1
|
Implants as Targeted Drug Delivery Systems (Review). Pharm Chem J 2022. [DOI: 10.1007/s11094-022-02649-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
2
|
Júlio A, Sultane A, Viana AS, Mota JP, Santos de Almeida T. Biobased Ionic Liquids as Multitalented Materials in Lipidic Drug Implants. Pharmaceutics 2021; 13:pharmaceutics13081163. [PMID: 34452124 PMCID: PMC8401770 DOI: 10.3390/pharmaceutics13081163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Lipidic implants are valuable controlled delivery systems that present good biocompatibility and are useful for long-lasting therapies. However, these promising systems can present inflexible drug release profiles that limit their performance. Thus, finding new materials to overcome this drawback is crucial. Herein, lipidic implants containing caffeine and poorly soluble salicylic acid and rutin were developed. The inclusion of Gelucire® 50/02, sucrose, and two biobased ionic liquids, [Cho][Phe] and [Cho][Glu], were evaluated as a mean to improve the performance of the systems. The formulation procedure, dye content distribution, drug content, drug release, water content, and lipidic erosion of the developed systems were assessed. AFM analysis of the implants containing ILs was also performed. The results demonstrated that neither Gelucire® 50/02 nor sucrose were suitable tools to improve the drug release profile. In contrast, the ILs proved to be promising materials for multiple reasons; not only did they facilitate the formulation and incorporation of the studied drugs into the implants, but they also allowed a more suitable release profile, with [Cho][Glu] allowing a higher drug release due to its ability to increase surface wrinkling. Hence, this study showcases ILs as multitalented materials in lipid-based drug implants.
Collapse
Affiliation(s)
- Ana Júlio
- CBIOS-Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.J.); (A.S.); (J.P.M.)
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Anaisa Sultane
- CBIOS-Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.J.); (A.S.); (J.P.M.)
| | - Ana Silveira Viana
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
| | - Joana Portugal Mota
- CBIOS-Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.J.); (A.S.); (J.P.M.)
| | - Tânia Santos de Almeida
- CBIOS-Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (A.J.); (A.S.); (J.P.M.)
- Centro de Química Estrutural, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal;
- Correspondence: ; Tel.: +351-217-515-500
| |
Collapse
|
3
|
Liquid Lipids Act as Polymorphic Modifiers of Tristearin-Based Formulations Produced by Melting Technologies. Pharmaceutics 2021; 13:pharmaceutics13071089. [PMID: 34371779 PMCID: PMC8308959 DOI: 10.3390/pharmaceutics13071089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/27/2022] Open
Abstract
Despite the growing interest in lipid-based formulations, their polymorphism is still a challenge in the pharmaceutical industry. Understanding and controlling the polymorphic behavior of lipids is a key element for achieving the quality and preventing stability issues. This study aims to evaluate the impact of different oral-approved liquid lipids (LL) on the polymorphism, phase transitions and structure of solid lipid-based formulations and explore their influence on drug release. The LL investigated were isopropyl myristate, ethyl oleate, oleic acid, medium chain trigycerides, vitamin E acetate, glyceryl monooleate, lecithin and sorbitane monooleate. Spray-congealing was selected as an example of a melting-based solvent-free manufacturing method to produce microparticles (MPs) of tristearin (Dynasan®118). During the production process, tristearin MPs crystallized in the metastable α-form. Stability studied evidenced a slow phase transition to the stable β-polymorph overtime, with the presence of the α-form still detected after 60 days of storage at 25 °C. The addition of 10% w/w of LL promoted the transition of tristearin from the α-form to the stable β-form with a kinetic varying from few minutes to days, depending on the specific LL. The combination of various techniques (DSC, X-ray diffraction analysis, Hot-stage polarized light microscopy, SEM) showed that the addition of LL significantly modified the crystal structure of tristearin-based formulations at different length scales. Both the polymorphic form and the LL addition had a strong influence on the release behavior of a model hydrophilic drug (caffeine). Overall, the addition of LL can be considered an interesting approach to control triglyceride crystallization in the β-form. From the industrial viewpoint, this approach might be advantageous as any polymorphic change will be complete before storage, hence enabling the production of stable lipid formulations.
