1
|
Li L, Li Z, Li J, Wang J, Xu H, Yu H, Lin Q, Huang H, Liu Y, Kang Z. Isomer-Effects of Aminophenol Decorated Gold Nanoclusters for H 2O 2 Photoproduction via Two-Step One-Electron Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410843. [PMID: 39780734 DOI: 10.1002/smll.202410843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Gold (Au) nanoclustersare promising photocatalysts for biomedicine, sensing, and environmental remediation. However, the short carrier lifetime, inherent instability, and unclear charge transfer mechanism hinder their application. Herein, the Au nanoclusters decorated with three different isomers of o-Aminophenol, m-Aminophenol, and p-Aminophenol are synthesized, namely o-Au, m-Au, and p-Au, which achieve efficient hydrogen peroxide (H2O2) photoproduction through two-step one-electron oxygen reduction reaction (ORR). The interfacial kinetics for the photocatalytic process in this system are investigated in detail, in which, the isomer-effects of aminophenol decorated in Au nanoclusters are definitely elucidated by combining transient photovoltage (TPV), transient potential scanning (TPS), and photo-induced current (TPC) tests. The reaction pathway of o-Au, m-Au, and p-Au is confirmed to be the same through TPC. Although the conduction band values of o-Au, m-Au, and p-Au are essentially the same under working conditions, the values of surface effective charges (ne) for both m-Au and p-Au are higher than that of o-Au. In addition, m-Au has a stronger adsorption capacity for O2 and a faster ORR rate. Thus, the m-Au manifests the highest photocatalytic activity for the H2O2 photoproduction. This work shows a new way for the in-situ study on charge distribution and transfer on photocatalysts.
Collapse
Affiliation(s)
- Luhan Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Zenan Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Jiacheng Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Jiaxuan Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Haojie Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Haizhou Yu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qianyu Lin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, P. R. China
| |
Collapse
|
2
|
Gupta N, Sharma PK, Yadav SS, Chauhan M, Datusalia AK, Saha S. Tricompartmental Microcarriers with Controlled Release for Efficient Management of Parkinson's Disease. ACS Biomater Sci Eng 2024; 10:5039-5056. [PMID: 38978474 DOI: 10.1021/acsbiomaterials.4c01042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Parkinson's is a progressive neurodegenerative disease of the nervous system. It has no cure, but its symptoms can be managed by supplying dopamine artificially to the brain.This work aims to engineer tricompartmental polymeric microcarriers by electrohydrodynamic cojetting technique to encapsulate three PD (Parkinson's disease) drugs incorporated with high encapsulation efficiency (∼100%) in a single carrier at a fixed drug ratio of 4:1:8 (Levodopa (LD): Carbidopa(CD): Entacapone (ENT)). Upon oral administration, the drug ratio needs to be maintained during subsequent release from microparticles to enhance the bioavailability of primary drug LD. This presents a notable challenge, as the three drugs vary in their aqueous solubility (LD > CD > ENT). The equilibrium of therapeutic release was achieved using a combination of FDA-approved polymers (PLA, PLGA, PCL, and PEG) and the disc shape of particles. In vitro studies demonstrated the simultaneous release of all the three therapeutics in a sustained and controlled manner. Additionally, pharmacodynamics and pharmacokinetics studies in Parkinson's disease rats induced by rotenone showed a remarkable improvement in PD conditions for the microparticles-fed rats, thereby showing a great promise toward efficient management of PD.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, Hauz Khas 110016, India
- Department of Applied Chemistry, National Yang-Ming Chiao Tung University, Hsinchu 30010, Taiwan
- International College of Semiconductor Technology, National Yang-Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Pankaj Kumar Sharma
- Delhi Institute of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar S3, New Delhi 110017, India
| | - Shreyash Santosh Yadav
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India
| | - Meenakshi Chauhan
- Delhi Institute of Pharmaceutical Science and Research, Delhi Pharmaceutical Sciences and Research University, Pushp Vihar S3, New Delhi 110017, India
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh 226002, India
| | - Sampa Saha
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, New Delhi, Hauz Khas 110016, India
| |
Collapse
|
3
|
Atma Y, Murray BS, Sadeghpour A, Goycoolea FM. Encapsulation of short-chain bioactive peptides (BAPs) for gastrointestinal delivery: a review. Food Funct 2024; 15:3959-3979. [PMID: 38568171 DOI: 10.1039/d3fo04195f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
The majority of known peptides with high bioactivity (BAPs) such as antihypertensive, antidiabetic, antioxidant, hypocholesterolemic, anti-inflammatory and antimicrobial actions, are short-chain sequences of less than ten amino acids. These short-chain BAPs of varying natural and synthetic origin must be bioaccessible to be capable of being adsorbed systemically upon oral administration to show their full range of bioactivity. However, in general, in vitro and in vivo studies have shown that gastrointestinal digestion reduces BAPs bioactivity unless they are protected from degradation by encapsulation. This review gives a critical analysis of short-chain BAP encapsulation and performance with regard to the oral delivery route. In particular, it focuses on short-chain BAPs with antihypertensive and antidiabetic activity and encapsulation methods via nanoparticles and microparticles. Also addressed are the different wall materials used to form these particles and their associated payloads and release kinetics, along with the current challenges and a perspective of the future applications of these systems.
Collapse
Affiliation(s)
- Yoni Atma
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
- Department of Food Science and Technology, Universitas Trilogi, Jakarta, 12760, Indonesia
| | - Brent S Murray
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Francisco M Goycoolea
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, United Kingdom.
- Department of Cell Biology and Histology, Faculty of Biology, University of Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
4
|
Liu H, Guo S, Wei S, Liu J, Tian B. Pharmacokinetics and pharmacodynamics of cyclodextrin-based oral drug delivery formulations for disease therapy. Carbohydr Polym 2024; 329:121763. [PMID: 38286540 DOI: 10.1016/j.carbpol.2023.121763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/07/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024]
Abstract
Oral drug administration has become the most common and preferred mode of disease treatment due to its good medication adherence and convenience. For orally administered drugs, the safety, efficacy, and targeting ability requirements have grown as disease treatment research advances. It is difficult to obtain prominent efficacy of traditional drugs simply via oral administration. Numerous studies have demonstrated that cyclodextrins (CDs) can improve the clinical applications of certain orally administered drugs by enhancing their water solubility and masking undesirable odors. Additionally, deeper studies have discovered that CDs can influence disease treatment by altering the drug pharmacokinetics (PK) or pharmacodynamics (PD). This review highlights recent research progress on the PK and PD effects of CD-based oral drug delivery in disease therapy. Firstly, the review describes the characteristics of current drug delivery modes in oral administration. Besides, we minutely summarized the different CD-containing drugs, focusing on the impact of CD-based alterations in PK or PD of orally administered drugs in treating diseases. Finally, we deeply discussed current challenges and future opportunities with regard to PK and PD of CD-based oral drug delivery formulations.
Collapse
Affiliation(s)
- Hui Liu
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Songlin Guo
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China
| | - Shijie Wei
- Pharmacy Department, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| | - Jiayue Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China.
| | - Bingren Tian
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan 750004, Ningxia, China.
| |
Collapse
|
5
|
Viudes-de-Castro MP, Marco Jimenez F, Vicente JS. Reproductive Performance of Female Rabbits Inseminated with Extenders Supplemented with GnRH Analogue Entrapped in Chitosan-Based Nanoparticles. Animals (Basel) 2023; 13:ani13101628. [PMID: 37238058 DOI: 10.3390/ani13101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Rabbit is a reflexively ovulating species. Accordingly, in the practice of artificial insemination (AI) ovulation must be induced via exogenous GnRH (Gonadotropin-Releasing Hormone) administration, which may be performed intramuscularly, subcutaneously, or intravaginally. Unfortunately, the bioavailability of the GnRH analogue when added to the extender is lower due to the proteolytic activity in the seminal plasma and the poor permeability of the vaginal mucosa. The aim of the study was to refine the practice of AI practice in rabbits by replacing parenteral GnRH analogue administration (subcutaneous, intravenous, or intramuscular injection) with intravaginal application, while reducing its concentration in the diluent. Extenders containing the buserelin acetate in chitosan-dextran sulphate and chitosan-alginate nanoparticles were designed and 356 females were inseminated. Reproductive performance of females inseminated with the two experimental extenders, receiving 4 μg of buserelin acetate intravaginally per doe, was compared with that in the control group, the does of which were inseminated with the extender without the GnRH analogue and induced to ovulate with 1 μg of buserelin acetate administered intramuscularly. The entrapment efficiency of the chitosan-dextran sulphate complex was higher than that of chitosan-alginate. However, females inseminated with both systems showed similar reproductive performance. We conclude that both nanoencapsulation systems are an efficient way of intravaginal ovulation induction, allowing a reduction in the level of the GnRH analogue normally used in seminal doses from 15-25 μg to 4 μg.
