1
|
Şen Ö, Emanet M, Ciofani G. Nanotechnology-Based Strategies to Evaluate and Counteract Cancer Metastasis and Neoangiogenesis. Adv Healthc Mater 2021; 10:e2002163. [PMID: 33763992 PMCID: PMC7610913 DOI: 10.1002/adhm.202002163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/11/2021] [Indexed: 12/15/2022]
Abstract
Cancer metastasis is the major cause of cancer-related morbidity and mortality. It represents one of the greatest challenges in cancer therapy, both because of the ability of metastatic cells to spread into different organs, and because of the consequent heterogeneity that characterizes primary and metastatic tumors. Nanomaterials can potentially be used as targeting or detection agents owing to unique chemical and physical features that allow tailored and tunable theranostic functions. This review highlights nanomaterial-based approaches in the detection and treatment of cancer metastasis, with a special focus on the evaluation of nanostructure effects on cell migration, invasion, and angiogenesis in the tumor microenvironment.
Collapse
Affiliation(s)
- Özlem Şen
- Istituto Italiano di TecnologiaSmart Bio‐InterfacesViale Rinaldo Piaggio 34PontederaPisa56025Italy
| | - Melis Emanet
- Istituto Italiano di TecnologiaSmart Bio‐InterfacesViale Rinaldo Piaggio 34PontederaPisa56025Italy
- Sabanci University Nanotechnology Research and Application Center (SUNUM)Sabanci UniversityUniversite Caddesi 27‐1TuzlaIstanbul34956Turkey
| | - Gianni Ciofani
- Istituto Italiano di TecnologiaSmart Bio‐InterfacesViale Rinaldo Piaggio 34PontederaPisa56025Italy
| |
Collapse
|
2
|
Costa MP, Feitosa ACS, Oliveira FCE, Cavalcanti BC, Dias GG, Caetano EWS, Sales FAM, Freire VN, Di Fiore S, Fischer R, Ladeira LO, da Silva Júnior EN, Pessoa C. Encapsulation of nor-β-lapachone into poly(d,l)-lactide- co-glycolide (PLGA) microcapsules: full characterization, computational details and cytotoxic activity against human cancer cell lines. MEDCHEMCOMM 2017; 8:1993-2002. [PMID: 30108718 PMCID: PMC6071939 DOI: 10.1039/c7md00196g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 09/06/2017] [Indexed: 11/21/2022]
Abstract
In this work, we characterize nor-β-lapachone-loaded (NβL-loaded) microcapsules prepared using an emulsification/solvent extraction technique. Features such as surface morphology, particle size distribution, zeta potential, optical absorption, Raman and Fourier transform infrared spectra, thermal analysis data, drug encapsulation efficiency, drug release kinetics and in vitro cytotoxicity were studied. Spherical microcapsules with a size of 1.03 ± 0.46 μm were produced with an encapsulation efficiency of approximately 19%. Quantum DFT calculations were also performed to estimate typical interaction energies between a single nor-β-lapachone molecule and the surface of the microparticles. The NβL-loaded PLGA microcapsules exhibited a pronounced initial burst release. After the in vitro treatment with NβL-loaded microcapsules, a clear phagocytosis of the spheres was observed in a few minutes. The cytotoxic activity against a set of cancer cell lines was investigated.
Collapse
Affiliation(s)
- Marcília P Costa
- Pharmacy Course , Federal University of Piauí , 64049-550 Teresina , PI , Brazil
| | - Anderson C S Feitosa
- Department of Physiology and Pharmacology , Federal University of Ceará , 60430-270 Fortaleza , CE , Brazil .
| | - Fátima C E Oliveira
- Department of Physiology and Pharmacology , Federal University of Ceará , 60430-270 Fortaleza , CE , Brazil .
| | - Bruno C Cavalcanti
- Department of Physiology and Pharmacology , Federal University of Ceará , 60430-270 Fortaleza , CE , Brazil .