Collapse
|
4
|
Rahnfeld L, Luciani P. Injectable Lipid-Based Depot Formulations: Where Do We Stand? Pharmaceutics 2020; 12:E567. [PMID: 32575406 PMCID: PMC7356974 DOI: 10.3390/pharmaceutics12060567] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 01/18/2023] Open
Abstract
The remarkable number of new molecular entities approved per year as parenteral drugs, such as biologics and complex active pharmaceutical ingredients, calls for innovative and tunable drug delivery systems. Besides making these classes of drugs available in the body, injectable depot formulations offer the unique advantage in the parenteral world of reducing the number of required injections, thus increasing effectiveness as well as patient compliance. To date, a plethora of excipients has been proposed to formulate depot systems, and among those, lipids stand out due to their unique biocompatibility properties and safety profile. Looking at the several long-acting drug delivery systems based on lipids designed so far, a legitimate question may arise: How far away are we from an ideal depot formulation? Here, we review sustained release lipid-based platforms developed in the last 5 years, namely oil-based solutions, liposomal systems, in situ forming systems, solid particles, and implants, and we critically discuss the requirements for an ideal depot formulation with respect to the used excipients, biocompatibility, and the challenges presented by the manufacturing process. Finally, we delve into lights and shadows originating from the current setups of in vitro release assays developed with the aim of assessing the translational potential of depot injectables.
Collapse
Affiliation(s)
| | - Paola Luciani
- Pharmaceutical Technology Research Group, Department of Chemistry and Biochemistry, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland;
| |
Collapse
|
5
|
Salar-Behzadi S, Corzo C, Gomes Lopes D, Meindl C, Lochmann D, Reyer S. Novel approach for overcoming the stability challenges of lipid-based excipients. Part 2: Application of polyglycerol esters of fatty acids as hot melt coating excipients. Eur J Pharm Biopharm 2020; 148:107-117. [PMID: 31982575 DOI: 10.1016/j.ejpb.2020.01.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 01/14/2020] [Accepted: 01/20/2020] [Indexed: 11/16/2022]
Abstract
The application of hot melt coating (HMC) as an economic and solvent-free technology is restricted in pharmaceutical development, due to the instable solid-state of HMC excipients resulting in drug release instability. We have previously introduced polyglycerol esters of fatty acids (PGFAs) with stable solid-state (Part 1). In this work we showed a novel application of PGFAs as HMC excipients with stable performance. Three PGFA compounds with a HLB range of 5.1-6.2 were selected for developing immediate-release formulations. The HMC properties were investigated. The viscosity of molten lipids at 100 °C was suitable for atomizing. The DSC data showed the absence of low solidification fractions, thus reduced risk of agglomeration during the coating process. The driving force for crystallization of selected compounds was lower and the heat flow exotherms were broader compared to conventional HMC formulations, indicating a lower energy barrier for nucleation and lower crystallization rate. Lower spray rates and a process temperature close to solidification temperature were desired to provide homogeneous coating. DSC and X-ray diffraction data revealed stable solid state during 6 months storage at 40 °C. API release was directly proportional to HLB and indirectly proportional to crystalline network density and was stable during investigated 3 months. Cytotoxicity was assessed by dehydrogenase activity and no in vitro cytotoxic effect was observed.
Collapse
Affiliation(s)
- Sharareh Salar-Behzadi
- Research Center for Pharmaceutical Engineering GmbH, Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria.