Collapse
Affiliation(s)
- Maria Pilar Viudes-de-Castro
- Centro de Investigación y Tecnología Animal, Instituto Valenciano de Investigaciones Agrarias (CI-TA-IVIA), Polígono La Esperanza No. 100, 12400 Segorbe, Spain
| | - Francisco Marco Jimenez
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain
| | - José Salvador Vicente
- Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, 46022 Valencia, Spain
| |
Collapse
|
6
|
Ferreira M, Gomes D, Neto M, Passarinha LA, Costa D, Sousa Â. Development and Characterization of Quercetin-Loaded Delivery Systems for Increasing Its Bioavailability in Cervical Cancer Cells. Pharmaceutics 2023; 15:pharmaceutics15030936. [PMID: 36986797 PMCID: PMC10058887 DOI: 10.3390/pharmaceutics15030936] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023] Open
Abstract
Quercetin is a natural flavonoid with high anticancer activity, especially for related-HPV cancers such as cervical cancer. However, quercetin exhibits a reduced aqueous solubility and stability, resulting in a low bioavailability that limits its therapeutic use. In this study, chitosan/sulfonyl-ether-β-cyclodextrin (SBE-β-CD)-conjugated delivery systems have been explored in order to increase quercetin loading capacity, carriage, solubility and consequently bioavailability in cervical cancer cells. SBE-β-CD/quercetin inclusion complexes were tested as well as chitosan/SBE-β-CD/quercetin-conjugated delivery systems, using two types of chitosan differing in molecular weight. Regarding characterization studies, HMW chitosan/SBE-β-CD/quercetin formulations have demonstrated the best results, which are obtaining nanoparticle sizes of 272.07 ± 2.87 nm, a polydispersity index (PdI) of 0.287 ± 0.011, a zeta potential of +38.0 ± 1.34 mV and an encapsulation efficiency of approximately 99.9%. In vitro release studies were also performed for 5 kDa chitosan formulations, indicating a quercetin release of 9.6% and 57.53% at pH 7.4 and 5.8, respectively. IC50 values on HeLa cells indicated an increased cytotoxic effect with HMW chitosan/SBE-β-CD/quercetin delivery systems (43.55 μM), suggesting a remarkable improvement of quercetin bioavailability.
Collapse
Affiliation(s)
- Miguel Ferreira
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Diana Gomes
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Miguel Neto
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Luís A. Passarinha
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA, 2819-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Departament of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Laboratório de Fármaco-Toxicologia-UBIMedical, Universidade da Beira Interior, 6200-284 Covilhã, Portugal
| | - Diana Costa
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Ângela Sousa
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: ; Tel.: +351-275-329-052
| |
Collapse
|
7
|
Wang Q, Zhang A, Zhu L, Yang X, Fang G, Tang B. Cyclodextrin-based ocular drug delivery systems: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
8
|
Conjugates of Chitosan with β-Cyclodextrins as Promising Carriers for the Delivery of Levofloxacin: Spectral and Microbiological Studies. Life (Basel) 2023; 13:life13020272. [PMID: 36836630 PMCID: PMC9960298 DOI: 10.3390/life13020272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
In this work, we synthesized chitosan 5 kDa conjugates with β-cyclodextrins with various substituents as promising mucoadhesive carriers for the delivery of fluoroquinolones using the example of levofloxacin. The obtained conjugates were comprehensively characterized by spectral methods (UV-Vis, ATR-FTIR, 1H NMR, SEM). The physico-chemical properties of the complex formations were studied by IR, UV, and fluorescence spectroscopy. The dissociation constants of complexes with levofloxacin were determined. Complexation with conjugates provided four times slower drug release in comparison with plain CD and more than 20 times in comparison with the free drug. The antibacterial activity of the complexes was tested on model microorganisms Gram-negative bacteria Escherichia coli ATCC 25922 and Gram-positive Bacillus subtilis ATCC 6633. The complex with the conjugate demonstrated the same initial levofloxacin antibacterial activity but provided significant benefits, e.g., prolonged release.
Collapse
|
9
|
De Gaetano F, d’Avanzo N, Mancuso A, De Gaetano A, Paladini G, Caridi F, Venuti V, Paolino D, Ventura CA. Chitosan/Cyclodextrin Nanospheres for Potential Nose-to-Brain Targeting of Idebenone. Pharmaceuticals (Basel) 2022; 15:ph15101206. [PMID: 36297318 PMCID: PMC9612377 DOI: 10.3390/ph15101206] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022] Open
Abstract
Idebenone (IDE) is a powerful antioxidant that is potentially active towards cerebral diseases, but its low water solubility and fast first pass metabolism reduce its accumulation in the brain, making it ineffective. In this work, we developed cyclodextrin-based chitosan nanospheres (CS NPs) as potential carriers for nose-to-brain targeting of IDE. Sulfobutylether-β-cyclodextrin (SBE-β-CD) was used as a polyanion for chitosan (CS) and as a complexing agent for IDE, permitting its encapsulation into nanospheres (NPs) produced in an aqueous solution. Overloading NPs were obtained by adding the soluble IDE/hydroxypropyl-β-CD (IDE/HP-β-CD) inclusion complex into the CS or SBE-β-CD solutions. We obtained homogeneous CS NPs with a hydrodynamic radius of about 140 nm, positive zeta potential (about +28 mV), and good encapsulation efficiency and drug loading, particularly for overloaded NPs. A biphasic release of IDE, finished within 48 h, was observed from overloaded NPs, whilst non-overloaded CS NPs produced a prolonged release, without a burst effect. In vitro biological studies showed the ability of CS NPs to preserve the antioxidant activity of IDE on U373 culture cells. Furthermore, Fourier transform infrared spectroscopy (FT-IR) demonstrated the ability of CS NPs to interact with the excised bovine nasal mucosa, improving the permeation of the drug and potentially favoring its accumulation in the brain.
Collapse
Affiliation(s)
- Federica De Gaetano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Nicola d’Avanzo
- Department of Pharmacy, University “G. D’annunzio” of Chieti-Pescara, Via dei Vestini, 31, I-66100 Chieti, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., I-88100 Catanzaro, Italy
| | - Anna De Gaetano
- Department of Life Sciences, University of Modena, Via Dei Campi, 287, 41125 Modena, Italy
| | - Giuseppe Paladini
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Francesco Caridi
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Valentina Venuti
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro “Magna Graecia”, Viale Europa s.n.c., I-88100 Catanzaro, Italy
- Correspondence: (D.P.); (C.A.V.); Tel.: +39-0961-369-4211 (D.P.); +39-090-6766508 (C.A.V.)
| | - Cinzia Anna Ventura
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy
- Correspondence: (D.P.); (C.A.V.); Tel.: +39-0961-369-4211 (D.P.); +39-090-6766508 (C.A.V.)
| |
Collapse
|
10
|
Development of Fenofibrate/Randomly Methylated β-Cyclodextrin-Loaded Eudragit ® RL 100 Nanoparticles for Ocular Delivery. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154755. [PMID: 35897940 PMCID: PMC9370055 DOI: 10.3390/molecules27154755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/22/2022] [Indexed: 01/01/2023]
Abstract
Fenofibrate (FE) has been shown to markedly reduce the progression of diabetic retinopathy and age-related macular degeneration in clinical trials and animal models. Owing to the limited aqueous solubility of FE, it may hamper ocular bioavailability and result in low efficiency to treat such diseases. To enhance the solubility of FE, water-soluble FE/cyclodextrin (CD) complex formation was determined by a phase-solubility technique. Randomly methylated-β-CD (RMβCD) exhibited the best solubility and the highest complexation efficiency (CE) for FE. Additionally, water-soluble polymers (i.e., hydroxypropyl methyl cellulose and polyvinyl alcohol [PVA]) enhanced the solubility of FE/RMβCD complexes. Solid- and solution-state characterizations were performed to elucidate and confirm the formation of inclusion FE/RMβCD complex. FE-loaded Eudragit® nanoparticle (EuNP) dispersions and suspensions were developed. The physicochemical properties (i.e., pH, osmolality, viscosity, particle size, size distribution, and zeta potential) were within acceptable ranges. Moreover, in vitro mucoadhesion, in vitro release, and in vitro permeation studies revealed that the FE-loaded EuNP eye drop suspensions had excellent mucoadhesive properties and sustained FE release. The hemolytic activity, hen’s egg test on chorioallantoic membrane assay, and in vitro cytotoxicity test showed that the FE formulations had low hemolytic activity, were cytocompatible, and were moderately irritable to the eyes. In conclusion, PVA-stabilized FE/RMβCD-loaded EuNP eye drop suspensions were successfully developed, warranting further in vivo testing.
Collapse
|
11
|
Ferreira M, Costa D, Sousa Â. Flavonoids-Based Delivery Systems towards Cancer Therapies. Bioengineering (Basel) 2022; 9:197. [PMID: 35621475 PMCID: PMC9137930 DOI: 10.3390/bioengineering9050197] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is the second leading cause of death worldwide. Cervical cancer, for instance, is considered a major scourge in low-income countries. Its development is mostly associated with the human papillomavirus persistent infection and despite the availability of preventive vaccines, they are only widely administered in more developed countries, thus leaving a large percentage of unvaccinated women highly susceptible to this type of cancer. Current treatments are based on invasive techniques, being far from effective. Therefore, the search for novel, advanced and personalized therapeutic approaches is imperative. Flavonoids belong to a group of natural polyphenolic compounds, well recognized for their great anticancer capacity, thus promising to be incorporated in cancer therapy protocols. However, their use is limited due to their low solubility, stability and bioavailability. To surpass these limitations, the encapsulation of flavonoids into delivery systems emerged as a valuable strategy to improve their stability and bioavailability. In this context, the aim of this review is to present the most reliable flavonoids-based delivery systems developed for anticancer therapies and the progress accomplished, with a special focus on cervical cancer therapy. The gathered information revealed the high therapeutic potential of flavonoids and highlights the relevance of delivery systems application, allowing a better understanding for future studies on effective cancer therapy.
