of potential new anti-bacterial and/or anti-virulence compounds. The methods described in this review include: a) in silico methods for the evaluation of novel compounds; b) anti-bacterial assays (MIC, MBC, Time-kill); b) anti-virulence assays (anti-biofilm, anti-quorum sensing, anti-adhesion); and c) evaluation of safety aspects (cytotoxicity assay and Ames test). Overall, we provide a detailed description of the methods that are an essential tool for chemists, computational chemists, microbiologists, and toxicologists in the evaluation of potential novel antimicrobial compounds. These methods are cost-effective and have high predictive value. They are widely used in preclinical studies to identify new molecular candidates, for further investigation in animal and human trials.
Collapse
Affiliation(s)
- Brankica Filipić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Dušan Ušjak
- Laboratory for Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Martina Hrast Rambaher
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Slavica Oljacic
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Marina T. Milenković
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Song J, Yang J, Yang J, Sun G, Song G, Li J, Shiyue Zhao. Regulation of Wnt/GSK3β/β-catenin signaling pathway regulates calycosin-mediated anticancer effects in glioblastoma multiforme cells. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
3
|
Miclea LC, Mihailescu M, Tarba N, Brezoiu AM, Sandu AM, Mitran RA, Berger D, Matei C, Moisescu MG, Savopol T. Evaluation of intracellular distribution of folate functionalized silica nanoparticles using fluorescence and hyperspectral enhanced dark field microscopy. NANOSCALE 2022; 14:12744-12756. [PMID: 36000453 DOI: 10.1039/d2nr01821g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Using nanoparticles as carriers for drug delivery systems has become a widely applied strategy in therapeutics and diagnostics. However, the pattern of their intracellular distribution is yet to be clarified. Here we present an in vitro study on the incorporation of mesoporous silica nanoparticles conjugated with folate and loaded with a cytotoxic drug, Irinotecan. The nanoparticles count and distribution within the cell frame were evaluated by means of enhanced dark field microscopy combined with hyperspectral imagery and 3D reconstructions from double-labeled fluorescent samples. An original post-processing procedure was developed to emphasize the nanoparticles' localization in 3D reconstruction of cellular compartments. By these means, it has been shown that the conjugation of mesoporous silica nanoparticles with folate increases the efficiency of nanoparticles entering the cell and their preferential localization in the close vicinity of the nucleus. As revealed by metabolic viability assays, the nanoparticles functionalized with folate enhance the cytotoxic efficiency of Irinotecan.
Collapse
Affiliation(s)
- Luminita Claudia Miclea
- Biophysics and Cellular Biotechnology Department, Excellence Center for Research in Biophysics and Cellular Biotechnology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania.
| | - Mona Mihailescu
- Digital Holography Imaging and Processing Laboratory, Fundamental Sciences Applied in Engineering Research Center, Faculty of Applied Sciences, University "Politehnica" of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania.
| | - Nicolae Tarba
- Physics Department, Faculty of Applied Sciences, Doctoral School of Automatic Control and Computers, University "Politehnica" of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Ana-Maria Brezoiu
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 1-7 Polizu st., 11061, Bucharest, Romania
| | - Ana Maria Sandu
- CAMPUS Research Center, University "Politehnica" of Bucharest, 313 Splaiul Independentei, Bucharest, 060042, Romania
| | - Raul-Augustin Mitran
- "Ilie Murgulescu" Institute of Physical-Chemistry, Romanian Academy, 202 Splaiul Indepedenţei, Bucharest, 060021, Romania
| | - Daniela Berger
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 1-7 Polizu st., 11061, Bucharest, Romania
| | - Cristian Matei
- Department of Inorganic Chemistry, Physical-Chemistry & Electrochemistry, Faculty of Chemical Engineering and Biotechnologies, University "Politehnica" of Bucharest, 1-7 Polizu st., 11061, Bucharest, Romania
| | - Mihaela Georgeta Moisescu
- Biophysics and Cellular Biotechnology Department, Excellence Center for Research in Biophysics and Cellular Biotechnology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania.
| | - Tudor Savopol
- Biophysics and Cellular Biotechnology Department, Excellence Center for Research in Biophysics and Cellular Biotechnology, Faculty of Medicine, University of Medicine and Pharmacy Carol Davila, 8 Eroii Sanitari Blvd., Bucharest, 050474, Romania.
| |
Collapse
|
4
|
Rama M, Vijayalakshmi U. Drug delivery system in bone biology: an evolving platform for bone regeneration and bone infection management. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04442-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Fuentes C, Verdú S, Fuentes A, Ruiz MJ, Barat JM. In vivo toxicity assessment of eugenol and vanillin-functionalised silica particles using Caenorhabditis elegans. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113601. [PMID: 35533449 DOI: 10.1016/j.ecoenv.2022.113601] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 06/14/2023]
Abstract
The toxicological properties of different silica particles functionalised with essential oil components (EOCs) were herein assessed using the in vivo model C. elegans. In particular, the effects of the acute and long-term exposure to three silica particle types (SAS, MCM-41 micro, MCM-41 nano), either bare or functionalised with eugenol or vanillin, were evaluated on different biological parameters of nematodes. Acute exposure to the different particles did not reduce nematodes survival, brood growth or locomotion, but reproduction was impaired by all the materials, except for vanillin-functionalised MCM-41 nano. Moreover, long-term exposure to particles led to strongly inhibited nematodes growth and reproduction. The eugenol-functionalised particles exhibited higher functionalisation yields and had the strongest effects during acute and long-term exposures. Overall, the vanillin-functionalised particles displayed milder acute toxic effects on reproduction than pristine materials, but severer toxicological responses for the 96-hour exposure assays. Our findings suggest that the EOC type anchored to silica surfaces and functionalisation yield are crucial for determining the toxicological effects of particles on C. elegans. The results obtained with this alternative in vivo model can help to anticipate potential toxic responses to these new materials for human health and the environment.
Collapse
Affiliation(s)
- Cristina Fuentes
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia, Spain.
| | - Samuel Verdú
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia, Spain
| | - Ana Fuentes
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia, Spain
| | - María José Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - José Manuel Barat
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022 Valencia, Spain
| |
Collapse
|
6
|
Li W, Liu D, Song L, Li H, Dai S, Su Y, Li Q, Li J, Zheng T. Surface modified porous silicon with chitosan coating as a pH-responsive controlled delivery system for lutein. Food Funct 2022; 13:6129-6138. [PMID: 35579219 DOI: 10.1039/d2fo00101b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surface modified pH-responsive porous silicon (PSi) carriers were developed for efficient delivery of lutein. PSi particles were prepared by the electrochemical etching method and modified with two chemical groups: hydroxyl and octadecyl silane, respectively. Chitosan (CS) was used for coating of PSi to ensure pH-responsive release. The loading conditions, release properties, cytotoxicity and toxicity were investigated. The highest loading percentage of lutein could be obtained with oxidized PSi and the structure of the microparticles was characterized by Fourier transform-infrared spectroscopy. The surface area and pore size of the microparticles were obtained from the N2 adsorption-desorption isotherm. The CS-PSi-Lut microparticles showed the minimum surface area of 220.30 m2 g-1 and a relatively larger average pore width of 179.00 Å. In vitro release experiments showed a pH-responsive and controlled release of lutein, with the fastest release rate and highest cumulative release rate of 97% under acidic conditions (pH 5.0) within 7 h. PSi, chitosan and lutein showed synergistic toxic effects, and the CS-PSi-Lut microparticles could effectively inhibit the proliferation of HT-29 cells in a dose-dependent manner, with an inhibition rate of 77% when the lutein concentration reached 40 μg mL-1. The in vivo toxicological evaluation of CS-PSi-Lut microparticles indicated good biocompatibility in the range of experimental doses. The chitosan-coated oxidized PSi capable of delivering bioactive compounds in a targeted and controlled manner provides a novel platform for the development and application of lutein.