| | - Gleiston G Dias
- Institute of Exact Sciences , Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , 31270-901 , MG , Brazil . ; Tel: +55 31 34095720
| | - Ewerton W S Caetano
- Department of Secondary School and Teachers College , Federal Institute of Ceará , 60040-531 Fortaleza , CE , Brazil
- Federal Institute of Ceará , 63503-790 Iguatu , CE , Brazil
| | - Francisco A M Sales
- Department of Secondary School and Teachers College , Federal Institute of Ceará , 60040-531 Fortaleza , CE , Brazil
- Federal Institute of Ceará , 63503-790 Iguatu , CE , Brazil
| | - Valder N Freire
- Department of Physics , Federal University of Ceará , 60455-760 Fortaleza , CE , Brazil
| | - Stefano Di Fiore
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 , Aachen , Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME , 52074 , Aachen , Germany
- Institute for Molecular Biotechnology , RWTH Aachen University , 52074 Aachen , Germany
| | - Luiz O Ladeira
- Institute of Exact Sciences , Department of Physics , Federal University of Minas Gerais , Belo Horizonte , 31270-901 , MG , Brazil
| | - Eufrânio N da Silva Júnior
- Institute of Exact Sciences , Department of Chemistry , Federal University of Minas Gerais , Belo Horizonte , 31270-901 , MG , Brazil . ; Tel: +55 31 34095720
| | - Claudia Pessoa
- Department of Physiology and Pharmacology , Federal University of Ceará , 60430-270 Fortaleza , CE , Brazil .
- Oswaldo Cruz Foundation (Fiocruz) , 60180-900 Fortaleza , CE , Brazil
| |
Collapse
|
3
|
Zhuang J, Fang RH, Zhang L. Preparation of particulate polymeric therapeutics for medical applications. SMALL METHODS 2017; 1:1700147. [PMID: 30310860 PMCID: PMC6176868 DOI: 10.1002/smtd.201700147] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Particulate therapeutics fabricated from polymeric materials have become increasingly popular over the past several decades. Generally, polymeric systems are easy to synthesize and have tunable parameters, giving them significant potential for wide use in the clinic. They come in many different forms, including as nanoparticles, microparticles, and colloidal gels. In this review, we discuss the current preparation methods for each type of platform, as well as some representative applications. To achieve enhanced performance, lipid coatings and other surface modification techniques for introducing additional functionality are also mentioned. We hope that, by outlining the various methods and techniques for their preparation, it will be possible to provide insights into the utility of these polymeric platforms and further encourage their development for biomedical applications.
Collapse
Affiliation(s)
- Jia Zhuang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Ronnie H Fang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
4
|
Controlled Release of Nor-β-lapachone by PLGA Microparticles: A Strategy for Improving Cytotoxicity against Prostate Cancer Cells. Molecules 2016; 21:molecules21070873. [PMID: 27384551 PMCID: PMC6273703 DOI: 10.3390/molecules21070873] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/14/2016] [Accepted: 06/24/2016] [Indexed: 01/06/2023] Open
Abstract
Prostate cancer is one of the most common malignant tumors in males and it has become a major worldwide public health problem. This study characterizes the encapsulation of Nor-β-lapachone (NβL) in poly(d,l-lactide-co-glycolide) (PLGA) microcapsules and evaluates the cytotoxicity of the resulting drug-loaded system against metastatic prostate cancer cells. The microcapsules presented appropriate morphological features and the presence of drug molecules in the microcapsules was confirmed by different methods. Spherical microcapsules with a size range of 1.03 ± 0.46 μm were produced with an encapsulation efficiency of approximately 19%. Classical molecular dynamics calculations provided an estimate of the typical adsorption energies of NβL on PLGA. Finally, the cytotoxic activity of NβL against PC3M human prostate cancer cells was demonstrated to be significantly enhanced when delivered by PLGA microcapsules in comparison with the free drug.
Collapse
|
5
|
Drug encapsulated polymeric microspheres for intracranial tumor therapy: A review of the literature. Adv Drug Deliv Rev 2015; 91:23-37. [PMID: 25895620 DOI: 10.1016/j.addr.2015.04.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 12/13/2022]
Abstract
Despite intensive surgical excision, radiation therapy, and chemotherapy, the current life expectancy for patients diagnosed with glioblastoma multiforme is only 12 to 15months. One of the approaches being explored to increase chemotherapeutic efficacy is to locally deliver chemotherapeutics encapsulated within degradable, polymeric microspheres. This review describes the techniques used to formulate drug encapsulated microspheres targeted for intracranial tumor therapy and how microsphere characteristics such as drug loading and encapsulation efficiency can be tuned based on formulation parameters. Further, the results of in vitro studies are discussed, detailing the varied drug release profiles obtained and validation of drug efficacy. Finally, in vivo results are summarized, highlighting the study design and the effectiveness of the drug encapsulated microspheres applied intracranially.