Collapse
Affiliation(s)
| | - Diana Costa
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Ângela Sousa
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
12
|
Yang M, Liu J, Li Y, Yang Q, Liu C, Liu X, Zhang B, Zhang H, Zhang T, Du Z. Co-encapsulation of Egg-White-Derived Peptides (EWDP) and Curcumin within the Polysaccharide-Based Amphiphilic Nanoparticles for Promising Oral Bioavailability Enhancement: Role of EWDP. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5126-5136. [PMID: 35412315 DOI: 10.1021/acs.jafc.1c08186] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The comprehensive utilization of food-derived nutraceuticals with different polarities has been extremely restricted by their poor bioavailability and coexistence in a single system. This study aimed to fabricate a self-assembly of amphiphilic nanoparticles (NPs) for the hydrophilic EWDP and hydrophobic curcumin based on the carboxymethyl chitosan (CMCS) shell and γ-cyclodextrin (γ-CD) core. Notably, EWDP could cooperate with CMCS to yield superior colloidal properties with an excellent curcumin aqueous solubility and co-encapsulation capacity (>10%) for the NPs (pH 2.0-7.0). This phenomenon was mainly ascribed to the additional hydrogen-bonding network and hydrophobic interaction introduced by EWDP. Besides, the overall antioxidant activity, bioaccessibility, gastrointestinal stability, and Caco-2 cell absorption properties were significantly improved in the presence of EWDP (>20% increase). Therefore, EWDP could function as both a potential affinity agent and a nutrition enhancer to expand the co-delivery applications for diverse nutraceuticals with promising oral bioavailability enhancement in food and pharmaceutical areas.
Collapse
Affiliation(s)
- Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Qi Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chunmei Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xuanting Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Biying Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
13
|
Chitosan‐Based Films in Drug Delivery Applications. STARCH-STARKE 2022. [DOI: 10.1002/star.202100237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
14
|
Durán-Lobato M, Álvarez-Fuentes J, Fernández-Arévalo M, Martín-Banderas L. Receptor-targeted nanoparticles modulate cannabinoid anticancer activity through delayed cell internalization. Sci Rep 2022; 12:1297. [PMID: 35079042 PMCID: PMC8789857 DOI: 10.1038/s41598-022-05301-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022] Open
Abstract
Δ9-tetrahydrocannabinol (Δ9-THC) is known for its antitumor activity and palliative effects. However, its unfavorable physicochemical and biopharmaceutical properties, including low bioavailability, psychotropic side effects and resistance mechanisms associated to dosing make mandatory the development of successful drug delivery systems. In this work, transferring (Tf) surface-modified Δ9-THC-loaded poly(lactide-co-glycolic) nanoparticles (Tf-THC-PLGA NPs) were proposed and evaluated as novel THC-based anticancer therapy. Furthermore, in order to assess the interaction of both the nanocarrier and the loaded drug with cancer cells, a double-fluorescent strategy was applied, including the chemical conjugation of a dye to the nanoparticle polymer along with the encapsulation of either a lipophilic or a hydrophilic dye. Tf-THC PLGA NPs exerted a cell viability decreased down to 17% vs. 88% of plain nanoparticles, while their internalization was significantly slower than plain nanoparticles. Uptake studies in the presence of inhibitors indicated that the nanoparticles were internalized through cholesterol-associated and clathrin-mediated mechanisms. Overall, Tf-modification of PLGA NPs showed to be a highly promising approach for Δ9-THC-based antitumor therapies, potentially maximizing the amount of drug released in a sustained manner at the surface of cells bearing cannabinoid receptors.
Collapse
Affiliation(s)
- Matilde Durán-Lobato
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain.
| | - Josefa Álvarez-Fuentes
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain
| | - Mercedes Fernández-Arévalo
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain
| | - Lucía Martín-Banderas
- Dpto. Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Prof. García González n °2, 41012, Seville, Spain
| |
Collapse
|
15
|
Rizvi SSB, Akhtar N, Minhas MU, Mahmood A, Khan KU. Synthesis and Characterization of Carboxymethyl Chitosan Nanosponges with Cyclodextrin Blends for Drug Solubility Improvement. Gels 2022; 8:55. [PMID: 35049590 PMCID: PMC8775084 DOI: 10.3390/gels8010055] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
This study aimed to enhance the solubility and release characteristics of docetaxel by synthesizing highly porous and stimuli responsive nanosponges, a nano-version of hydrogels with the additional qualities of both hydrogels and nano-systems. Nanosponges were prepared by the free radical polymerization technique and characterized by their solubilization efficiency, swelling studies, sol-gel studies, percentage entrapment efficiency, drug loading, FTIR, PXRD, TGA, DSC, SEM, zeta sizer and in vitro dissolution studies. In vivo toxicity study was conducted to assess the safety of the oral administration of prepared nanosponges. FTIR, TGA and DSC studies confirmed the successful grafting of components into the stable nano-polymeric network. A porous and sponge-like structure was visualized through SEM images. The particle size of the optimized formulation was observed in the range of 195 ± 3 nm. The fabricated nanosponges noticeably enhanced the drug loading and solubilization efficiency of docetaxel in aqueous media. The drug release of fabricated nanosponges was significantly higher at pH 6.8 as compared to pH 1.2 and 4.5. An acute oral toxicity study endorsed the safety of the system. Due to an efficient preparation technique, as well as its enhanced solubility, excellent physicochemical properties, improved dissolution and non-toxic nature, nanosponges could be an efficient and a promising approach for the oral delivery of poorly soluble drugs.
Collapse
Affiliation(s)
- Syeda Sadia Batool Rizvi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (S.S.B.R.); (N.A.)
| | - Naveed Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; (S.S.B.R.); (N.A.)
| | - Muhammad Usman Minhas
- College of Pharmacy, University of Sargodha, University Road, Sargodha 40100, Punjab, Pakistan
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi 112612, United Arab Emirates;
| | | |
Collapse
|
16
|
Alvi Z, Akhtar M, Mahmood A, Ur-Rahman N, Nazir I, Sadaquat H, Ijaz M, Syed SK, Waqas MK, Wang Y. Enhanced Oral Bioavailability of Epalrestat SBE 7-β-CD Complex Loaded Chitosan Nanoparticles: Preparation, Characterization and in-vivo Pharmacokinetic Evaluation. Int J Nanomedicine 2022; 16:8353-8373. [PMID: 35002232 PMCID: PMC8721161 DOI: 10.2147/ijn.s339857] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 12/03/2021] [Indexed: 12/25/2022] Open
Abstract
Background Epalrestat (EPL) is a carboxylic acid derivative with poor aqueous solubility and its pharmacokinetic features are not fully defined. Purpose Current research aimed to fabricate inclusion complexation of EPL with SBE7 β-CD (IC) and EPL/SBE7 β-CD CS NPs (NP). Methods EPL was complexed with SBE7 β-CD using the co-precipitation method, and the prepared complex was fabricated into nanoparticles using the ionic gelation method. The prepared formulations were characterized for particle size analysis, surface morphology, and in vitro dissolution study. The % inhibition of EPL against α-glucosidase enzyme was also conducted to check the drug’s antidiabetic activity. Finally, an in vivo pharmacokinetic investigation was carried out to determine the concentration of EPL in rabbit plasma of the prepared formulation. In vivo pharmacokinetic studies were conducted by giving a single dose of pure EPL, IC, and NP. Results The size of NP was found to be 241.5 nm with PDI 0.363 and zeta potential of +31.8 mV. The surface of the prepared NP was non-porous, smooth and spherical when compared with pure EPL, SBE7 β-CD and IC. The cumulative drug release (%) from IC and NP was 73% and 88%, respectively, as compared to pure drug (25%). The % inhibition results for in vitro α-glucosidase was reported to be 74.1% and the predicted binding energy for in silico molecular docking was calculated to be −6.6 kcal/mol. The calculated Cmax values for EPL, IC and NP were 4.75±3.64, 66.91±7.58 and 84.27±6.91 μg/mL, respectively. The elimination half-life of EPL was 4 h and reduced to 2 h for IC and NP. The AUC0-α for EPL, IC and NP were 191.5±164.63, 1054.23±161.77 and 1072.5±159.54 μg/mL*h, respectively. Conclusion Taking these parameters into consideration it can be concluded that IC and NP have prospective applications for greatly improved delivery and regulatedt release of poorly water soluble drugs, potentially leading to increase therapeutic efficacy and fewer side effects.
Collapse
Affiliation(s)
- Zunaira Alvi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan.,Department of Medical Laboratory Technology, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Arshad Mahmood
- College of Pharmacy, Al Ain University, Abu Dhabi Campus, Abu Dhabi, United Arab Emirates
| | - Nisar Ur-Rahman
- Department of Pharmacy, Royal College of Medical Sciences (RIMS), Multan, Punjab, 60000, Pakistan
| | - Imran Nazir
- Bahawal Victoria Hospital, Bahawalpur, Punjab, 63100, Pakistan
| | - Hadia Sadaquat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Punjab, 63100, Pakistan
| | - Muhammad Ijaz
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan
| | - Shahzada Khurram Syed
- Department of Basic Medical Sciences, School of Health Sciences, University of Management and Technology, Lahore, Pakistan
| | - Muhammad Khurram Waqas
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Yi Wang
- Center for Advanced Low-Dimension Materials, State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201600, People's Republic of China
| |
Collapse
|
17
|
Improved Bioavailability of Poorly Soluble Drugs through Gastrointestinal Muco-Adhesion of Lipid Nanoparticles. Pharmaceutics 2021; 13:pharmaceutics13111817. [PMID: 34834232 PMCID: PMC8620210 DOI: 10.3390/pharmaceutics13111817] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal absorption remains indispensable in the systemic delivery of most drugs, even though it presents several challenges that, paradoxically, may also provide opportunities that can be exploited to achieve maximal bioavailability. Drug delivery systems made from nanoparticle carriers and especially, lipid carriers, have the potential to traverse gastrointestinal barriers and deploy in the lymphatic pathway, which aptly, is free from first pass via the liver. Several poorly soluble drugs have presented improved systemic bioavailability when couriered in lipid nanoparticle carriers. In this review, we propose an additional frontier to enhancing the bioavailability of poorly soluble drugs when encapsulated in lipid nano-carriers by imparting muco-adhesion to the particles through application of appropriate polymeric coating to the lipid carrier. The combined effect of gastrointestinal muco-adhesion followed by lymphatic absorption is a promising approach to improving systemic bioavailability of poorly soluble drugs following oral administration. Evidence to the potential of this approach is backed-up by recent studies within the review.