Collapse
Affiliation(s)
- Weiwei Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Di Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Laicui Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Hao Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Shijie Dai
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Ya Su
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Qianjin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Jianlin Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Tiesong Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
7
|
Dadej A, Woźniak-Braszak A, Bilski P, Piotrowska-Kempisty H, Józkowiak M, Pawełczyk A, Dadej D, Łażewska D, Jelińska A. Improved solubility of lornoxicam by inclusion into SBA-15: Comparison of loading methods. Eur J Pharm Sci 2022; 171:106133. [DOI: 10.1016/j.ejps.2022.106133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/09/2021] [Accepted: 01/19/2022] [Indexed: 11/03/2022]
|
8
|
Han D, Xu C, Ren XH, Peng Y, Xu B, Song JL, Chen J, Cheng SX. In Situ Detection of Nanotoxicity in Living Cells Based on Multiple miRNAs Probed by a Peptide Functionalized Nanoprobe. Anal Chem 2022; 94:2399-2407. [PMID: 35099175 DOI: 10.1021/acs.analchem.1c03950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The potential toxicity of nanoparticles, especially for clinically applicable ones, has become a critical concern. Technologies that can in situ-evaluate the toxicity of nanoparticles with high sensitivity are urgently needed. In this study, a facile strategy was developed for sensitive detection on the nanotoxicity of nanoparticles with low toxicity or a low dose. A functional nanoprobe loaded with molecular beacons was constructed to realize in situ evaluation of the nanotoxicity through probing multiple miRNAs in nanoparticle-exposed living cells. Being composed of protamine complexed with molecular beacons for miRNA detection and decorated by TAT and KALA peptides, the dual-peptide functionalized nanoprobe can efficiently deliver molecular beacons into living cells to realize the real-time monitoring of early biomarkers (miR-21 and miR-221) to evaluate nanotoxicity. Using mesoporous silica nanoparticles (MSNs) with different surface modifications as typical representatives of low toxic nanoparticles, we demonstrate that our nanoprobe can sensitively detect miRNA changes in cells under diverse exposure conditions, that is, MSN-NH2 exhibits the strongest capability to upregulate miR-21 and miR-221, and the upregulation is exposure dose- and time-dependent. Our approach is much more sensitive as compared with conventional methods to study cytotoxicity such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, cell morphology observation, and reactive oxygen species (ROS) assay. This study paves a path for effective and facile nanotoxicity evaluation and provides insights into the biological impacts of MSNs.
Collapse
Affiliation(s)
- Di Han
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Chang Xu
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Yan Peng
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Bin Xu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Jun-Long Song
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Jing Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, P. R. China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| |
Collapse
|
9
|
Fuentes C, Fuentes A, Byrne HJ, Barat JM, Ruiz MJ. In vitro toxicological evaluation of mesoporous silica microparticles functionalised with carvacrol and thymol. Food Chem Toxicol 2021; 160:112778. [PMID: 34958804 DOI: 10.1016/j.fct.2021.112778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 11/25/2022]
Abstract
The cytotoxicity of carvacrol- and thymol-functionalised mesoporous silica microparticles (MCM-41) was assessed in the human hepatocarcinoma cell line (HepG2). Cell viability, lactate dehydrogenase (LDH) activity, reactive oxygen species (ROS) production, mitochondrial membrane potential (ΔΨm), lipid peroxidation (LPO) and apoptosis/necrosis analyses were used as endpoints. The results showed that both materials induced cytotoxicity in a time- and concentration-dependent manner, and were more cytotoxic than free essential oil components and bare MCM-41. This effect was caused by cell-particle interactions and not by degradation products released to the culture media, as demonstrated in the extract dilution assays. LDH release was a less sensitive endpoint than the MTT (thiazolyl blue tetrazolium bromide) assay, which suggests the impairment of the mitochondrial function as the primary cytotoxic mechanism. In vitro tests on specialised cell functions showed that exposure to sublethal concentrations of these materials did not induce ROS formation during 2 h of exposure, but produced LPO and ΔΨm alterations in a concentration-dependent manner when cells were exposed for 24 h. The obtained results generally support the hypothesis that the carvacrol- and thymol-functionalised MCM-41 microparticles induced toxicity in HepG2 cells by an oxidative stress-related mechanism that resulted in apoptosis through the mitochondrial pathway.
Collapse
Affiliation(s)
- Cristina Fuentes
- Department of Food Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain.
| | - Ana Fuentes
- Department of Food Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Hugh J Byrne
- FOCAS Research Institute, City Campus, Technological University Dublin, Dublin 8, Ireland
| | - José Manuel Barat
- Department of Food Technology, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - María José Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
10
|
Dadej A, Woźniak-Braszak A, Bilski P, Piotrowska-Kempisty H, Józkowiak M, Geszke-Moritz M, Moritz M, Dadej D, Jelińska A. Modification of the Release of Poorly Soluble Sulindac with the APTES-Modified SBA-15 Mesoporous Silica. Pharmaceutics 2021; 13:pharmaceutics13101693. [PMID: 34683986 PMCID: PMC8537723 DOI: 10.3390/pharmaceutics13101693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/05/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
The effectiveness of oral drug administration is related to the solubility of a drug in the gastrointestinal tract and its ability to penetrate the biological membranes. As most new drugs are poorly soluble in water, there is a need to develop novel drug carriers that improve the dissolution rate and increase bioavailability. The aim of this study was to analyze the modification of sulindac release profiles in various pH levels with two APTES ((3-aminopropyl)triethoxysilane)-modified SBA-15 (Santa Barbara Amorphous-15) silicas differing in 3-aminopropyl group content. Furthermore, we investigated the cytotoxicity of the analyzed molecules. The materials were characterized by differential scanning calorimetry, powder X-ray diffraction, scanning and transmission electron microscopy, proton nuclear magnetic resonance and Fourier transformed infrared spectroscopy. Sulindac loaded on the SBA-15 was released in the hydrochloric acidic medium (pH 1.2) and phosphate buffers (pH 5.8, 6.8, and 7.4). The cytotoxicity studies were performed on Caco-2 cell line. The APTES-modified SBA-15 with a lower adsorption capacity towards sulindac released the drug in a less favorable manner. However, both analyzed materials improved the dissolution rate in acidic pH, as compared to crystalline sulindac. Moreover, the SBA-15, both before and after drug adsorption, exhibited insignificant cytotoxicity towards Caco-2 cells. The presented study evidenced that SBA-15 could serve as a non-toxic drug delivery system that enhances the dissolution rate of sulindac and improves its bioavailability.
Collapse
Affiliation(s)
- Adrianna Dadej
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland;
- Correspondence:
| | - Aneta Woźniak-Braszak
- Functional Materials Physics Division, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
| | - Paweł Bilski
- Medical Physics and Radiospectroscopy Division, Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland;
- Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna, Russia
| | - Hanna Piotrowska-Kempisty
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (H.P.-K.); (M.J.)
| | - Małgorzata Józkowiak
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland; (H.P.-K.); (M.J.)
| | - Małgorzata Geszke-Moritz
- Medical Biotechnology and Laboratory Medicine, Department of Pharmacognosy and Natural Medicines, Faculty of Pharmacy, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Michał Moritz
- Medical Biotechnology and Laboratory Medicine, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pomeranian Medical University in Szczecin, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland;
| | - Daniela Dadej
- Chair and Department of Endocrinology, Metabolism and Internal Diseases, Faculty of Medicine, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland;
| | - Anna Jelińska
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland;
| |
Collapse
|
11
|
Abdo GG, Gupta I, Kheraldine H, Rizeq B, Zagho MM, Khalil A, Elzatahry A, Al Moustafa AE. Mesoporous silica coated carbon nanofibers reduce embryotoxicity via ERK and JNK pathways. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111910. [PMID: 33641906 DOI: 10.1016/j.msec.2021.111910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/19/2022]
Abstract
Carbon nanofibers (CNFs) have been implicated in biomedical applications, yet, they are still considered as a potential hazard. Conversely, mesoporous silica is a biocompatible compound that has been used in various biomedical applications. In this regard, we recently reported that CNFs induce significant toxicity on the early stage of embryogenesis in addition to the inhibition of its angiogenesis. Thus, we herein use mesoporous silica coating of CNFs (MCNFs) in order to explore their outcome on normal development and angiogenesis using avian embryos at 3 days and its chorioallantoic membrane (CAM) at 6 days of incubation. Our data show that mesoporous silica coating of CNFs significantly reduces embryotoxicity provoked by CNFs. However, MCNFs exhibit slight increase in angiogenesis inhibition in comparison with CNFs. Further investigation revealed that MCNFs slightly deregulate the expression patterns of key controller genes involved in cell proliferation, survival, angiogenesis, and apoptosis as compared to CNFs. We confirmed these data using avian primary normal embryonic fibroblast cells established in our lab. Regarding the molecular pathways, we found that MCNFs downregulate the expression of ERK1/ERK2, p-ERK1/ERK2 and JNK1/JNK2/JNK3, thus indicating a protective role of MCNFs via ERK and JNK pathways. Our data suggest that coating CNFs with a layer of mesoporous silica can overcome their toxicity making them suitable for use in biomedical applications. Nevertheless, further investigations are required to evaluate the effects of MCNFs and their mechanisms using different in vitro and in vivo models.