Collapse
|
6
|
Buchy E, Valetti S, Mura S, Mougin J, Troufflard C, Couvreur P, Desmaële D. Synthesis and Cytotoxic Activity of Self-Assembling Squalene Conjugates of 3-[(Pyrrol-2-yl)methylidene]-2,3-dihydro-1H-indol-2-one Anticancer Agents. European J Org Chem 2014. [DOI: 10.1002/ejoc.201403088] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Rao N V, Dinda H, Venu P, Sarma JD, Shunmugam R. Smart nanocarrier from norbornene based triblock copolymers for the sustained release of multi-cancer drugs. RSC Adv 2014. [DOI: 10.1039/c4ra07549h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
8
|
Abstract
STUDY DESIGN C6 glioma cells and an intramedullary spinal cord tumor model were used to evaluate the effect of bevacizumab (Avastin) or temozolomide (TMZ). OBJECTIVE In this study, we hypothesized that treatment with bevacizumab accelerates the therapeutic effect of TMZ on intramedullary gliomas in an animal model. SUMMARY OF BACKGROUND DATA Recently therapies for the management of intramedullary malignant gliomas include surgery, chemotherapy, and radiotherapy. Concurrent or adjuvant TMZ has been considered an emerging new treatment for intramedullary malignant gliomas; however, high-dose application of TMZ has limitation of side effect. METHODS C6 glioma cells were injected into the T5 level of the spinal cord, and TMZ and bevacizumab were administered 5 days after C6 inoculation (n = 7 for each group). Tumor size was analyzed using histology and magnetic resonance imaging at 13 days after tumor inoculation. RESULTS Histological analyses and magnetic resonance imaging findings showed that combined treatment with TMZ and bevacizumab reduced tumor mass. The tumor volume of control group was 2.8-fold higher than combined therapy (P < 0.05). Neurological outcomes demonstrated that combined therapy improved hind limb function more than TMZ-alone group or control group (P < 0.05). CONCLUSION This study shows that bevacizumab could be useful in combination with TMZ to increase the therapeutic benefits of TMZ for intramedullary spinal cord tumors. LEVEL OF EVIDENCE N/A.
Collapse
|
9
|
Li XQ, Ouyang ZG, Zhang SH, Liu H, Shang Y, Li Y, Zhen YS. Synergistic inhibition of angiogenesis and glioma cell-induced angiogenesis by the combination of temozolomide and enediyne antibiotic lidamycin. Cancer Biol Ther 2014; 15:398-408. [PMID: 24424202 DOI: 10.4161/cbt.27626] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Present work mainly evaluated the inhibitory effects of lidamycin (LDM), an enediyne antibiotic, on angiogenesis or glioma-induced angiogenesis in vitro and in vivo, especially its synergistic anti-angiogenesis with temozolomide (TMZ). LDM alone efficiently inhibited proliferations and induced apoptosis of rat brain microvessel endothelial cells (rBMEC). LDM also interrupted the tube formation of rat brain microvessel endothelial cells (rBMEC) and rat aortic ring spreading. The blockade of rBMEC invasion and C6 cell-induced rBMEC migration by LDM was associated with decrease of VEGF secretion in a co-culture system. TMZ dramatically potentiated the effects of LDM on anti-proliferation, apoptosis induction, and synergistically inhibited angiogenesis events. As determined by western blot and ELISA, the interaction of tumor cells and the rBMEC was markedly interrupted by LDM plus TMZ with synergistic regulations of VEGF induced angiogenesis signal pathway, tumor cell invasion/migration, and apoptosis signal pathway. Immunofluorohistochemistry of CD31 and VEGF showed that LDM plus TMZ resulted in synergistic decrease of microvessel density (MVD) and VEGF expression in human glioma U87 cell subcutaneous xenograft. This study indicates that the high efficacy of LDM and the synergistic effects of LDM plus TMZ against glioma are mediated, at least in part, by the potentiated anti-angiogenesis.