Collapse
|
18
|
Development of Chitosan/Cyclodextrin Nanospheres for Levofloxacin Ocular Delivery. Pharmaceutics 2021; 13:pharmaceutics13081293. [PMID: 34452254 PMCID: PMC8400911 DOI: 10.3390/pharmaceutics13081293] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 02/06/2023] Open
Abstract
Levofloxacin (LVF) is an antibacterial drug approved for the treatment of ocular infections. However, due to the low ocular bioavailability, high doses are needed, causing bacterial resistance. Polymeric nanospheres (NPs) loading antibiotic drugs represent the most promising approach to eradicate ocular infections and to treat pathogen resistance. In this study, we have developed chitosan NPs based on sulfobutyl-ether-β-cyclodextrin (CH/SBE-β-CD NPs) for ocular delivery of LVF. CH/SBE-β-CD NPs loading LVF were characterized in terms of encapsulation parameters, morphology, and sizes, in comparison to NPs produced without the macrocycle. Nuclear magnetic resonance and UV–vis spectroscopy studies demonstrated that SBE-β-CD is able to complex LVF and to influence encapsulation parameters of NPs, producing high encapsulation efficiency and LVF loading. The NPs were homogenous in size, with a hydrodynamic radius between 80 and 170 nm and positive zeta potential (ζ) values. This surface property could promote the interaction of NPs with the negatively charged ocular tissue, increasing their residence time and, consequently, LVF efficacy. In vitro, antibacterial activity against Gram-positive and Gram-negative bacteria showed a double higher activity of CH/SBE-β-CD NPs loading LVF compared to the free drug, suggesting that chitosan NPs based on SBE-β-CD could be a useful system for the treatment of ocular infections.
Collapse
|
19
|
Sadaquat H, Akhtar M, Nazir M, Ahmad R, Alvi Z, Akhtar N. Biodegradable and biocompatible polymeric nanoparticles for enhanced solubility and safe oral delivery of docetaxel: In vivo toxicity evaluation. Int J Pharm 2021; 598:120363. [PMID: 33556487 DOI: 10.1016/j.ijpharm.2021.120363] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/19/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Docetaxel (DTX) is a chemotherapeutic drug with poor hydrophilicity and permeability. Its lipophilic properties decrease its absorption in systemic circulation which hinders its therapeutic efficacy & safety. Cyclodextrins (CDs) with their unique structural properties enhance solubility of chemotherapeutic drugs. The study was designed to formulate docetaxel-cyclodextrins inclusion complexes for enhancement of solubility with sulfobutyl ether β-cyclodextrin (SBE7-β-CD), hydroxypropyl β-cyclodextrin (HP-β-CD) and β-cyclodextrin (β-CD). Further, by using ionic gelation method polymeric nanoparticles of docetaxel-cyclodextrins were prepared with sodium tri poly phosphate (STPP) and chitosan (CS). Optimization is performed by varying CS and STPP mass ratios. Nanoparticles were analyzed for their physicochemical properties, drug-excipient compatibility, thermal stability and oral toxicity. CDs enhanced the solubility of DTX. Nanoparticles were found within 144.8 ± 65.19 - 372.0 ± 126.9 nm diameters with polydispersity ranging 0.117-0.375. The particles were found round & circular in shape with smooth and non-porous surface. Increased quantity of drug release was observed from DTX-CDs loaded nanoparticles than pure drug loaded nanoparticles. Oral toxicity in rabbits revealed biochemical, histopathological profile with no toxic effect on cellular structure of animals.
Collapse
Affiliation(s)
- Hadia Sadaquat
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan; Department of Medical Laboratory Technology, Faculty of Medicine and Allied Health Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan.
| | | | - Rabbiya Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Zunaira Alvi
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| | - Naveed Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Punjab, Pakistan
| |
Collapse
|
20
|
Zainol Abidin NA, Kormin F, Zainol Abidin NA, Mohamed Anuar NAF, Abu Bakar MF. The Potential of Insects as Alternative Sources of Chitin: An Overview on the Chemical Method of Extraction from Various Sources. Int J Mol Sci 2020; 21:ijms21144978. [PMID: 32679639 PMCID: PMC7404258 DOI: 10.3390/ijms21144978] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/05/2020] [Accepted: 02/17/2020] [Indexed: 01/29/2023] Open
Abstract
Chitin, being the second most abundant biopolymer after cellulose, has been gaining popularity since its initial discovery by Braconot in 1811. However, fundamental knowledge and literature on chitin and its derivatives from insects are difficult to obtain. The most common and sought-after sources of chitin are shellfish (especially crustaceans) and other aquatic invertebrates. The amount of shellfish available is obviously restricted by the amount of food waste that is allowed; hence, it is a limited resource. Therefore, insects are the best choices since, out of 1.3 million species in the world, 900,000 are insects, making them the most abundant species in the world. In this review, a total of 82 samples from shellfish—crustaceans and mollusks (n = 46), insects (n = 23), and others (n = 13)—have been collected and studied for their chemical extraction of chitin and its derivatives. The aim of this paper is to review the extraction method of chitin and chitosan for a comparison of the optimal demineralization and deproteinization processes, with a consideration of insects as alternative sources of chitin. The methods employed in this review are based on comprehensive bibliographic research. Based on previous data, the chitin and chitosan contents of insects in past studies favorably compare and compete with those of commercial chitin and chitosan—for example, 45% in Bombyx eri, 36.6% in Periostracum cicadae (cicada sloughs), and 26.2% in Chyrysomya megacephala. Therefore, according to the data reported by previous researchers, demonstrating comparable yield values to those of crustacean chitin and the great interest in insects as alternative sources, efforts towards comprehensive knowledge in this field are relevant.
Collapse
Affiliation(s)
- Nurul Alyani Zainol Abidin
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia; (N.A.Z.A.); (N.A.Z.A.); (N.A.F.M.A.); (M.F.A.B.)
| | - Faridah Kormin
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia; (N.A.Z.A.); (N.A.Z.A.); (N.A.F.M.A.); (M.F.A.B.)
- Centre of Research on Sustainable Uses of Natural Resources, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia
- Correspondence:
| | - Nurul Akhma Zainol Abidin
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia; (N.A.Z.A.); (N.A.Z.A.); (N.A.F.M.A.); (M.F.A.B.)
| | - Nor Aini Fatihah Mohamed Anuar
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia; (N.A.Z.A.); (N.A.Z.A.); (N.A.F.M.A.); (M.F.A.B.)
| | - Mohd Fadzelly Abu Bakar
- Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia; (N.A.Z.A.); (N.A.Z.A.); (N.A.F.M.A.); (M.F.A.B.)
- Centre of Research on Sustainable Uses of Natural Resources, Universiti Tun Hussein Onn Malaysia, Johor 86400, Malaysia
| |
Collapse
|
21
|
Ünal S, Aktaş Y, Benito JM, Bilensoy E. Cyclodextrin nanoparticle bound oral camptothecin for colorectal cancer: Formulation development and optimization. Int J Pharm 2020; 584:119468. [PMID: 32470483 DOI: 10.1016/j.ijpharm.2020.119468] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 01/15/2023]
Abstract
Chemotherapeutic drugs for colorectal cancer(CRC) which is currently the third most lethal cancer globally, are administered intravenously (iv) due to their low oral bioavailability resulting from their physicochemical properties. Non-selective biodistribution and difficulties of parenteral administration reduce treatment efficacy. The aim of this work is to develop cyclodextrin (CD) based cationic nanoparticles (NPs) for CRC treatment with model drug camptothecin (CPT) that can be administered orally, protecting CPT through gastrointestinal tract (GIT), accumulating at mucus layer and providing an effective local treatment for the tumor area. NPs using two different amphiphilic CDs were prepared and coated with polyethylenimine (PEI) or chitosan (CS) to obtain positively charged surface for all formulations. Pre-formulation studies resulted in optimal formulation, CPT loaded Poly-β-CD-C6 NPs, with 135 nm diameter and zeta potential of + 40 mV. In vitro release study was designed to represent gastrointestinal pH and transit time revealing 52% of encapsulated CPT successfully delivered all the way to simulated colon. CPT bound to Poly-β-CD-C6 NPs exhibited higher cytotoxicity on HT-29 cells compared to equivalent CPT in solution. Caco-2 cell permeability studies showed 276% increase in CPT permeability and significantly higher mucosal penetration in cationic CD nanoparticle form.