Collapse
Affiliation(s)
- Ghada G Abdo
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar; Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar.
| | - Ishita Gupta
- Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| | - Hadeel Kheraldine
- Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| | - Balsam Rizeq
- Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| | - Moustafa M Zagho
- School of Polymer Science and Engineering, University of Southern Mississippi, Hattiesburg, MS 39406, United States of America.
| | - Ashraf Khalil
- College of Pharmacy, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| | - Ahmed Elzatahry
- Department of Materials Science and Technology Program, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar.
| | - Ala-Eddin Al Moustafa
- Biomedical Research Centre, Qatar University, PO Box 2713, Doha, Qatar; College of Medicine, QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
12
|
Oral Drug Delivery Systems Based on Ordered Mesoporous Silica Nanoparticles for Modulating the Release of Aprepitant. Int J Mol Sci 2021; 22:ijms22041896. [PMID: 33672949 PMCID: PMC7917702 DOI: 10.3390/ijms22041896] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/06/2021] [Accepted: 02/11/2021] [Indexed: 01/06/2023] Open
Abstract
Two different types of ordered mesoporous nanoparticles, namely MCM-41 and MCM-48, with similar pore sizes but different pore connectivity, were loaded with aprepitant via a passive diffusion method. The percentage of the loaded active agent, along with the encapsulation efficiency, was evaluated using High-performance Liquid Chromatography (HPLC) analysis complemented by Thermogravimetric Analysis (TGA). The determination of the pore properties of the mesoporous particles before and after the drug loading revealed the presence of confined aprepitant in the pore structure of the particles, while Powder X-ray Diffractometry(pXRD), Differential Scanning Calorimetry (DSC), and FTIR experiments indicated that the drug is in an amorphous state. The release profiles of the drug from the two different mesoporous materials were studied in various release media and revealed an aprepitant release up to 45% when sink conditions are applied. The cytocompatibility of the silica nanoparticles was assessed in Caco-2 cell monolayers, in the presence and absence of the active agent, suggesting that they can be used as carriers of aprepitant without presenting any toxicity in vitro.
Collapse
|
13
|
Fuentes C, Ruiz-Rico M, Fuentes A, Barat JM, Ruiz MJ. Comparative cytotoxic study of silica materials functionalised with essential oil components in HepG2 cells. Food Chem Toxicol 2020; 147:111858. [PMID: 33212212 DOI: 10.1016/j.fct.2020.111858] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
This work evaluated the cytotoxic effect of different EOCs-functionalised silica particle types. The in vitro toxicity of eugenol and vanillin-immobilised SAS, MCM-41 microparticles and MCM-41 nanoparticles was evaluated on HepG2 cells, and compared to free EOCs and pristine materials. The results revealed that free essential oil components and bare silica had a mild cytotoxic effect on HepG2 cells. However, the comparative study showed that free eugenol and vanillin had a milder cytotoxic effect than the equivalent concentrations of immobilised components on the different silica particles, while differences in cell viability between the bare and functionalised particles relied on the type of analysed material. The most cytotoxic materials were eugenol and vanillin-functionalised MCM-41 micro with IC50 values of 0.19 and 0.17 mg/mL, respectively, at 48 h exposure. Differences in cytotoxicity between functionalised particles may be attributed to the density of the functional components on their surface as a result of the functionalisation reaction performance for different materials. The study of the physico-chemical properties of particles demonstrated that cationic nature and increased hydrophobicity could be responsible for promoting cell-particle interactions for the eugenol and vanillin functionalised silica particles, enhancing their cytotoxic behaviour.
Collapse
Affiliation(s)
- Cristina Fuentes
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022, València, Spain.
| | - María Ruiz-Rico
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022, València, Spain
| | - Ana Fuentes
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022, València, Spain
| | - José Manuel Barat
- Department of Food Technology, Universitat Politècnica de València. Camino de Vera s/n, 46022, València, Spain
| | - María José Ruiz
- Laboratory of Toxicology, Faculty of Pharmacy, Universitat de València, Av. Vicent Andrés Estellés s/n, 46100 Burjassot, València, Spain
| |
Collapse
|
14
|
Improvement of mesoporous silica nanoparticles: A new approach in the administration of NSAIDS. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101833] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Tzankova V, Aluani D, Yordanov Y, Valoti M, Frosini M, Spassova I, Kovacheva D, Tzankov B. In vitro toxicity evaluation of lomefloxacin-loaded MCM-41 mesoporous silica nanoparticles. Drug Chem Toxicol 2019; 44:238-249. [PMID: 30822164 DOI: 10.1080/01480545.2019.1571503] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Lomefloxacin (LF) is interesting as a model molecule from a safety point of view because of its high potential for serious adverse drug effects (i.e. phototoxic reactions). In this study, MCM-41 mesoporous silica nanoparticles (MCM-41) were loaded with lomefloxacin, aiming to overcome the drug's intrinsic cytotoxicity. The good biocompatibility of the empty drug carrier (0.1-1.0 mg/ml) was established by the absence of red blood cell lysis (hemolysis assay). The cytotoxicity of empty MCM-41 and lomefloxacin-loaded MCM-41 (LF-MCM-41) was evaluated by using a battery of in vitro cytotoxicity assays: Alamar blue, lactate dehydrogenase release and reactive oxygen species formation by dichlorofluorescein assay. Three cell cultures models: hepatoma HepG2, fibroblasts L929 and endothelial EA.hy926 cells were used to compare the cytotoxicity and reactive oxygen species formation by free drug, empty MCM-41, and LF-MCM-41. The findings from the study indicated that empty MCM-41 (0.1-1.0 mg/ml) showed a low cytotoxic potential in HepG2, followed by L929 and EA.hy926 cells. Lomefloxacin loading in MCM-41 mesoporous silica nanocarrier reduced the cytotoxicity of the free lomefloxacin, especially in the high concentration (1.0 mg/ml MCM-41, containing 120 µg/ml LF). L929 and EA.hy926 cells were more sensitive to the protective effects of LF-MCM-41, compared to HepG2 cells. The results indicate that an improvement in lomefloxacin safety might be expected after incorporation in an appropriate drug delivery system.
Collapse
Affiliation(s)
- Virginia Tzankova
- Department of Pharmacology Pharmacotherapy and Toxicology Faculty of Pharmacy, Medical University, Sofia, Bulgaria
| | - Denitsa Aluani
- Department of Pharmacology Pharmacotherapy and Toxicology Faculty of Pharmacy, Medical University, Sofia, Bulgaria
| | - Yordan Yordanov
- Department of Pharmacology Pharmacotherapy and Toxicology Faculty of Pharmacy, Medical University, Sofia, Bulgaria
| | - Massimo Valoti
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Maria Frosini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Ivanka Spassova
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Daniela Kovacheva
- Institute of General and Inorganic Chemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Borislav Tzankov
- Department of Pharmaceutical Technology and Biopharmaceutics Faculty of Pharmacy, Medical University, Sofia, Bulgaria
| |
Collapse
|
16
|
Pourshahrestani S, Kadri NA, Zeimaran E, Towler MR. Well-ordered mesoporous silica and bioactive glasses: promise for improved hemostasis. Biomater Sci 2019; 7:31-50. [DOI: 10.1039/c8bm01041b] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Mesoporous silica and bioactive glasses with unique textural properties are new generations of inorganic hemostats with efficient hemostatic ability.