| | - Carolina Corzo
- Research Center for Pharmaceutical Engineering GmbH, Graz, Austria; Institute of Pharmaceutical Sciences, Department of Pharmaceutical Technology, University of Graz, Graz, Austria
| | | | - Claudia Meindl
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | | | | |
Collapse
|
6
|
Mohtashami Z, Esmaili Z, Vakilinezhad MA, Seyedjafari E, Akbari Javar H. Pharmaceutical implants: classification, limitations and therapeutic applications. Pharm Dev Technol 2019; 25:116-132. [DOI: 10.1080/10837450.2019.1682607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zahra Mohtashami
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Esmaili
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Hamid Akbari Javar
- Pharmaceutics Department, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Vasvári G, Haimhoffer Á, Horváth L, Budai I, Trencsényi G, Béresová M, Dobó-Nagy C, Váradi J, Bácskay I, Ujhelyi Z, Fehér P, Sinka D, Vecsernyés M, Fenyvesi F. Development and Characterisation of Gastroretentive Solid Dosage Form Based on Melt Foaming. AAPS PharmSciTech 2019; 20:290. [PMID: 31428895 PMCID: PMC6700043 DOI: 10.1208/s12249-019-1500-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/01/2019] [Indexed: 11/30/2022] Open
Abstract
Dosage forms with increased gastric residence time are promising tools to increase bioavailability of drugs with narrow absorption window. Low-density floating formulations could avoid gastric emptying; therefore, sustained drug release can be achieved. Our aim was to develop a new technology to produce low-density floating formulations by melt foaming. Excipients were selected carefully, with the criteria of low gastric irritation, melting range below 70°C and well-known use in oral drug formulations. PEG 4000, Labrasol and stearic acid type 50 were used to create metronidazole dispersion which was foamed by air on atmospheric pressure using in-house developed apparatus at 53°C. Stearic acid was necessary to improve the foamability of the molten dispersion. Additionally, it reduced matrix erosion, thus prolonging drug dissolution and preserving hardness of the moulded foam. Labrasol as a liquid solubiliser can be used to increase drug release rate and drug solubility. Based on the SEM images, metronidazole in the molten foam remained in crystalline form. MicroCT scans with the electron microscopic images revealed that the foam has a closed-cell structure, where spherical voids have smooth inner wall, they are randomly dispersed, while adjacent voids often interconnected with each other. Drug release from all compositions followed Korsmeyer-Peppas kinetic model. Erosion of the matrix was the main mechanism of the release of metronidazole. Texture analysis confirmed that stearic acid plays a key role in preserving the integrity of the matrix during dissolution in acidic buffer. The technology creates low density and solid matrix system with micronsized air-filled voids.
Collapse
|
8
|
Abstract
Most of published reviews of twin-screw extrusion focused on its application for enhancing the bioavailability of amorphous solid dispersions while few of them focused on its use for manufacturing sustained-release oral dosage forms and medical implants, despite the considerable interest and success this process has garnered both in academia and in the pharmaceutical industry. Compared to conventional batch processing, twin-screw extrusion offers the advantages of continuous processing and the ability to prepare oral dosage forms and medical implants that have unique physicochemical and drug release attributes. This review provides an in-depth analysis of the formulation composition and processing conditions of twin-screw extrusion and how these factors affect the drug release properties of sustained-release dosage forms. This review also illustrates the unique advantages of this process by presenting case studies of a wide variety of commercial sustained-release products manufactured using twin-screw extrusion.
Collapse
|
9
|
Salar-Behzadi S, Corzo C, Schaden L, Laggner P, Zimmer A. Correlation between the solid state of lipid coating and release profile of API from hot melt coated microcapsules. Int J Pharm 2019; 565:569-578. [DOI: 10.1016/j.ijpharm.2019.05.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 01/25/2023]
|
10
|
Duque L, Körber M, Bodmeier R. Impact of change of matrix crystallinity and polymorphism on ovalbumin release from lipid-based implants. Eur J Pharm Sci 2018; 117:128-137. [PMID: 29452211 DOI: 10.1016/j.ejps.2018.02.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/29/2018] [Accepted: 02/12/2018] [Indexed: 11/28/2022]
Abstract
The objectives of this study were to prepare lipid-based implants by hot melt extrusion (HME) for the prolonged release of ovalbumin (OVA), and to relate protein release to crystallinity and polymorphic changes of the lipid matrix. Two lipids, glycerol tristearate and hydrogenated palm oil, with different composition and degree of crystallinity were studied. Solid OVA was dispersed within the lipid matrixes, which preserved its stability during extrusion. This was partially attributed to a protective effect of the lipidic matrix. The incorporation of OVA decreased the mechanical strength of the implants prepared with the more crystalline matrix, glycerol tristearate, whereas it remained comparable for the hydrogenated palm oil because of stronger physical and non-covalent interactions between the protein and this lipid. This was also the reason for the faster release of OVA from the glycerol tristearate matrix when compared to the hydrogenated palm oil (8 vs. 28 weeks). Curing induced and increased crystallinity, and changes in the release rate, especially for the more crystalline matrix. In this case, both an increase and a decrease in release, were observed depending on the tempering condition. Curing at higher temperatures induced a melt-mediated crystallization and solid state transformation of the glycerol tristearate matrix and led to rearrangements of the inner structure with the formation of larger pores, which accelerated the release. In contrast, changes in the hydrogenated palm oil under the same curing conditions were less noticeable leading to a more robust formulation, because of less polymorphic changes over time. This study helps to understand the effect of lipid matrix composition and crystallinity degree on the performance of protein-loaded implants, and to establish criteria for the selection of a lipid carrier depending on the release profile desired.