Collapse
Affiliation(s)
- Sedat Ünal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey; Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey
| | - Yeşim Aktaş
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - Juan M Benito
- Institute for Chemical Research, CSIC - University of Sevilla, Av. Americo Vespucio 49, Sevilla 41092, Spain
| | - Erem Bilensoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara 06100, Turkey.
| |
Collapse
|
22
|
Altaani BM, Almaaytah AM, Dadou S, Alkhamis K, Daradka MH, Hananeh W. Oral Delivery of Teriparatide Using a Nanoemulsion System: Design, in Vitro and in Vivo Evaluation. Pharm Res 2020; 37:80. [PMID: 32253527 DOI: 10.1007/s11095-020-02793-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 02/29/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE Investigate the possibility of delivering teriparatide orally using nanoemulsion. METHOD Teriparatide was allowed to interact with chitosan in the presence of HPβCD.The formed polyelectrolyte complex (PEC) was characterized by DSC, FTIR, DLS and for entrapment efficiency. PEC was the incorporated in an oil phase consisting of Oleic Acid, Labrasol and Plurol Oleique to form a nanoemulsion. This preparation was characterized for refractive index, viscosity, pH, conductivity, particle size, and morphology.Bioavailability of the preparation was evaluated using rabbits against SC injection. The efficacy of the formula was tested using ovariectomized rats (an osteoporosis animal model) and mechanical and histological tests were conducted on their bones. The stability of the preparation was evaluated by storing samples at 4o C, 25o C and 40o C for three months. RESULTS PEC testing demonstrate a complex formation with particle size of 208 nm, zeta potential of +17 mV and entrapment efficiency of 49%. For the nanoemulsion, the results demonstrate the formation of a nano-sized dispersed system (108 nm) with a drug loading of 98% and a percent protection of 90% and 71% in SGF and SIF respectively. Bioavailability results showed a sustained release profile was achieved following the oral formulation administration. Efficacy studies showed improvement in the strength, thickness and connectivity of bones. Short-term stability study demostrated that the nanoemulsion is mostly stable at 4o C. CONCLUSION These findings demonstrate the ability of delivering Teriparatide orally using oleic acid based dispersion in combination with chitosan PEC.
Collapse
Affiliation(s)
- Bashar M Altaani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Ammar M Almaaytah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
- Currently Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
| | - Suha Dadou
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Khouloud Alkhamis
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mousa H Daradka
- Department of Clinical Veterinary Medical Sciences, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| | - Wael Hananeh
- Department of Veterinary Pathology and Public Health, Faculty of Veterinary Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
23
|
Simultaneous nitrogen and carbon removal in a packed A/O reactor: effect of C/N ratio on microbial community structure. Bioprocess Biosyst Eng 2020; 43:1241-1252. [PMID: 32166398 DOI: 10.1007/s00449-020-02319-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 02/26/2020] [Indexed: 10/24/2022]
Abstract
In this research, a novel packed anoxic/oxic moving bed biofilm reactor (MBBR) was established to achieve high-organic matter removal rates, despite the carbon/nitrogen (C/N) ratio of 2.7-5.1 in the influent. Simultaneous nitrification-denitrification (SND) was investigated under a long sludge retention time of 104 days. The system exhibited excellent performance in pollutant removal, with chemical oxygen demand and total nitrogen (TN) enhanced to 93.6-97.4% and 34.4-60%, respectively. Under low C/N conditions, the nitrogen removal process of A/O MBBR system was mainly achieved by anaerobic denitrification. The increase of C/N ratio enhanced SND rate of the aerobic section, where dissolved oxygen was maintained at the range of 4-6 mg/L, and resulted in higher TN removal efficiency. The microbial composition and structures were analyzed utilizing the MiSeq Illumina sequencing technique. High-throughput pyrosequencing results indicated that the dominant microorganisms were Proteobacteria and Bacteroidetes at the phylum level, which contributes to the removal of organics matters. In the aerobic section, abundances of Nitrospirae (1.12-29.33%), Burkholderiales (2.15-21.38%), and Sphingobacteriales (2.92-11.67%) rose with increasing C/N ratio in the influent, this proved that SND did occur in the aerobic zone. As the C/N ratio of influent increased, the SND phenomenon in the aerobic zone of the system is the main mechanism for greatly improving the removal rate of TN in the aerobic section. The C/N ratio in the aerobic zone is not required to be high to exhibit good TN removal performance. When C/NH4+ and C/TN in the aerobic zone were higher than 2.29 and 1.77, respectively, TN removal efficiency was higher than 60%, which means that carbon sources added to the reactor could be saved. This study would be vital for a better understanding of microbial structures within a packed A/O MBBR and the development of cost-efficient strategies for the treatment of low C/N wastewater.
Collapse
|
24
|
Mura P. Advantages of the combined use of cyclodextrins and nanocarriers in drug delivery: A review. Int J Pharm 2020; 579:119181. [PMID: 32112928 DOI: 10.1016/j.ijpharm.2020.119181] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
Abstract
Complexation with cyclodextrins (CDs) has been widely and successfully used in pharmaceutical field, mainly for enhancing solubility, stability and bioavailability of a variety of drugs. However, some important drawbacks, including rapid removal from the bloodstream after in vivo administration, or possible replacement, in biological media, of the entrapped drug moieties by other molecules with higher affinity for the CD cavity, can limit the CDs effectiveness as drug carriers. This review is focused on combined strategies simultaneously exploiting CD complexation, and loading of the complexed drug into various colloidal carriers (liposomes, niosomes, polymeric nanoparticles, lipid nanoparticles, nanoemulsions, micelles) which have been investigated as a possible means for circumventing the problems associated with both such carriers, when used separately, and join their relative benefits in a unique delivery system. Several examples of applications have been reported, to illustrate the possible advantages achievable by such a dual strategy, depending on the CD-nanocarrier combination, and mainly resulting in enhanced performance of the delivery system and improved biopharmaceutical properties and therapeutic efficacy of drugs. The major problems and/or drawbacks found in the development of such systems, as well as the (rare) case of failures in achieving the expected improvements have also been highlighted.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, Florence University, via Schiff 6, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
25
|
Coque JJR, Álvarez-Pérez JM, Cobos R, González-García S, Ibáñez AM, Diez Galán A, Calvo-Peña C. Advances in the control of phytopathogenic fungi that infect crops through their root system. ADVANCES IN APPLIED MICROBIOLOGY 2020; 111:123-170. [PMID: 32446411 DOI: 10.1016/bs.aambs.2020.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Productivity and economic sustainability of many herbaceous and woody crops are seriously threatened by numerous phytopathogenic fungi. While symptoms associated with phytopathogenic fungal infections of aerial parts (leaves, stems and fruits) are easily observable and therefore recognizable, allowing rapid or preventive action to control this type of infection, the effects produced by soil-borne fungi that infect plants through their root system are more difficult to detect. The fact that these fungi initiate infection and damage underground implies that the first symptoms are not as easily noticeable, and therefore both crop yield and plant survival are frequently severely compromised by the time the infection is found. In this paper we will review and discuss recent insights into plant-microbiota interactions in the root system crucial to understanding the beginning of the infectious process. We will also review different methods for diminishing and controlling the infection rate by phytopathogenic fungi penetrating through the root system including both the traditional use of biocontrol agents such as antifungal compounds as well as some new strategies that could be used because of their effective application, such as nanoparticles, virus-based nanopesticides, or inoculation of plant material with selected endophytes. We will also review the possibility of modeling and influencing the composition of the microbial population in the rhizosphere environment as a strategy for nudging the plant-microbiome interactions toward enhanced beneficial outcomes for the plant, such as controlling the infectious process.
Collapse
Affiliation(s)
- Juan José R Coque
- Instituto de Investigación de la Viña y el Vino, Universidad de León, León, Spain.
| | | | - Rebeca Cobos
- Instituto de Investigación de la Viña y el Vino, Universidad de León, León, Spain
| | | | - Ana M Ibáñez
- Instituto de Investigación de la Viña y el Vino, Universidad de León, León, Spain
| | - Alba Diez Galán
- Instituto de Investigación de la Viña y el Vino, Universidad de León, León, Spain
| | - Carla Calvo-Peña
- Instituto de Investigación de la Viña y el Vino, Universidad de León, León, Spain
| |
Collapse
|
26
|
Naji-Tabasi S, Mahdian E, Arianfar A, Naji-Tabasi S. Nanoparticles fabrication of soy protein isolate and basil seed gum (Ocimum bacilicum L.) complex as pickering stabilizers in emulsions. J DISPER SCI TECHNOL 2020. [DOI: 10.1080/01932691.2019.1703736] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Sima Naji-Tabasi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Elham Mahdian
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Akram Arianfar
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
| | - Sara Naji-Tabasi
- Department of Food Nanotechnology, Research Institute of Food Science and Technology (RIFST), Mashhad, Iran
| |
Collapse
|
27
|
ÖZKAN SA, DEDEOĞLU A, KARADAŞ BAKIRHAN N, ÖZKAN Y. Nanocarriers Used Most in Drug Delivery and Drug Release: Nanohydrogel, Chitosan, Graphene, and Solid Lipid. Turk J Pharm Sci 2019; 16:481-492. [PMID: 32454753 PMCID: PMC7227887 DOI: 10.4274/tjps.galenos.2019.48751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/01/2019] [Indexed: 12/01/2022]
Abstract
Over the past few years, nanocarriers have become an ideal solution for safe and efficient drug delivery and release. This is mainly due to the extraordinary characteristics that nanomaterials exhibit when compared with their larger scaled forms. A variety of these carriers are more popular due to their high biocompatibility, ensuring greater efficacy especially in cancer treatments. Nanocrystal, liposomal, and micelle designs of these materials as nanocarriers for drug delivery and release have been extensively researched throughout the past 50 years. Successful applications have not only ensured a greater focus on therapeutic development but also created a new solution available in the pharmaceutical market. Herein, a brief review of research studies focused on nanocarrier materials and designs to achieve superior benefits of drugs for disease treatments is presented. Nanohydrogels, chitosan, graphene oxide, and solid lipid nanoparticle nanocarrier designs and applications are selectively given due to the great attention they have gained from being highly biocompatible and easy-to-manipulate nanocarrier options from organic and inorganic nanocarrier materials. Each summary exhibits the progress that has been achieved to date. With greater understanding of the current state in the development process of these nanomaterials, there is a rising chance to provide better treatment to patients, which is a desperate need in pharmaceutical technologies.