Collapse
Affiliation(s)
- Sara Pourshahrestani
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering
- Faculty of Engineering
- University of Malaya
- Kuala Lumpur 50603
- Malaysia
| | - Ehsan Zeimaran
- School of Engineering
- Monash University
- 47500 Bandar Sunway
- Malaysia
| | - Mark R. Towler
- Department of Mechanical & Industrial Engineering
- Ryerson University
- Toronto M5B 2K3
- Canada
| |
Collapse
|
17
|
Hozayen WG, Mahmoud AM, Desouky EM, El-Nahass ES, Soliman HA, Farghali AA. Cardiac and pulmonary toxicity of mesoporous silica nanoparticles is associated with excessive ROS production and redox imbalance in Wistar rats. Biomed Pharmacother 2018; 109:2527-2538. [PMID: 30551513 DOI: 10.1016/j.biopha.2018.11.093] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/01/2018] [Accepted: 11/25/2018] [Indexed: 02/06/2023] Open
Abstract
Mesoporous silica nanoparticles (MSNs) represent one of the most promising drug delivery systems. MSNs have attracted considerable attention in recent years both in industry and biomedicine due to their unique properties. Thus, evaluation of the toxic effects of MSNs is necessary before the biomedical and clinical applications. We investigated the in vivo effect of MSNs on the production of reactive oxygen species (ROS), antioxidant defenses and histology of the heart and lung. Rats received 25, 50, 100 and 200 mg/kg body weight of synthesized MSNs intraperitoneally for 30 days and samples were collected for analysis. MSNs induced significant increase in serum cardiac function markers, tumor necrosis factor alpha and lipids. MSNs-induced rats exhibited anemia, thrombocytopenia, leukocytosis, significantly increased ROS, malondialdehyde and nitric oxide, and declined antioxidant defenses in the heart and lung of rats. In addition, MSNs induced histological alterations in the heart and lung of rats. In conclusion, our results demonstrated that MSNs induce cardiotoxicity and pulmonary toxicity via excessive generation of ROS, suppressed antioxidants, inflammation and histological alterations. Further investigations are recommended to understand the molecular mechanism underlying the toxic effects of MSNs and to improve the performance of nanomedicine.
Collapse
Affiliation(s)
- Walaa G Hozayen
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Egypt; Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Egypt
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Egypt.
| | - Ekram M Desouky
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Egypt
| | - El-Shaymaa El-Nahass
- Department of Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Egypt
| | - Hanan A Soliman
- Biochemistry Division, Chemistry Department, Faculty of Science, Beni-Suef University, Egypt
| | - Ahmed A Farghali
- Materials Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Egypt
| |
Collapse
|
18
|
Zhang X, Luan J, Chen W, Fan J, Nan Y, Wang Y, Liang Y, Meng G, Ju D. Mesoporous silica nanoparticles induced hepatotoxicity via NLRP3 inflammasome activation and caspase-1-dependent pyroptosis. NANOSCALE 2018; 10:9141-9152. [PMID: 29722780 DOI: 10.1039/c8nr00554k] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Increased biomedical applications of mesoporous silica nanoparticles (MSNs) raise considerable attention concerning their toxicological effects; the toxicities of MSNs are still undefined and the underlying mechanisms are unknown. We conducted this study to determine the hepatotoxicity of continuous administration of MSNs and the potential mechanisms. MSNs caused cytotoxicity in hepatic L02 cells in a dose- and time-dependent manner. Then, MSNs were shown to elicit NOD-like receptor protein 3 (NLRP3) inflammasome activation in hepatocytes, leading to caspase-1-dependent pyroptosis, a novel manner of cell death. In vivo MSN administration triggered hepatotoxicity as indicated by increased histological injury, serum alanine aminotransferase and serum aspartate aminotransferase. Notably, NLRP3 inflammasome and pyroptosis were also activated during the treatment. Meanwhile, in NLRP3 knockout mice and caspase-1 knockout mice, MSN-induced liver inflammation and hepatotoxicity could be abolished. Furthermore, experiments indicated that MSNs induced mitochondrial reactive oxygen species (ROS) generation, and the ROS scavenger could attenuate the MSN-activated NLRP3 inflammasomes and pyroptosis in the liver. Collectively, these data suggested that MSNs triggered liver inflammation and hepatocyte pyroptosis through NLRP3 inflammasome activation, which was caused by MSN-induced ROS generation. Our study provided novel insights into the hepatotoxicity of MSNs and the underlying mechanisms, and facilitated the potential approach to increase the biosafety of MSNs.
Collapse
Affiliation(s)
- Xuyao Zhang
- Minhang Hospital, Fudan University, 170 Xinsong Road, Shanghai 201199, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Sayed E, Karavasili C, Ruparelia K, Haj-Ahmad R, Charalambopoulou G, Steriotis T, Giasafaki D, Cox P, Singh N, Giassafaki LPN, Mpenekou A, Markopoulou CK, Vizirianakis IS, Chang MW, Fatouros DG, Ahmad Z. Electrosprayed mesoporous particles for improved aqueous solubility of a poorly water soluble anticancer agent: in vitro and ex vivo evaluation. J Control Release 2018; 278:142-155. [DOI: 10.1016/j.jconrel.2018.03.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/22/2018] [Accepted: 03/26/2018] [Indexed: 12/20/2022]
|
20
|
Riikonen J, Xu W, Lehto VP. Mesoporous systems for poorly soluble drugs – recent trends. Int J Pharm 2018; 536:178-186. [DOI: 10.1016/j.ijpharm.2017.11.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 11/22/2017] [Accepted: 11/23/2017] [Indexed: 11/28/2022]
|
21
|
Conductive vancomycin-loaded mesoporous silica polypyrrole-based scaffolds for bone regeneration. Int J Pharm 2018; 536:241-250. [DOI: 10.1016/j.ijpharm.2017.11.065] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 01/20/2023]
|
22
|
Watermann A, Brieger J. Mesoporous Silica Nanoparticles as Drug Delivery Vehicles in Cancer. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E189. [PMID: 28737672 PMCID: PMC5535255 DOI: 10.3390/nano7070189] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/14/2017] [Accepted: 07/18/2017] [Indexed: 02/07/2023]
Abstract
Even though cancer treatment has improved over the recent decades, still more specific and effective treatment concepts are mandatory. Surgical removal is not always possible, metastases are challenging and chemo- and radiotherapy can not only have severe side-effects but also resistances may occur. To cope with these challenges more efficient therapies with fewer side-effects are required. One promising approach is the use of drug delivery vehicles. Here, mesoporous silica nanoparticles (MSN) are discussed as biodegradable drug carrier to improve efficacy and reduce side-effects. MSN excellently fulfill the criteria for nanoparticulate carriers: their distinct structure allows high loading capacity and a plethora of surface modifications. MSN synthesis permits fine-tuning of particle and pore sizes. Moreover, drug release can be tailored through various gatekeeper systems which are for example pH-sensitive or redox-sensitive. Furthermore, MSN can either enter tumors passively by the enhanced permeability and retention effect or can be actively targeted by various ligands. PEGylation prolongs circulation time and availability. A huge advantage of MSN is their explicitly low toxic profile in vivo. Yet, clinical translation remains challenging. Overall, mesoporous silica nanoparticles are a promising tool for innovative, more efficient and safer cancer therapies.
Collapse
Affiliation(s)
- Anna Watermann
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| | - Juergen Brieger
- Department of Otorhinolaryngology, Head and Neck Surgery, University Medical Center Mainz, Langenbeckstraße 1, 55131 Mainz, Germany.
| |
Collapse
|
23
|
Activated carbon as a carrier for amorphous drug delivery: Effect of drug characteristics and carrier wettability. Eur J Pharm Biopharm 2017; 115:197-205. [DOI: 10.1016/j.ejpb.2017.03.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/06/2017] [Accepted: 03/06/2017] [Indexed: 12/31/2022]
|
24
|
Ma C, Wei Q, Cao B, Cheng X, Tian J, Pu H, Yusufu A, Cao L. A multifunctional bioactive material that stimulates osteogenesis and promotes the vascularization bone marrow stem cells and their resistance to bacterial infection. PLoS One 2017; 12:e0172499. [PMID: 28358890 PMCID: PMC5373515 DOI: 10.1371/journal.pone.0172499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/06/2017] [Indexed: 12/28/2022] Open
Abstract
The main limitation of tissue engineering lies in the inability to stimulate osteogenesis, angiogenesis of stem cells and broad-spectrum antimicrobial activity. However, the development of multifunctional bioactive materials with these capabilities remains a great challenge. In this study, we prepared mesoporous silica nanoparticles encapsulated with silver nanocrystals (AG-MSN) with uniform sphere size and mesopores. Platelet-derived growth factor BB (PDGF-BB) was effectively loaded in the AG-MSN mesopores (P-AG-MSN). The silicon ions (Si) released by P-AG-MSN stimulate osteogenic differentiation of bone marrow stromal cells (BMSC) by activating the alkaline phosphatase (ALP) activity of bone-related genes and increasing protein (OCN, RUNX2 and OPN) expression. Ag+ ions could be slowly released from the interior of the shell, highlighting their durable antibacterial activity. The sustained release of PDGF-BB from P-AG-MSN stimulated the angiogenic differentiation of BMSC, as indicated by the enhanced secretion of vascular endothelial growth factor (VEGF), HIF-1α, HGF and ANG-1 and protein expression. Our results show that P-AG-MSN can clearly promote BMSC osteostimulation and vascularization. This research serves as a preliminary study of the utilization of this multifunctional mixture to fabricate a new active biological scaffold that integrates BMSC osteostimulation, vascularization and bactericidal effects by 3D printing technology.