Collapse
Affiliation(s)
- Luisa Duque
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169 Berlin, Germany
| | - Martin Körber
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169 Berlin, Germany; Pensatech Pharma GmbH, Kelchstrasse 31, 12169 Berlin, Germany
| | - Roland Bodmeier
- College of Pharmacy, Freie Universität Berlin, Kelchstrasse 31, 12169 Berlin, Germany.
| |
Collapse
|
11
|
Twin-screw extruded lipid implants containing TRP2 peptide for tumour therapy. Eur J Pharm Biopharm 2017; 114:79-87. [DOI: 10.1016/j.ejpb.2016.12.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 12/07/2016] [Accepted: 12/12/2016] [Indexed: 01/10/2023]
|
12
|
Wang LH, Shang L, Shan DY, Che X. Long-term floating control-released intravesical preparation of 5-fluorouracil for the local treatment of bladder cancer. Drug Dev Ind Pharm 2017; 43:1343-1350. [PMID: 28402146 DOI: 10.1080/03639045.2017.1318898] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Li Hong Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Lei Shang
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang, PR China
| | - Dong Yuan Shan
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, PR China
| | - Xin Che
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, PR China
| |
Collapse
|
13
|
Role of Lipid Blooming and Crystallite Size in the Performance of Highly Soluble Drug-Loaded Microcapsules. J Pharm Sci 2015; 104:4257-4265. [DOI: 10.1002/jps.24660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 08/19/2015] [Accepted: 08/31/2015] [Indexed: 11/07/2022]
|
14
|
Even MP, Bobbala S, Kooi KL, Hook S, Winter G, Engert J. Impact of implant composition of twin-screw extruded lipid implants on the release behavior. Int J Pharm 2015; 493:102-10. [DOI: 10.1016/j.ijpharm.2015.06.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 06/24/2015] [Accepted: 06/25/2015] [Indexed: 12/16/2022]
|
15
|
Saadat E, Abdollahi A, Dorkoosh FA. Fabrication and Characterization of Risperidone Implants as an Extended Antipsychotic Delivery System, Exploring the Role of Excipients. J Pharm Innov 2015. [DOI: 10.1007/s12247-015-9212-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
16
|
Engert J. Implants as Sustained Release Delivery Devices for Vaccine Antigens. ADVANCES IN DELIVERY SCIENCE AND TECHNOLOGY 2015. [DOI: 10.1007/978-1-4939-1417-3_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
17
|
Rosiaux Y, Jannin V, Hughes S, Marchaud D. Solid lipid excipients — Matrix agents for sustained drug delivery. J Control Release 2014; 188:18-30. [DOI: 10.1016/j.jconrel.2014.06.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
|
18
|
Velghe C, Rosiaux Y, Marchaud D, Siepmann J, Siepmann F. In silico simulation of niacin release from lipid tablets: Theoretical predictions and independent experiments. J Control Release 2014; 175:63-71. [DOI: 10.1016/j.jconrel.2013.12.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/06/2013] [Accepted: 12/14/2013] [Indexed: 10/25/2022]
|
19
|
Haupt M, Thommes M, Heidenreich A, Breitkreutz J. Lipid-based intravesical drug delivery systems with controlled release of trospium chloride for the urinary bladder. J Control Release 2013; 170:161-6. [PMID: 23732944 DOI: 10.1016/j.jconrel.2013.05.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2012] [Revised: 05/02/2013] [Accepted: 05/23/2013] [Indexed: 12/22/2022]
Abstract
The overactive bladder (OAB) is a common disease with an overactivity of the detrusor muscle in the bladder wall. Besides peroral administration of anticholinergic drugs and bladder irrigations, there is a need for a sustained release formulation in the urinary bladder. In order to realise a local long-term treatment of the overactive urinary bladder, lipidic drug delivery systems were prepared. Requirements for an intravesical application are a long-term controlled release of trospium chloride, a high drug loading and small sized drug carriers to permit an insertion through the urethra into the urinary bladder. The drug delivery systems were manufactured by using compression (mini-tablets), solid lipid extrusion (extrudates) and a