Collapse
Affiliation(s)
- Sibel Ayşıl ÖZKAN
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Aylin DEDEOĞLU
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Nurgül KARADAŞ BAKIRHAN
- University of Health Sciences, Gülhane Faculty of Pharmacy, Department of Analytical Chemistry, Ankara, Turkey
| | - Yalçın ÖZKAN
- University of Health Sciences, Gülhane Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara, Turkey
| |
Collapse
|
28
|
Bertoni S, Albertini B, Facchini C, Prata C, Passerini N. Glutathione-Loaded Solid Lipid Microparticles as Innovative Delivery System for Oral Antioxidant Therapy. Pharmaceutics 2019; 11:pharmaceutics11080364. [PMID: 31357663 PMCID: PMC6723327 DOI: 10.3390/pharmaceutics11080364] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/16/2023] Open
Abstract
The present study aimed to develop a novel formulation containing glutathione (GSH) as an oral antioxidant therapy for the treatment of oxidative stress-related intestinal diseases. To this purpose, solid lipid microparticles (SLMs) with Dynasan 114 and a mixture of Dynasan 114 and Dynasan 118 were produced by spray congealing technology. The obtained SLMs had main particle sizes ranging from 250 to 355 µm, suitable for oral administration. GSH was efficiently loaded into the SLMs at 5% or 20% w/w and the encapsulation process did not modify its chemico-physical properties, as demonstrated by FT-IR, DSC and HSM analysis. Moreover, in vitro release studies using biorelevant media showed that Dynasan 114-based SLMs could efficiently release GSH in various intestinal fluids, while 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay demonstrated the good radical scavenging activity of this formulation. Dynasan 114-based SLMs exhibited an excellent biocompatibility on intestinal HT-29 cells at concentrations up to 2000 μg/mL. SLMs containing GSH alone or together with another antioxidant agent (catalase) were effective in reducing intracellular reactive oxygen species (ROS) levels. Overall, this study indicated that spray congealed SLMs are a promising oral drug delivery system for the encapsulation of one or more biological antioxidant agents for local intestinal treatment.
Collapse
Affiliation(s)
- Serena Bertoni
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Beatrice Albertini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| | - Carlotta Facchini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Cecilia Prata
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Nadia Passerini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| |
Collapse
|
29
|
Byeon JC, Lee SE, Kim TH, Ahn JB, Kim DH, Choi JS, Park JS. Design of novel proliposome formulation for antioxidant peptide, glutathione with enhanced oral bioavailability and stability. Drug Deliv 2019; 26:216-225. [PMID: 30843439 PMCID: PMC6407602 DOI: 10.1080/10717544.2018.1551441] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
To develop proliposome formulations to improve the oral bioavailability of l-glutathione (GSH), GSH-loaded proliposomes were prepared using the granule method. Mannitol was selected as an effective excipient to achieve the desired particle size, entrapment efficiency (EE), and solubility for oral delivery of the final formulation. To evaluate the effect of surface charge of proliposomes on the oral bioavailability of GSH, negative (F1-F4) and positive proliposomes (F5-F9) were prepared. Particle size of F1 and F5 was 167.8 ± 0.9 and 175.9 ± 2.0 nm, and zeta potential of F1 and F5 was -8.1 ± 0.7 and 21.1 ± 2.0 mV, respectively. Encapsulation efficiency of F1 and F5 was 58.6% and 54.7%, respectively. Considering their particle size, zeta potential, and EE, the proliposomes F1 and F5 were adopted as the optimal formulations for further experiments. Solid state characterization of the proliposomes confirmed lipid coating on the surface of mannitol. The release of GSH from F1 and F5 formulations was prolonged until 24 h and pH independent. The total antioxidant capacity of GSH was concentration-dependent and maintained after formulation of GSH proliposomes. Circular dichroism spectroscopy confirmed that the molecular structure of GSH was maintained in the proliposome formulations. GSH proliposomes exhibited no significant changes in particle size and zeta potential for 4 weeks. An oral bioavailability study in rats revealed that F5 exhibited 1.05-, 1.08-, and 1.11-fold higher bioavailability than F1, commercial capsule formulation, and pure GSH, respectively. In conclusion, the prepared GSH proliposomes enhanced the poor bioavailability of GSH and prolonged its duration of action.
Collapse
Affiliation(s)
- Jong Chan Byeon
- a College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon , South Korea
| | - Sang-Eun Lee
- a College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon , South Korea
| | - Tae-Hyeon Kim
- a College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon , South Korea
| | - Jung Bin Ahn
- a College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon , South Korea
| | - Dong-Hyun Kim
- a College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon , South Korea
| | - Jin-Seok Choi
- a College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon , South Korea.,b Department of Medical Management , Chodang University , Jeollanam-do , South Korea
| | - Jeong-Sook Park
- a College of Pharmacy and Institute of Drug Research and Development , Chungnam National University , Daejeon , South Korea
| |
Collapse
|
30
|
Xie J, Qin D, Han Y, Wang L. Synthesis and characterization of a novel hydroxypropyl chitosan-graft-β-Cyclodextrin copolymer as potential drug carrier. J Carbohydr Chem 2019. [DOI: 10.1080/07328303.2019.1630837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jun Xie
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, China
| | - Dawei Qin
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, China
| | - Yanhong Han
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, China
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji’nan, China
| |
Collapse
|
31
|
Anraku M, Tabuchi R, Goto M, Iohara D, Mizukai Y, Maezaki Y, Michihara A, Kadowaki D, Otagiri M, Hirayama F. Design and Evaluation of An Extended-Release Olmesartan Tablet Using Chitosan/Cyclodextrin Composites. Pharmaceutics 2019; 11:pharmaceutics11020082. [PMID: 30781383 PMCID: PMC6409563 DOI: 10.3390/pharmaceutics11020082] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/29/2019] [Accepted: 02/13/2019] [Indexed: 12/29/2022] Open
Abstract
Sustained-release olmesartan tablets (OLM) were prepared by the simple, direct compression of composites of anionic sulfobutyl ether-β-cyclodextrin (SBE-β-CD) and cationic spray-dried chitosan (SD-CS), and were evaluated for use as a sustained release preparation for the treatment of hypertension. An investigation of the interaction between OLM and SBE-β-CD by the solubility method indicated that the phase diagram of the OLM/SBE-β-CD system was the AL type, indicating the formation of a 1:1 inclusion complex. The release of OLM from tablets composed of the SD-CS/SBE-β-CD composite was slow in media at both pH 1.2 and at 6.8. The in vitro slow release characteristics of the SD-CS/SBE-β-CD composite were reflected in the in vivo absorption of the drug after normal rats were given an oral administration of the preparation. Furthermore, the SD-CS/SBE-β-CD composite continuously increased the antihypertensive effect of OLM in hypertensive rats, compared with that of the drug itself. These results suggest that a simple mixing of SD-CS and SBE-β-CD can be potentially useful for the controlled release of a drug for the continuous treatments of hypertension.
Collapse
Affiliation(s)
- Makoto Anraku
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Ryo Tabuchi
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Miwa Goto
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Daisuke Iohara
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Yasuyuki Mizukai
- Nippon Kayaku Food Techno Co., Ltd., 219, Iwahanamachi, Takasaki, Gunma 370-1208, Japan.
| | - Yuji Maezaki
- Nippon Kayaku Food Techno Co., Ltd., 219, Iwahanamachi, Takasaki, Gunma 370-1208, Japan.
| | - Akihiro Michihara
- Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University, 1 Sanzo, Gakuen-cho, Fukuyama 729-0292, Japan.
| | - Daisuke Kadowaki
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
| | - Fumitoshi Hirayama
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
- DDS Research Institute, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan.