Collapse
Affiliation(s)
- Chuang Ma
- Department of Orthopedics Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- Department of Orthopedics Center, First Affiliated Hospital of Xinjiang Medical University Chang Ji Branch, Chang Ji, China
| | - Qin Wei
- Xinjiang Key Laboratory of Medical Animal Model Research, Clinical Medical Research Institute of the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Bo Cao
- Department of Orthopedics Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Xinchun Cheng
- Carders Health Care No. 4 Department of Xinjiang Uygur Autonomous Region People's Hospital, Urumqi, China
| | - Juling Tian
- Department of Clinical Laboratory, The first people's Hospital of Urumqi, Urumqi, China
| | - Hongwei Pu
- Department of Science and Research Education Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Aihemaitijiang Yusufu
- Department of Orthopedics Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- * E-mail: (AY); (LC)
| | - Li Cao
- Department of Orthopedics Center, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
- * E-mail: (AY); (LC)
| |
Collapse
|
25
|
Khodaverdi E, Ahmadi M, Kamali H, Hadizadeh F. Aminopropyl groups of the functionalized Mobil Crystalline Material 41 as a carrier for controlled diclofenac sodium and piroxicam delivery. Int J Pharm Investig 2017; 7:174-181. [PMID: 29692976 PMCID: PMC5903021 DOI: 10.4103/jphi.jphi_77_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Objective: Synthetic Mobil Crystalline Material 41 (MCM-41) as a mesoporous material and functionalized MCM-41 using aminopropyl groups were studied in order to investigate their ability to encapsulate and to control the release of diclofenac sodium and piroxicam. Materials and Methods: MCM-41 was synthesized through sol–gel procedure and functionalized with aminopropyl groups. The physicochemical properties of MCM-41 were studied through particle size analysis, infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and carbon–hydrogen–nitrogen analysis. Diclofenac sodium and piroxicam were loaded into the MCM-41 matrix using the filtration and solvent evaporation methods. The drug-loading capacity was determined by ultraviolet, Fourier transform infrared, X-ray diffraction, and Brunauer–Emmett–Teller analysis. Results: According to the results for pure drug release, >57% was released in the 1st h, but when these drugs were loaded into pure Mobil Crystalline Material 41 (MCM-41) and functionalized MCM-41, the release into the simulated gastrointestinal medium was less, continuous, and slower. The release of piroxicam from functionalized MCM-41 was slower than that from MCM-41 in the simulated intestinal medium because of the formation of electrostatic bonds between piroxicam and the aminopropyl groups of the functionalized MCM-41. However, in the case of diclofenac sodium, there was no significant difference between pure MCM-41 and functionalized MCM-41. The difference between piroxicam and diclofenac sodium was due to the high solubility of diclofenac sodium in the intestinal medium (pH 6.8), which caused more rapid release from the matrixes than for piroxicam. Conclusion: Our findings indicate that, after functionalization of MCM-41, it could offer a good means of delivering controlled diclofenac sodium and piroxicam.
Collapse
Affiliation(s)
- Elham Khodaverdi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Ahmadi
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Kamali
- Targeted Drug Delivery Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Biotechnology Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Welch K, Latifzada MA, Frykstrand S, Strømme M. Investigation of the Antibacterial Effect of Mesoporous Magnesium Carbonate. ACS OMEGA 2016; 1:907-914. [PMID: 30023495 PMCID: PMC6044671 DOI: 10.1021/acsomega.6b00124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/21/2016] [Indexed: 06/01/2023]
Abstract
Mesoporous magnesium carbonate (MMC) was first presented in 2013, and this material is currently under consideration for use in a number of biotechnological applications including topical formulations. This study presents the first evaluation of the antibacterial properties of the material with mesoporous silica and two other magnesium-containing powder materials used as references. All powder materials in this study are sieved to achieve a particle size distribution between 25 and 75 μm. The Gram-positive bacterium Staphylococcus epidermidis is used as the model bacterium due to its prevalence on human skin, its likelihood of developing resistance to antibiotics, for example, from routine exposure to antibiotics secreted in sweat, and because it is found inside affected acne vulgaris pores. Quantification of bacterial viability using a metabolic activity assay with resazurin as the fluorescent indicator shows that MMC exerts a strong antibacterial effect on the bacteria and that alkalinity accounts for the major part of this effect. The results open up for further development of MMC in on-skin applications where bacterial growth inhibition without using antibiotics is deemed favorable.
Collapse
|
27
|
Ebabe Elle R, Rahmani S, Lauret C, Morena M, Bidel LPR, Boulahtouf A, Balaguer P, Cristol JP, Durand JO, Charnay C, Badia E. Functionalized Mesoporous Silica Nanoparticle with Antioxidants as a New Carrier That Generates Lower Oxidative Stress Impact on Cells. Mol Pharm 2016; 13:2647-60. [PMID: 27367273 DOI: 10.1021/acs.molpharmaceut.6b00190] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) were covalently coated with antioxidant molecules, namely, caffeic acid (MSN-CAF) or rutin (MSN-RUT), in order to diminish the impact of oxidative stress induced after transfection into cells, thus generating safer carriers used for either drug delivery or other applications. Two cellular models involved in the entry of NPs in the body were used for this purpose: the intestinal Caco-2 and the epidermal HaCaT cell lines. Rutin gave the best results in terms of antioxidant capacities preservation during coupling procedures, cellular toxicity alleviation, and decrease of ROS level after 24 h incubation of cells with grafted nanoparticles. These protective effects of rutin were found more pronounced in HaCaT than in Caco-2 cells, indicating some cellular specificity toward defense against oxidative stress. In order to gain more insight about the Nrf2 response, a stable transfected HaCaT cell line bearing repeats of the antioxidant response element (ARE) in front of a luciferase reporter gene was generated. In this cell line, both tBHQ and quercetin (Nrf2 agonists), but not rutin, were able to induce, in a dose-dependent fashion, the luciferase response. Interestingly, at high concentration, MSN-RUT was able to induce a strong Nrf2 protective response in HaCaT cells, accompanied by a comparable induction of HO-1 mRNA. The level of these responses was again less important in Caco-2 cells. To conclude, in keratinocyte cell line, the coupling of rutin to silica nanoparticles was beneficial in term of ROS reduction, cellular viability, and protective effects mediated through the activation of the Nrf2 antioxidant pathway.
Collapse
Affiliation(s)
- Raymond Ebabe Elle
- PhyMedExp, Université de Montpellier , INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Saher Rahmani
- Institut Charles Gerhardt de Montpellier (ICGM), CNRS UMR 5253, Université de Montpellier , Campus Triolet, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Céline Lauret
- PhyMedExp, Université de Montpellier , INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Marion Morena
- PhyMedExp, Université de Montpellier , INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Luc Philippe Régis Bidel
- INRA, UMR AGAP, Centre de Recherche de Montpellier , 2 Place Pierre Viala-Bât. 21, 34060 Montpellier, France
| | - Abdelhay Boulahtouf
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U1194; ICM Val d'Aurelle Paul Lamarque , Montpellier F-34298, France
| | - Patrick Balaguer
- IRCM, Institut de Recherche en Cancérologie de Montpellier; INSERM, U1194; ICM Val d'Aurelle Paul Lamarque , Montpellier F-34298, France
| | - Jean-Paul Cristol
- PhyMedExp, Université de Montpellier , INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| | - Jean-Olivier Durand
- Institut Charles Gerhardt de Montpellier (ICGM), CNRS UMR 5253, Université de Montpellier , Campus Triolet, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Clarence Charnay
- Institut Charles Gerhardt de Montpellier (ICGM), CNRS UMR 5253, Université de Montpellier , Campus Triolet, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Eric Badia
- PhyMedExp, Université de Montpellier , INSERM U1046, CNRS UMR 9214, 34295 Montpellier cedex 5, France
| |
Collapse
|
28
|
Kierys A, Kasperek R, Krasucka P, Goworek J. Encapsulation of diclofenac sodium within polymer beads by silica species via vapour-phase synthesis. Colloids Surf B Biointerfaces 2016; 142:30-37. [DOI: 10.1016/j.colsurfb.2016.02.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/25/2016] [Accepted: 02/18/2016] [Indexed: 01/17/2023]
|
29
|
A study on the cytotoxicity of carbon-based materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:101-108. [PMID: 27524001 DOI: 10.1016/j.msec.2016.05.094] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 04/26/2016] [Accepted: 05/22/2016] [Indexed: 01/29/2023]
Abstract
With an aim to understand the origin and key contributing factors towards carbon-induced cytotoxicity, we have studied five different carbon samples with diverse surface area, pore width, shape and size, conductivity and surface functionality. All the carbon materials were characterized with surface area and pore size distribution, X-ray photoelectron spectroscopy (XPS) and electron microscopic imaging. We performed cytotoxicity study in Caco-2 cells by colorimetric assay, oxidative stress analysis by reactive oxygen species (ROS) detection, cellular metabolic activity measurement by adenosine triphosphate (ATP) depletion and visualization of cellular internalization by TEM imaging. The carbon materials demonstrated a varying degree of cytotoxicity in contact with Caco-2 cells. The lowest cell survival rate was observed for nanographene, which possessed the minimal size amongst all the carbon samples under this study. None of the carbons induced oxidative stress to the cells as indicated by the ROS generation results. Cellular metabolic activity study revealed that the carbon materials caused ATP depletion in cells and nanographene caused the highest depletion. Visual observation by TEM imaging indicated the cellular internalization of nanographene. This study confirmed that the size is the key cause of carbon-induced cytotoxicity and it is probably caused by the ATP depletion within the cell.