Collapse
Affiliation(s)
- Xing-Qi Li
- College of Life Science & Technology; Heilongjiang Bayi Agricultural University; Daqing, PR China; Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing, PR China
| | - Zhi-Gang Ouyang
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing, PR China
| | - Sheng-Hua Zhang
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing, PR China
| | - Hong Liu
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing, PR China
| | - Yue Shang
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing, PR China
| | - Yi Li
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing, PR China
| | - Yong-Su Zhen
- Institute of Medicinal Biotechnology; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing, PR China
| |
Collapse
|
10
|
Caron J, Maksimenko A, Mougin J, Couvreur P, Desmaële D. Combined antitumoral therapy with nanoassemblies of bolaform polyisoprenoyl paclitaxel/gemcitabine prodrugs. Polym Chem 2014. [DOI: 10.1039/c3py01177a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
11
|
Dilnawaz F, Sahoo SK. Enhanced accumulation of curcumin and temozolomide loaded magnetic nanoparticles executes profound cytotoxic effect in glioblastoma spheroid model. Eur J Pharm Biopharm 2013; 85:452-62. [PMID: 23891772 DOI: 10.1016/j.ejpb.2013.07.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 07/16/2013] [Accepted: 07/17/2013] [Indexed: 12/26/2022]
Abstract
Glioblastomas (GBMs) are highly lethal primary brain tumours. Treatment of these malignant gliomas remains ineffective as these are extremely resistant to chemotherapeutic applications. Furthermore, combination therapy for cancer treatment is becoming more popular because it generates synergistic anticancer effects, by reducing individual drug-related toxicity and associated side effects. Currently, magnetic nanoparticles (MNPs) based drug delivery system has attracted much more attention owing to its intrinsic magnetic properties and drug loading capacity. In the present study, MNPs based drug delivery approach for co-delivering of potent chemotherapeutic drugs such as Curcumin (herbal drug) and Temozolomide (DNA methylating agent) has been implemented. The dual drug loaded MNPs formulations were evaluated in two-dimensional (2-D) monolayer culture and three-dimensional (3-D) tumour spheroid culture of T-98G cells for understanding the therapeutic discrepancy. The dual drug loaded MNPs formulations demonstrated higher cytotoxic effect than single drug loaded MNPs formulations as compared to their corresponding native drugs in 2-D and 3-D culture. The combination index (CI) analysis revealed synergistic mode of action of dual drug loaded MNPs formulations, which was further confirmed by cell death induction assay mediated by acridine orange (AO)/propidium iodide (PI) staining, illustrating higher efficacy of the formulation towards GBM therapy.
Collapse
Affiliation(s)
- Fahima Dilnawaz
- Laboratory of Nanomedicine, Institute of Life Sciences, Bhubaneswar, India
| | | |
Collapse
|
12
|
Allhenn D, Boushehri MAS, Lamprecht A. Drug delivery strategies for the treatment of malignant gliomas. Int J Pharm 2012; 436:299-310. [PMID: 22721856 DOI: 10.1016/j.ijpharm.2012.06.025] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Revised: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 01/07/2023]
Abstract
As primary brain tumors, malignant gliomas are known to be one of the most insidious types of brain cancer afflicting the humans. The current standard strategy for the treatment of malignant gliomas includes the surgical resection of the tumor when possible, followed by a combination of radiotherapy and/or a certain chemotherapeutic protocol. However, due to the short mean survival, frequent recurrences, and poor prognosis associated with the tumors, new therapeutic strategies are investigated consecutively. These novel drug delivery approaches can be subdivided as systemic and local drug administration. This review focuses on localized drug delivery strategies for the treatment of malignant gliomas, including the injections, infusions, trans-nasal delivery systems, convection enhanced delivery (CED) systems, and various types of polymeric implants. Furthermore, systemic strategies to increase the drug penetration into the brain, such as temporary disruption of the blood brain barrier (BBB), chemical modification of the available therapeutic substances, and utilization of endogenous transport systems will be briefly discussed.
Collapse
Affiliation(s)
- Daniela Allhenn
- Department of Pharm. Technology, Institute of Pharmacy, University of Bonn, Germany.
| | | | | |
Collapse
|
13
|
Ling Y, Wei K, Zou F, Zhong S. Temozolomide loaded PLGA-based superparamagnetic nanoparticles for magnetic resonance imaging and treatment of malignant glioma. Int J Pharm 2012; 430:266-75. [PMID: 22486964 DOI: 10.1016/j.ijpharm.2012.03.047] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 02/29/2012] [Accepted: 03/25/2012] [Indexed: 12/12/2022]
Abstract
Polysorbate 80 coated temozolomide-loaded PLGA-based superparamagnetic nanoparticles (P80-TMZ/SPIO-NPs) were successfully synthesized and characterized as drug carriers and diagnosis agent for malignant brain glioma. The mean size of P80-TMZ/SPIO-NPs was 220 nm with narrow hydrodynamic particle size distribution. The superparamagnetic characteristic of P80-TMZ/SPIO-NPs was proved by vibration simple magnetometer. P80-TMZ/SPIO-NPs exhibited high drug loading and encapsulation efficiency as well as good sustained drug release performance for 15 days. MTT assay demonstrated the antiproliferative effect of P80-TMZ/SPIO-NPs for C6 glioma cells. Significant cellular uptake of P80-TMZ/SPIO-NPs was evaluated in C6 glioma cells by fluorescence microscopy, Prussian blue staining, and atomic absorption spectrophotometer (AAS) for qualitative and quantitative study, respectively. MRI scanning analyses in vitro indicated that P80-TMZ/SPIO-NPs could be used as a good MRI contrast agent. Polysorbate 80 coated temozolomide-loaded PLGA-based superparamagnetic nanoparticles could be able to promise a multifunctional theragnostic carrier of brain cancer.