| |
Collapse
|
32
|
Affiliation(s)
- Wahid Khan
- Department of PharmaceuticsNational Institute of Pharmaceutical Education & Research (NIPER) Hyderabad 500037 India
| | - Ester Abtew
- School of Pharmacy-Faculty of MedicineThe Hebrew University of Jerusalem Jerusalem 91120 Israel
| | - Sheela Modani
- Department of PharmaceuticsNational Institute of Pharmaceutical Education & Research (NIPER) Hyderabad 500037 India
| | - Abraham J. Domb
- School of Pharmacy-Faculty of MedicineThe Hebrew University of Jerusalem Jerusalem 91120 Israel
| |
Collapse
|
33
|
Song M, Wang H, Chen K, Zhang S, Yu L, Elshazly EH, Ke L, Gong R. Oral insulin delivery by carboxymethyl-β-cyclodextrin-grafted chitosan nanoparticles for improving diabetic treatment. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S774-S782. [DOI: 10.1080/21691401.2018.1511575] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Mingming Song
- College of Life Science, Anhui Normal University, Wuhu, P.R. China
- School of Life Science and Biotechnology, China Pharmaceutical University, Nanjing, P.R. China
| | - Hui Wang
- College of Life Science, Anhui Normal University, Wuhu, P.R. China
| | - Kuanmin Chen
- College of Life Science, Anhui Normal University, Wuhu, P.R. China
| | - Song Zhang
- College of Life Science, Anhui Normal University, Wuhu, P.R. China
| | - Lizhen Yu
- College of Life Science, Anhui Normal University, Wuhu, P.R. China
- School of Pharmacy, Wannan Medical College, Wuhu, P.R. China
| | - Ezzat H. Elshazly
- College of Life Science, Anhui Normal University, Wuhu, P.R. China
- Department of Botany and Microbiology, Faculty of Science, Al Azhar University, Assiut, Egypt
| | - Lixia Ke
- College of Life Science, Anhui Normal University, Wuhu, P.R. China
| | - Renmin Gong
- College of Life Science, Anhui Normal University, Wuhu, P.R. China
| |
Collapse
|
34
|
Trapani A, Tripodo G, Mandracchia D, Cioffi N, Ditaranto N, De Leo V, Cordero H, Esteban MA. Glutathione-loaded solid lipid nanoparticles based on Gelucire® 50/13: Spectroscopic characterization and interactions with fish cells. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.08.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
35
|
Matshetshe KI, Parani S, Manki SM, Oluwafemi OS. Preparation, characterization and in vitro release study of β-cyclodextrin/chitosan nanoparticles loaded Cinnamomum zeylanicum essential oil. Int J Biol Macromol 2018; 118:676-682. [DOI: 10.1016/j.ijbiomac.2018.06.125] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/16/2018] [Accepted: 06/25/2018] [Indexed: 11/16/2022]
|
36
|
Therapeutic Potential of DNAzyme Loaded on Chitosan/Cyclodextrin Nanoparticle to Recovery of Chemosensitivity in the MCF-7 Cell Line. Appl Biochem Biotechnol 2018; 187:708-723. [PMID: 30039475 DOI: 10.1007/s12010-018-2836-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/02/2018] [Indexed: 12/19/2022]
Abstract
Commonly, acquired resistances to anticancer drug are mediated by overexpression of a membrane-associated protein that encode via multi-drug resistance gene-1 (MDR1). Herein, the mRNA-cleaving DNAzyme that targets the mRNA of MDR1 gene in doxorubicin-resistant breast cancer cell line (MCF-7/DR) loaded on the chitosan β-cyclodextrin complexes was used as a tropical agent. Chitosan/β-cyclodextrin complexes were used to deliver DNAzymes into cancer cells. Determination of the physicochemical characteristics of the particles was done by photon correlation spectroscopy and scanning electron microscopy. The encapsulation efficiency of the complexes was tested by using gel retardation assay. Positively charged nanoparticles interacted with DNAzyme that could perform as an efficient DNAzyme transfection system. The rationale usage of this platform is to sensitize MCF-7/DR to doxorubicin by downregulating the drug-resistance gene MDR1. Results demonstrated a downregulation of MDR1 mRNAs in MCF-7/DR/DNZ by real-time PCR, compared to the MCF-7/DR as control. WST1 assay showed the 22-fold decrease in drug resistance on treated cells 24 h after transfection. Results showed the intracellular accumulation of Rh123 increased in the treated cells with DNAzyme. Results suggested a potential platform in association with chemotherapy drug for cancer therapy and indicated extremely efficient at delivery of DNAzyme in restoring chemosensitivity.
Collapse
|
37
|
Synthesis and characterization of chitosan ascorbate nanoparticles for therapeutic inhibition for cervical cancer and their in silico modeling. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.01.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Casares-Crespo L, Fernández-Serrano P, Viudes-de-Castro MP. Protection of GnRH analogue by chitosan-dextran sulfate nanoparticles for intravaginal application in rabbit artificial insemination. Theriogenology 2018; 116:49-52. [PMID: 29777964 DOI: 10.1016/j.theriogenology.2018.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 03/29/2018] [Accepted: 05/07/2018] [Indexed: 11/15/2022]
Abstract
The present study was designed to prove new rabbit insemination extenders containing aminopeptidase inhibitors (AMIs) with or without chitosan (CS)-dextran sulfate (DS) nanoparticles entrapping the GnRH analogue. In addition, different hormone concentrations were tested in these extenders, evaluating their in vivo effect on rabbit reproductive performance after artificial insemination. A total of 911 females were inseminated with semen diluted with the four experimental extenders (C4 group: 4 μg buserelin/doe in control medium (Tris-citric acid-glucose supplemented with bestatin 10 μM and EDTA 20 mM), C5 group: 5 μg of buserelin/doe in control medium, Q4 group: 4 μg of buserelin/doe into CS-DS nanoparticles in control medium, Q5 group: 5 μg of busereline/doe into CS-DS nanoparticles in control medium). Results showed that fertility was significantly lower in C4 group compared to C5, Q5 and Q4 groups (0.7 versus 0.85, 0.85 and 0.82, respectively). On the contrary, prolificacy was similar in the four experimental groups studied (P > 0.05). We conclude that the CS-DS nanoparticles prepared by a coacervation process as carrier for buserelin acetate allows reducing the concentration of hormone used in extenders supplemented with bestatin and EDTA without affecting the fertility and prolificacy of rabbit females.
Collapse
Affiliation(s)
- L Casares-Crespo
- Centro de Investigación y Tecnología Animal-Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Polígono La Esperanza nº 100, 12400 Segorbe, Castellón, Spain
| | - P Fernández-Serrano
- Centro de Investigación y Tecnología Animal-Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Polígono La Esperanza nº 100, 12400 Segorbe, Castellón, Spain
| | - M P Viudes-de-Castro
- Centro de Investigación y Tecnología Animal-Instituto Valenciano de Investigaciones Agrarias (CITA-IVIA), Polígono La Esperanza nº 100, 12400 Segorbe, Castellón, Spain.
| |
Collapse
|
39
|
Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Parent M. Glutathione: Antioxidant Properties Dedicated to Nanotechnologies. Antioxidants (Basel) 2018; 7:E62. [PMID: 29702624 PMCID: PMC5981248 DOI: 10.3390/antiox7050062] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/20/2018] [Accepted: 04/25/2018] [Indexed: 02/06/2023] Open
Abstract
Which scientist has never heard of glutathione (GSH)? This well-known low-molecular-weight tripeptide is perhaps the most famous natural antioxidant. However, the interest in GSH should not be restricted to its redox properties. This multidisciplinary review aims to bring out some lesser-known aspects of GSH, for example, as an emerging tool in nanotechnologies to achieve targeted drug delivery. After recalling the biochemistry of GSH, including its metabolism pathways and redox properties, its involvement in cellular redox homeostasis and signaling is described. Analytical methods for the dosage and localization of GSH or glutathiolated proteins are also covered. Finally, the various therapeutic strategies to replenish GSH stocks are discussed, in parallel with its use as an addressing molecule in drug delivery.
Collapse
Affiliation(s)
| | - Ariane Boudier
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France.
| | | | - Igor Clarot
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France.
| | - Pierre Leroy
- Université de Lorraine, CITHEFOR, F-54000 Nancy, France.
| | | |
Collapse
|
40
|
Carn F, Nowak S, Chaab I, Diaz-Salmeron R, Djabourov M, Bouchemal K. Autoassemblies of α-Cyclodextrin and Grafted Polysaccharides: Crystal Structure and Specific Properties of the Platelets. J Phys Chem B 2018; 122:6055-6063. [DOI: 10.1021/acs.jpcb.8b01417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Florent Carn
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Diderot, Sorbonne Paris Cité, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris, France
| | - Sophie Nowak
- Plateforme Rayons X—UFR de Chimie, Université Paris Diderot, 35 rue Hélène Brion, 75205 Paris Cedex 13, France
| | - Ismail Chaab
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université Paris Diderot, Sorbonne Paris Cité, 10 Rue Alice Domon et Léonie Duquet, 75205 Paris, France
- ESPCI Paris, Laboratoire de Physique Thermique, PSL Research University, 10 Rue Vauquelin, 75231 Paris Cedex 5, France
| | - Raul Diaz-Salmeron
- ESPCI Paris, Laboratoire de Physique Thermique, PSL Research University, 10 Rue Vauquelin, 75231 Paris Cedex 5, France
- Institut Galien Paris Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 92296 Châtenay-Malabry, France
| | - Madeleine Djabourov
- ESPCI Paris, Laboratoire de Physique Thermique, PSL Research University, 10 Rue Vauquelin, 75231 Paris Cedex 5, France
| | - Kawthar Bouchemal
- Institut Galien Paris Sud, CNRS, Université Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 92296 Châtenay-Malabry, France
| |
Collapse
|
41
|
Webber V, de Siqueira Ferreira D, Barreto PLM, Weiss-Angeli V, Vanderlinde R. Preparation and characterization of microparticles of β-cyclodextrin/glutathione and chitosan/glutathione obtained by spray-drying. Food Res Int 2018; 105:432-439. [DOI: 10.1016/j.foodres.2017.11.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/13/2017] [Accepted: 11/19/2017] [Indexed: 12/12/2022]
|
42
|
Pant A, Negi JS. Novel controlled ionic gelation strategy for chitosan nanoparticles preparation using TPP-β-CD inclusion complex. Eur J Pharm Sci 2018; 112:180-185. [DOI: 10.1016/j.ejps.2017.11.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/27/2017] [Accepted: 11/21/2017] [Indexed: 12/29/2022]
|
43
|
Muankaew C, Loftsson T. Cyclodextrin-Based Formulations: A Non-Invasive Platform for Targeted Drug Delivery. Basic Clin Pharmacol Toxicol 2017; 122:46-55. [PMID: 29024354 DOI: 10.1111/bcpt.12917] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/20/2017] [Indexed: 12/26/2022]
Abstract
Cyclodextrins (CDs) are recognized as promising pharmaceutical excipients due to their unique ability to form water-soluble inclusion complexes with various poorly soluble compounds. The numerous investigations on CDs and their use in nanomedicine have received considerable attention in the last three decades, leading to the rapid development of new CD-containing formulations that significantly facilitate targeted drug delivery and controlled drug release, with consequent improvements in drug bioavailability. This MiniReview highlights the efficacy and recent uses of CDs for non-invasive drug delivery. Using ophthalmic and nasal drug delivery as examples, an overview of chemical properties, mechanisms of CDs on drug solubilization, stabilization and permeation, along with their toxicological profiles relevant to nasal and ocular administration, are provided and discussed. The recent development and application of CD-based nanocarrier systems for targeted drug delivery are summarized.