Collapse
|
30
|
Moritz M, Geszke-Moritz M. Mesoporous materials as multifunctional tools in biosciences: Principles and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 49:114-151. [DOI: 10.1016/j.msec.2014.12.079] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/09/2014] [Indexed: 12/17/2022]
|
31
|
Kempen PJ, Greasley S, Parker KA, Campbell JC, Chang HY, Jones JR, Sinclair R, Gambhir SS, Jokerst JV. Theranostic mesoporous silica nanoparticles biodegrade after pro-survival drug delivery and ultrasound/magnetic resonance imaging of stem cells. Am J Cancer Res 2015; 5:631-42. [PMID: 25825602 PMCID: PMC4377731 DOI: 10.7150/thno.11389] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 02/02/2015] [Indexed: 12/19/2022] Open
Abstract
Increasing cell survival in stem cell therapy is an important challenge for the field of regenerative medicine. Here, we report theranostic mesoporous silica nanoparticles that can increase cell survival through both diagnostic and therapeutic approaches. First, the nanoparticle offers ultrasound and MRI signal to guide implantation into the peri-infarct zone and away from the most necrotic tissue. Second, the nanoparticle serves as a slow release reservoir of insulin-like growth factor (IGF)—a protein shown to increase cell survival. Mesenchymal stem cells labeled with these nanoparticles had detection limits near 9000 cells with no cytotoxicity at the 250 µg/mL concentration required for labeling. We also studied the degradation of the nanoparticles and showed that they clear from cells in approximately 3 weeks. The presence of IGF increased cell survival up to 40% (p<0.05) versus unlabeled cells under in vitro serum-free culture conditions.
Collapse
|
32
|
Ferenc M, Katir N, Miłowska K, Bousmina M, Majoral JP, Bryszewska M, El Kadib A. Haemolytic activity and cellular toxicity of SBA-15-type silicas: elucidating the role of the mesostructure, surface functionality and linker length. J Mater Chem B 2015; 3:2714-2724. [DOI: 10.1039/c4tb01901f] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Haemolytic activity and cellular toxicity of native, amino-, mercapto-, and carboxy-terminated SBA-15-type silicates were investigated.
Collapse
Affiliation(s)
- Małgorzata Ferenc
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- Lodz
- Poland
| | - Nadia Katir
- Euromed Research Institute
- Engineering Division
- Euro-Mediterranean University of Fes (UEMF)
- 30070 Fès
- Morocco
| | - Katarzyna Miłowska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- Lodz
- Poland
| | - Mosto Bousmina
- Euromed Research Institute
- Engineering Division
- Euro-Mediterranean University of Fes (UEMF)
- 30070 Fès
- Morocco
| | - Jean-Pierre Majoral
- Laboratoire de Chimie de Coordination (LCC) CNRS
- 205 route de Narbonne
- 31077 Toulouse Cedex 4
- France
| | - Maria Bryszewska
- Department of General Biophysics
- Faculty of Biology and Environmental Protection
- University of Lodz
- Lodz
- Poland
| | - Abdelkrim El Kadib
- Euromed Research Institute
- Engineering Division
- Euro-Mediterranean University of Fes (UEMF)
- 30070 Fès
- Morocco
| |
Collapse
|
33
|
Frykstrand S, Forsgren J, Zhang P, Strømme M, Ferraz N. Cytotoxicity, <i>in Vivo</i> Skin Irritation and Acute Systemic Toxicity of the Mesoporous Magnesium Carbonate Upsalite<sup>®</sup>. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbnb.2015.64024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
Mody KT, Mahony D, Zhang J, Cavallaro AS, Zhang B, Popat A, Mahony TJ, Yu C, Mitter N. Silica vesicles as nanocarriers and adjuvants for generating both antibody and T-cell mediated immune resposes to Bovine Viral Diarrhoea Virus E2 protein. Biomaterials 2014; 35:9972-9983. [DOI: 10.1016/j.biomaterials.2014.08.044] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 08/29/2014] [Indexed: 01/01/2023]
|
35
|
Coherent anti-Stokes Raman scattering microscopy driving the future of loaded mesoporous silica imaging. Acta Biomater 2014; 10:4870-4877. [PMID: 25064000 DOI: 10.1016/j.actbio.2014.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 06/16/2014] [Accepted: 07/18/2014] [Indexed: 11/22/2022]
Abstract
This study reports the use of variants of coherent anti-Stokes Raman scattering (CARS) microscopy as a novel method for improved physicochemical characterization of drug-loaded silica particles. Ordered mesoporous silica is a biomaterial that can be loaded to carry a number of biochemicals, including poorly water-soluble drugs, by allowing the incorporation of drug into nanometer-sized pores. In this work, the loading of two poorly water-soluble model drugs, itraconazole and griseofulvin, in MCM-41 silica microparticles is characterized qualitatively, using the novel approach of CARS microscopy, which has advantages over other analytical approaches used to date and is non-destructive, rapid, label free, confocal and has chemical and physical specificity. The study investigated the effect of two solvent-based loading methods, namely immersion and rotary evaporation, and microparticle size on the three-dimensional (3-D) distribution of the two loaded drugs. Additionally, hyperspectral CARS microscopy was used to confirm the amorphous nature of the loaded drugs. Z-stacked CARS microscopy suggested that the drug, but not the loading method or particle size range, affected 3-D drug distribution. Hyperspectral CARS confirmed that the drug loaded in the MCM-41 silica microparticles was in an amorphous form. The results show that CARS microscopy and hyperspectral CARS microscopy can be used to provide further insights into the structural nature of loaded mesoporous silica microparticles as biomaterials.
Collapse
|
36
|
Deng Y, Mathaes R, Winter G, Engert J. Encapsulation of antigen-loaded silica nanoparticles into microparticles for intradermal powder injection. Eur J Pharm Sci 2014; 63:154-66. [DOI: 10.1016/j.ejps.2014.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 06/30/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
|
37
|
Gencoglu MF, Spurri A, Franko M, Chen J, Hensley DK, Heldt CL, Saha D. Biocompatibility of soft-templated mesoporous carbons. ACS APPLIED MATERIALS & INTERFACES 2014; 6:15068-15077. [PMID: 25144129 DOI: 10.1021/am503076u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Soft-templated mesoporous carbon is morphologically a non-nano type of carbon. It is a relatively newer variety of biomaterial, which has already demonstrated its successful role in drug delivery applications. To investigate the toxicity and biocompatibility, we introduced three types of mesoporous carbons with varying synthesis conditions and pore textural properties. We compared the Brunauer-Emmett-Teller (BET) surface area and pore width and performed cytotoxicity experiments with HeLa cells, cell viability studies with fibroblast cells and hemocomapatibility studies. Cytotoxicity tests reveal that two of the carbons are not cytotoxic, with cell survival over 90%. The mesoporous carbon with the highest surface area showed slight toxicity (∼ 70% cell survival) at the highest carbon concentration of 500 μg/mL. Fibroblast cell viability assays suggested high and constant viability of over 98% after 3 days with no apparent relation with materials property and good visible cell-carbon compatibility. No hemolysis (<1%) was confirmed for all the carbon materials. Protein adsorption experiments with bovine serum albumin (BSA) and fibrinogen revealed a lower protein binding capacity of 0.2-0.6 mg/m(2) and 2-4 mg/m(2) for BSA and fibrinogen, respectively, with lower binding associated with an increase in surface area. The results of this study confirm the biocompatibility of soft-templated mesoporous carbons.