Collapse
Affiliation(s)
- You Ling
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
| | | | | | | |
Collapse
|
14
|
Zhang D, Tian A, Xue X, Wang M, Qiu B, Wu A. The effect of temozolomide/poly(lactide-co-glycolide) (PLGA)/nano-hydroxyapatite microspheres on glioma U87 cells behavior. Int J Mol Sci 2012; 13:1109-1125. [PMID: 22312307 PMCID: PMC3269741 DOI: 10.3390/ijms13011109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/20/2011] [Accepted: 01/11/2012] [Indexed: 01/29/2023] Open
Abstract
In this study, we investigated the effects of temozolomide (TMZ)/Poly (lactide-co-glycolide)(PLGA)/nano-hydroxyapatite microspheres on the behavior of U87 glioma cells. The microspheres were fabricated by the “Solid/Water/Oil” method, and they were characterized by using X-Ray diffraction, scanning electron microscopy and differential scanning calorimetry. The proliferation, apoptosis and invasion of glioma cells were evaluated by MTT, flow cytometry assay and Transwell assay. The presence of the key invasive gene, αVβ3 integrin, was detected by the RT-PCR and Western blot method. It was found that the temozolomide/PLGA/nano-hydroxyapatite microspheres have a significantly diminished initial burst of drug release, compared to the TMZ laden PLGA microspheres. Our results suggest they can significantly inhibit the proliferation and invasion of glioma cells, and induce their apoptosis. Additionally, αVβ3 integrin was also reduced by the microspheres. These data suggest that by inhibiting the biological behavior of glioma cells in vitro, the newly designed temozolomide/PLGA/nano-hydroxyapatite microspheres, as controlled drug release carriers, have promising potential in treating glioma.
Collapse
Affiliation(s)
- Dongyong Zhang
- Departments of Neurosurgery, The First Affiliated Hospital of China Medical University, 155 Nanjingbei Street, Heping District, Shenyang 110001, China; E-Mails: (D.Z.); (B.Q.)
| | - Ang Tian
- School of Materials and Metallurgy, Northeastern University, No.11, Lane 3, WenHua Road, HePing District, Shenyang 110819, China; E-Mails: (A.T.); (M.W.)
| | - Xiangxin Xue
- School of Materials and Metallurgy, Northeastern University, No.11, Lane 3, WenHua Road, HePing District, Shenyang 110819, China; E-Mails: (A.T.); (M.W.)
- Authors to whom correspondence should be addressed; E-Mails: (X.X.); (A.W.); Tel.: +86-0-24-83687371 (X.X.); +86-0-24-23517484 (A.W.); Fax: +86-0-24-23906316 (X.X.); +86-0-24-83283301 (A.W.)
| | - Mei Wang
- School of Materials and Metallurgy, Northeastern University, No.11, Lane 3, WenHua Road, HePing District, Shenyang 110819, China; E-Mails: (A.T.); (M.W.)
| | - Bo Qiu
- Departments of Neurosurgery, The First Affiliated Hospital of China Medical University, 155 Nanjingbei Street, Heping District, Shenyang 110001, China; E-Mails: (D.Z.); (B.Q.)
| | - Anhua Wu
- Departments of Neurosurgery, The First Affiliated Hospital of China Medical University, 155 Nanjingbei Street, Heping District, Shenyang 110001, China; E-Mails: (D.Z.); (B.Q.)
- Authors to whom correspondence should be addressed; E-Mails: (X.X.); (A.W.); Tel.: +86-0-24-83687371 (X.X.); +86-0-24-23517484 (A.W.); Fax: +86-0-24-23906316 (X.X.); +86-0-24-83283301 (A.W.)
| |
Collapse
|