Collapse
Affiliation(s)
| | - Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| |
Collapse
|
44
|
Thanh Nguyen H, Goycoolea FM. Chitosan/Cyclodextrin/TPP Nanoparticles Loaded with Quercetin as Novel Bacterial Quorum Sensing Inhibitors. Molecules 2017; 22:E1975. [PMID: 29140285 PMCID: PMC6150374 DOI: 10.3390/molecules22111975] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/12/2017] [Accepted: 11/13/2017] [Indexed: 12/21/2022] Open
Abstract
The widespread emergence of antibiotic-resistant bacteria has highlighted the urgent need of alternative therapeutic approaches for human and animal health. Targeting virulence factors that are controlled by bacterial quorum sensing (QS), seems a promising approach. The aims of this study were to generate novel nanoparticles (NPs) composed of chitosan (CS), sulfo-butyl-ether-β-cyclodextrin (Captisol®) and/or pentasodium tripolyphosphate using ionotropic gelation technique, and to evaluate their potential capacity to arrest QS in bacteria. The resulting NPs were in the size range of 250-400 nm with CS70/5 and 330-600 nm with CS70/20, had low polydispersity index (<0.25) and highly positive zeta potential ranging from ζ ~+31 to +40 mV. Quercetin, a hydrophobic model flavonoid, could be incorporated proportionally with increasing amounts of Captisol® in the NPs formualtion, without altering significantly its physicochemical properties. Elemental analysis and FTIR studies revealed that Captisol® and quercetin were effectively integrated into the NPs. These NPs were stable in M9 bacterial medium for 7 h at 37 °C. Further, NPs containing Captisol® seem to prolong the release of associated drug. Bioassays against an E. coli Top 10 QS biosensor revealed that CS70/5 NPs could inhibit QS up to 61.12%, while CS70/20 NPs exhibited high antibacterial effects up to 88.32%. These results suggested that the interaction between NPs and the bacterial membrane could enhance either anti-QS or anti-bacterial activities.
Collapse
Affiliation(s)
- Hao Thanh Nguyen
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossgarten 3, 48149 Münster, Germany.
- Department of Biology, Faculty of Biotechnology, Vietnam National University of Agriculture, Ngo Xuan Quang Street, Hanoi 100000, Vietnam.
| | - Francisco M Goycoolea
- Institute for Biology and Biotechnology of Plants, University of Münster, Schlossgarten 3, 48149 Münster, Germany.
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
45
|
Tabuchi R, Anraku M, Iohara D, Ishiguro T, Ifuku S, Nagae T, Uekama K, Okazaki S, Takeshita K, Otagiri M, Hirayama F. Surface-deacetylated chitin nanofibers reinforced with a sulfobutyl ether β-cyclodextrin gel loaded with prednisolone as potential therapy for inflammatory bowel disease. Carbohydr Polym 2017; 174:1087-1094. [DOI: 10.1016/j.carbpol.2017.07.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/23/2017] [Accepted: 07/10/2017] [Indexed: 10/19/2022]
|
46
|
Adeoye O, Cabral-Marques H. Cyclodextrin nanosystems in oral drug delivery: A mini review. Int J Pharm 2017; 531:521-531. [DOI: 10.1016/j.ijpharm.2017.04.050] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 04/19/2017] [Accepted: 04/21/2017] [Indexed: 02/05/2023]
|
47
|
Liu S, Ho PC. Formulation optimization of scutellarin-loaded HP-β-CD/chitosan nanoparticles using response surface methodology with Box-Behnken design. Asian J Pharm Sci 2017; 12:378-385. [PMID: 32104349 PMCID: PMC7032107 DOI: 10.1016/j.ajps.2017.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/27/2017] [Accepted: 04/03/2017] [Indexed: 11/20/2022] Open
Abstract
The aim of this paper is to investigate and optimize the preparation of scutellarin (SCU)-loaded HP-β-CD/chitosan (CS) nanoparticles (CD/CS-SCU-NPs). CD/CS-SCU-NPs were prepared by ionic cross-linking method and the process and formulation variables were optimized using response surface methodology (RSM) with a three-level, three factor Box–Behnken design (BBD). The independent variables were the added amounts of CS, sodium tripolyphosphate (TPP) and Pluronic F-68 during the preparation. Dependent variables (responses) were particle size and entrapment efficiency. Mathematical equations and respond surface plots were used to correlate independent and dependent variables. The preparation process and formulation variables were optimized to achieve minimum particle size and maximum entrapment efficiency by calculating the overall desirability value (OD). The optimized NP formulation was characterized for particle size, PDI, zeta potential, entrapment efficiency and in vitro drug release. According to the results, an optimized CD/CS-SCU-NP formulation was prepared. Results for particle size, PDI, zeta potential and entrapment efficiency were found to be around 200 nm, 0.5, 25 mV, and 70% respectively. For in vitro study, the release of SCU from the NPs exhibited a biphasic release and was in accordance with Higuchi equation. The optimized preparation was simple with the probability for industrialization. The combination use of RSM, BBD and overall desirability values could provide a promising application for incorporating CD into CS nanoparticles as drug delivery carrier and help develop lab-scale procedures.
Collapse
Affiliation(s)
- Shanshan Liu
- National University of Singapore, 21 Kent Ridge Road, Singapore
| | - Paul C Ho
- National University of Singapore, 21 Kent Ridge Road, Singapore
| |
Collapse
|
48
|
Wang Y, Qin F, Lu M, Gao L, Yao X. The screening and evaluating of chitosan/β-cyclodextrin nanoparticles for effective delivery mitoxantrone hydrochloride. POLYMER SCIENCE SERIES A 2017. [DOI: 10.1134/s0965545x17030191] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Chen P, Song H, Yao S, Tu X, Su M, Zhou L. Magnetic targeted nanoparticles based on β-cyclodextrin and chitosan for hydrophobic drug delivery and a study of their mechanism. RSC Adv 2017. [DOI: 10.1039/c7ra02398g] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Magnetic nanoparticles double coated with β-cyclodextrin and chitosan were prepared for hydrophobic drug delivery, and its related mechanism was discussed.
Collapse
Affiliation(s)
- Pengfei Chen
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Hang Song
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Shun Yao
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Xianyu Tu
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Miao Su
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Lu Zhou
- School of Chemical Engineering
- Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
50
|
KR12 peptide associated with cyclodextrin: Antimicrobial and antitumor activities. Biointerphases 2016; 11:04B307. [PMID: 27907988 DOI: 10.1116/1.4968880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to determine the physical properties and antimicrobial and antiproliferative effects of the KR12 peptide complexed with 2-hydroxypropyl-β-cyclodextrin (Hp-βCd) in vitro. The KR12:Hp-βCd composition was evaluated for particle size and its zeta (ζ)-potential in the presence and absence of cells. Antimicrobial activity against Streptococcus mutans, Actinobacillus actinomycetemcomitans, and Porphyromonas gingivalis for the peptide alone or associated was evaluated by minimal inhibitory concentration. The cytotoxicity of the peptide and composition toward fibroblasts, Caco-2 cells, and A431 cells was determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide; thiazolyl blue assay and hemolysis assay. Membrane integrity was analyzed by the lactate dehydrogenase assay. KR12:Hp-βCd decreased the peptide concentration required for the antimicrobial effect. Moreover, this composition was able to modify cell surface parameters, such as ζ-potential, and alter the degree of hemolysis induced by KR12. However, the KR12:Hp-βCd and KR12 alone alter the zeta potential of cells to a similar extent, suggesting a similar level of membrane interaction. The peptide alone inhibited the proliferation of Caco-2 and A431 cells more efficiently than KR12:Hp-βCd (p < 0.001), but did not show significant cytotoxic effects via the dehydrogenase lactate assay. Both substances were effective in inhibiting the growth of odontopathogenic bacteria, as well as inhibiting Caco-2 epithelial cells. These observations highlight the potential antimicrobial and antiproliferative effects of KR12 peptide alone or associated with Hp-βCd.
Collapse
|