Collapse
Affiliation(s)
- Maria F Gencoglu
- Department of Chemical Engineering, Michigan Technological University , 1400 Townsend Dr., Houghton, Michigan 49931, United States
| | | | | | | | | | | | | |
Collapse
|
38
|
Pędziwiatr-Werbicka E, Miłowska K, Podlas M, Marcinkowska M, Ferenc M, Brahmi Y, Katir N, Majoral JP, Felczak A, Boruszewska A, Lisowska K, Bryszewska M, El Kadib A. Oleochemical-Tethered SBA-15-Type Silicates with Tunable Nanoscopic Order, Carboxylic Surface, and Hydrophobic Framework: Cellular Toxicity, Hemolysis, and Antibacterial Activity. Chemistry 2014; 20:9596-606. [DOI: 10.1002/chem.201402583] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Indexed: 01/13/2023]
|
39
|
Mahony D, Cavallaro AS, Mody KT, Xiong L, Mahony TJ, Qiao SZ, Mitter N. In vivo delivery of bovine viral diahorrea virus, E2 protein using hollow mesoporous silica nanoparticles. NANOSCALE 2014; 6:6617-26. [PMID: 24811899 DOI: 10.1039/c4nr01202j] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Our work focuses on the application of mesoporous silica nanoparticles as a combined delivery vehicle and adjuvant for vaccine applications. Here we present results using the viral protein, E2, from bovine viral diarrhoea virus (BVDV). BVDV infection occurs in the target species of cattle and sheep herds worldwide and is therefore of economic importance. E2 is a major immunogenic determinant of BVDV and is an ideal candidate for the development of a subunit based nanovaccine using mesoporous silica nanoparticles. Hollow type mesoporous silica nanoparticles with surface amino functionalisation (termed HMSA) were characterised and assessed for adsorption and desorption of E2. A codon-optimised version of the E2 protein (termed Opti-E2) was produced in Escherichia coli. HMSA (120 nm) had an adsorption capacity of 80 μg Opti-E2 per mg HMSA and once bound E2 did not dissociate from the HMSA. Immunisation studies in mice with a 20 μg dose of E2 adsorbed to 250 μg HMSA was compared to immunisation with Opti-E2 (50 μg) together with the traditional adjuvant Quillaja saponaria Molina tree saponins (QuilA, 10 μg). The humoral responses with the Opti-E2/HMSA nanovaccine although slightly lower than those obtained for the Opti-E2 + QuilA group demonstrated that HMSA particles are an effective adjuvant that stimulated E2-specific antibody responses. Importantly the cell-mediated immune responses were consistently high in all mice immunised with Opti-E2/HMSA nanovaccine formulation. Therefore we have shown the Opti-E2/HMSA nanoformulation acts as an excellent adjuvant that gives both T-helper 1 and T-helper 2 mediated responses in a small animal model. This study has provided proof-of-concept towards the development of an E2 subunit nanoparticle based vaccine.
Collapse
Affiliation(s)
- D Mahony
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072, Australia.
| | | | | | | | | | | | | |
Collapse
|
40
|
Variation of the crystal growth of mesoporous silica nanoparticles and the evaluation to ibuprofen loading and release. J Colloid Interface Sci 2014; 421:6-13. [DOI: 10.1016/j.jcis.2014.01.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/22/2014] [Accepted: 01/24/2014] [Indexed: 11/23/2022]
|
41
|
Bajenaru L, Berger D, Miclea L, Matei C, Nastase S, Andronescu C, Moisescu MG, Savopol T. Correlation of the intracellular reactive oxygen species levels with textural properties of functionalized mesostructured silica. J Biomed Mater Res A 2014; 102:4435-42. [PMID: 24677796 DOI: 10.1002/jbm.a.35131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 02/04/2014] [Accepted: 02/12/2014] [Indexed: 12/14/2022]
Abstract
Mesostructured silica is frequently used in biomedical applications, being considered nontoxic and biocompatible material, suitable for the development of drug delivery systems (DDS). Four functionalized MCM-41 silica materials with hydrophobic (methyl and vinyl) and hydrophilic (3-aminopropyl and 3-mercaptopropyl) groups were obtained by post-synthesis functionalization and characterized by small-angle X-ray diffraction, infrared spectroscopy, thermal analysis, and nitrogen adsorption-desorption isotherms. The main structural and textural parameters of the obtained silica were determined. The effect of the functionalized silica on fibroblast (NIH3T3) and melanocyte cells (B16F10) was studied with respect to the proliferation rate and the levels of reactive oxygen species (ROS). It was found that the textural properties of all samples influenced the levels of intracellular ROS and consequently, the proliferation rate. Both, healthy and malignant cells exhibited linear dependence of ROS levels with the specific surface area values, but with different response. The contribution of the methyl functionalized silica to the ROS level is apart to the general trend.
Collapse
Affiliation(s)
- Laura Bajenaru
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, University "Politehnica" of Bucharest, Bucharest, 011061, Romania
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhang H, Shahbazi MA, Mäkilä EM, da Silva TH, Reis RL, Salonen JJ, Hirvonen JT, Santos HA. Diatom silica microparticles for sustained release and permeation enhancement following oral delivery of prednisone and mesalamine. Biomaterials 2013; 34:9210-9. [DOI: 10.1016/j.biomaterials.2013.08.035] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/10/2013] [Indexed: 02/07/2023]
|
43
|
Wang Y, Zhao Q, Hu Y, Sun L, Bai L, Jiang T, Wang S. Ordered nanoporous silica as carriers for improved delivery of water insoluble drugs: a comparative study between three dimensional and two dimensional macroporous silica. Int J Nanomedicine 2013; 8:4015-31. [PMID: 24174875 PMCID: PMC3808157 DOI: 10.2147/ijn.s52605] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The goal of the present study was to compare the drug release properties and stability of the nanoporous silica with different pore architectures as a matrix for improved delivery of poorly soluble drugs. For this purpose, three dimensional ordered macroporous (3DOM) silica with 3D continuous and interconnected macropores of different sizes (200 nm and 500 nm) and classic mesoporous silica (ie, Mobil Composition of Matter [MCM]-41 and Santa Barbara Amorphous [SBA]-15) with well-ordered two dimensional (2D) cylindrical mesopores were successfully fabricated and then loaded with the model drug indomethacin (IMC) via the solvent deposition method. Scanning electron microscopy (SEM), N2 adsorption, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were applied to systematically characterize all IMC-loaded nanoporous silica formulations, evidencing the successful inclusion of IMC into nanopores, the reduced crystallinity, and finally accelerated dissolution of IMC. It was worth mentioning that, in comparison to 2D mesoporous silica, 3DOM silica displayed a more rapid release profile, which may be ascribed to the 3D interconnected pore networks and the highly accessible surface areas. The results obtained from the stability test indicated that the amorphous state of IMC entrapped in the 2D mesoporous silica (SBA-15 and MCM-41) has a better physical stability than in that of 3DOM silica. Moreover, the dissolution rate and stability of IMC loaded in 3DOM silica was closely related to the pore size of macroporous silica. The colorimetric 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Cell Counting Kit (CCK)-8 assays in combination with direct morphology observations demonstrated the good biocompatibility of nanoporous silica, especially for 3DOM silica and SBA-15. The present work encourages further study of the drug release properties and stability of drug entrapped in different pore architecture of silica in order to realize their potential in oral drug delivery.
Collapse
Affiliation(s)
- Ying Wang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Liaoning Province, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
44
|
Mody KT, Popat A, Mahony D, Cavallaro AS, Yu C, Mitter N. Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery. NANOSCALE 2013; 5:5167-79. [PMID: 23657437 DOI: 10.1039/c3nr00357d] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Vaccines have been at the forefront of improving human health for over two centuries. The challenges faced in developing effective vaccines flow from complexities associated with the immune system and requirement of an efficient and safe adjuvant to induce a strong adaptive immune response. Development of an efficient vaccine formulation requires careful selection of a potent antigen, efficient adjuvant and route of delivery. Adjuvants are immunological agents that activate the antigen presenting cells (APCs) and elicit a strong immune response. In the past decade, the use of mesoporous silica nanoparticles (MSNs) has gained significant attention as potential delivery vehicles for various biomolecules. In this review, we aim to highlight the potential of MSNs as vaccine delivery vehicles and their ability to act as adjuvants. We have provided an overview on the latest progress on synthesis, adsorption and release kinetics and biocompatibility of MSNs as next generation antigen carriers and adjuvants. A comprehensive summary on the ability of MSNs to deliver antigens and elicit both humoral and cellular immune responses is provided. Finally, we give insight on fundamental challenges and some future prospects of these nanoparticles as adjuvants.
Collapse
Affiliation(s)
- Karishma T Mody
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Australia
| | | | | | | | | | | |
Collapse
|
45
|
Mesoporous silica nanoparticles in medicine--recent advances. Adv Drug Deliv Rev 2013; 65:689-702. [PMID: 22921598 DOI: 10.1016/j.addr.2012.07.018] [Citation(s) in RCA: 430] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 07/29/2012] [Accepted: 07/30/2012] [Indexed: 12/11/2022]
Abstract
MSNs have attracted increasing interest as drug carriers due to promising in vivo results in small-animal disease models, especially related to cancer therapy. In most cases small hydrophobic drugs have been used, but recent in vitro studies demonstrate that MSNs are highly interesting for gene delivery applications. This review covers recent advances related to the therapeutic use of mesoporous silica nanoparticles (MSNs) administered intravenously, intraperitoneally or locally. We also cover the use of MSNs in alternative modes of therapy such as photodynamic therapy and multidrug therapy. We further discuss the current understanding about the biodistribution and safety of MSNs. Finally, we critically discuss burning questions especially related to experimental design of in vivo studies in order to enable a fast transition to clinical trials of this promising drug delivery platform.
Collapse
|
46
|
Cicuéndez M, Izquierdo-Barba I, Portolés MT, Vallet-Regí M. Biocompatibility and levofloxacin delivery of mesoporous materials. Eur J Pharm Biopharm 2013; 84:115-24. [DOI: 10.1016/j.ejpb.2012.11.029] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/20/2012] [Accepted: 11/26/2012] [Indexed: 01/07/2023]
|
47
|
Kupferschmidt N, Xia X, Labrador RH, Atluri R, Ballell L, Garcia-Bennett AE. In vivo oral toxicological evaluation of mesoporous silica particles. Nanomedicine (Lond) 2013; 8:57-64. [DOI: 10.2217/nnm.12.77] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Mesoporous silica particles are highly promising nanomaterials for biomedical applications. They can be used to improve bioavailability, solubility and drug stability and to protect drugs from the acidic conditions of the stomach, leading to increased drug effectiveness. Their biocompatibility in vivo has recieved little attention, in particular regarding oral administration. Aim: To study the oral tolerance of micron-sized nanoporous folic acid-templated material-1 (cylindrical, 2D hexagonal pore structure) and nanometer-sized anionic-surfactant-templated mesoporous silica material-6 (cylindrical, 3D cubic pore structure) mesoporous silica particles in Sprague Dawley rats. Materials & methods: A dose stepwise procedure or range finding test was followed by a consequent confirmatory test. The confirmatory test included daily administrations of 2000 and 1200 mg/kg doses for nanoporous folic acid-templated material-1 and anionic-surfactant-templated mesoporous silica material-6, respectively. Results: The maximum tolerated dose for anionic-surfactant-templated mesoporous silica material-6 was not reached. Similar results were observed for nanometer-sized anionic-surfactant-templated mesoporous silica material-1 in most of the animals, although adverse effects were observed in some animals that are most probably due to the administration by oral gavage of the formulated particles. Conclusion: The results are promising for the use of mesoporous silica materials as drug-delivery systems in oral administration. Original submitted 8 February 2012; Revised submitted 30 April 2012; Published online 14 August 2012
Collapse
Affiliation(s)
- Natalia Kupferschmidt
- Department of Engineering Sciences, Nanotechnology & Functional Materials Institution, Uppsala University, Uppsala, Sweden
- Nanologica AB, Drottning Kristinas Väg 45 SE 11428, Stockholm, Sweden
| | - Xin Xia
- Nanologica AB, Drottning Kristinas Väg 45 SE 11428, Stockholm, Sweden
- Department of Materials & Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| | | | - Rambabu Atluri
- Nanologica AB, Drottning Kristinas Väg 45 SE 11428, Stockholm, Sweden
| | - Lluis Ballell
- Diseases of the Developing World, GlaxoSmithKline, Severo Ochoa 2, 28769 Tres Cantos, Madrid, Spain
| | - Alfonso E Garcia-Bennett
- Department of Engineering Sciences, Nanotechnology & Functional Materials Institution, Uppsala University, Uppsala, Sweden
| |
Collapse
|
48
|
Xu W, Riikonen J, Lehto VP. Mesoporous systems for poorly soluble drugs. Int J Pharm 2012; 453:181-97. [PMID: 22990124 DOI: 10.1016/j.ijpharm.2012.09.008] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/31/2012] [Accepted: 09/03/2012] [Indexed: 01/13/2023]
Abstract
Utilization of inorganic mesoporous materials in formulations of poorly water-soluble drugs to enhance their dissolution and permeation behavior is a rapidly growing area in pharmaceutical materials research. The benefits of mesoporous materials in drug delivery applications stem from their large surface area and pore volume. These properties enable the materials to accommodate large amounts of payload molecules, protect them from premature degradation, and promote controlled and fast release. As carriers with various morphologies and chemical surface properties can be produced, these materials may even promote adsorption from the gastrointestinal tract to the systemic circulation. The main concern regarding their clinical applications is still the safety aspect even though most of them have been reported to be safely excreted, and a rather extensive toxicity screening has already been conducted with the most frequently studied mesoporous materials. In addition, the production of the materials on a large scale and at a reasonable cost may be a challenge when considering the utilization of the materials in industrial processes. However, if mesoporous materials could be employed in the industrial crystallization processes to produce hybrid materials with poorly soluble compounds, and hence to enhance their oral bioavailability, this might open new avenues for the pharmaceutical industry to employ nanotechnology in their processes.
Collapse
Affiliation(s)
- Wujun Xu
- Department of Applied Physics, University of Eastern Finland, POB 1627, FI-70211 Kuopio, Finland
| | | | | |
Collapse
|
49
|
Potential of ordered mesoporous silica for oral delivery of poorly soluble drugs. Ther Deliv 2012; 2:1079-91. [PMID: 22833866 DOI: 10.4155/tde.11.66] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The use of ordered mesoporous silica is one of the more recent and rapidly developing formulation techniques for enhancing the solubility of poorly water-soluble drugs. Their large surface area and pore volume make ordered mesoporous silica materials excellent candidates for efficient drug loading and rapid release. While this new approach offers many promising advantages, further research is still necessary to elucidate the molecular mechanisms and to improve our scientific insight into the behavior of this system. In this review, the significant developments to date are presented and research challenges highlighted. Aspects of downstream processability are discussed in view of their special bulk powder properties and unique pore architecture. Lastly, perspectives for successful oral dosage form development are presented.
Collapse
|
50
|
Abstract
In this review, recent reports on the biocompatibility of mesoporous silica nanoparticles (MSNs) are reviewed, with special emphasis being paid to the correlations between MSNs' structural and compositional features and their biological effects on various cells and tissues. First, the different synthetic routes used to produce the most common types of MSNs and the various methods employed to functionalize their surfaces are discussed. This is, however, done only briefly because of the focus of the review being the biocompatibility of the materials. Similarly, the biological applications of MSNs in areas such as drug and gene delivery, biocatalysis, bioimaging, and biosensing are briefly introduced. Many examples have also been mentioned about the biological applications of MSNs while discussing the materials' biocompatibility. The cytotoxicity of different types of MSNs and the effects of their various structural characteristics on their biological activities, which are the focus of this review, are then described in detail. In addition, synthetic strategies developed to reduce or eliminate any possible negative biological effects associated with MSNs or to improve their biocompatibility, as necessary, are illustrated. At the same time, recent reports on the interactions between MSNs and various in vivo or in vitro biological systems, plus our opinions and remarks on what the future may hold for this field, are included.
Collapse
Affiliation(s)
- Tewodros Asefa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 610 Taylor Road, Piscataway, NJ 08854, USA.
| | | |
Collapse
|