melting and casting technique (mini-moulds) with different amounts of trospium chloride and glyceryl tristearate as matrix former. Drug release depended on the drug loading and the preparation method. Mini-tablets and lipidic extrudates showed a drug release over five days, whereas that from mini-moulds was negligibly small. The appearance of polymorphic transformations during processing and storage was investigated by using differential scanning calorimetry and X-ray diffraction. In contrast to mini-tablets and mini-moulds, lipidic extrudates showed no polymorphic transformations. In summary, lipids are suitable matrix formers for a highly water-soluble drug, like trospium chloride. Despite a drug loading of up to 30%, it was feasible to achieve a drug release ranging from several days up to weeks. In addition, small dosage forms with a size of only a few millimetres were realised. Therefore, an insertion and excretion through the urethra is possible and the requirements for an intravesical application are fulfilled.
Collapse
Affiliation(s)
- M Haupt
- Department of Urology, RWTH University Aachen, Pauwelsstrasse 30, 52074 Aachen, Germany.
| | | | | | | |
Collapse
|
20
|
Impact of the experimental conditions on drug release from parenteral depot systems: From negligible to significant. Int J Pharm 2012; 432:11-22. [DOI: 10.1016/j.ijpharm.2012.04.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/11/2012] [Accepted: 04/21/2012] [Indexed: 11/24/2022]
|
21
|
Dufresne MH, Marouf E, Kränzlin Y, Gauthier MA, Leroux JC. Lipase is essential for the study of in vitro release kinetics from organogels. Mol Pharm 2012; 9:1803-11. [PMID: 22510056 DOI: 10.1021/mp3001099] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In vitro drug release studies remain indispensable in the development of drug delivery systems, even if correlations between in vitro and in vivo results are often imperfect. In this work, an improved in vitro analysis method for studying in situ-forming lipid-based implants was developed. More specifically, lipase was found to be an essential additive for evidencing differences in drug release kinetics from organogels of different amino acid-based organogelators, organogelator concentrations, drug loadings, and volumes. Lipases are thought to participate in the degradation of and release from amino acid-based organogel implants in vivo. Our experimental conditions allowed for the rapid and reliable screening of in vitro parameters that may be optimized to slow or accelerate drug release, once preliminary in vivo data are available.
Collapse
Affiliation(s)
- Marie-Hélène Dufresne
- Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology Zürich (ETHZ), Wolfgang-Pauli Str. 10, 8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
22
|
Kreye F, Hamm G, Karrout Y, Legouffe R, Bonnel D, Siepmann F, Siepmann J. MALDI-TOF MS imaging of controlled release implants. J Control Release 2012; 161:98-108. [PMID: 22551600 DOI: 10.1016/j.jconrel.2012.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/07/2012] [Accepted: 04/10/2012] [Indexed: 11/27/2022]
Abstract
MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry) imaging is used to characterize novel lipid implants allowing for controlled drug delivery. Importantly, this innovative technique provides crucial information on the inner structure of the implants before and after exposure to the release medium and does not require the addition of marker substances. Implants were prepared by extrusion at room temperature. Thus, in contrast to hot-melt extruded systems, the risks of drug inactivation and solid state transformations of the lipid matrix former are reduced. Hydrogenated/hardened soybean oil and glyceryl tristearate were studied as lipids and propranolol hydrochloride and theophylline as drugs, exhibiting significantly different solubility in water. The implants were also characterized by optical microscopy, differential scanning calorimetry, water uptake and lipid erosion studies, mathematical modeling as well as in vitro drug release measurements. Importantly, broad spectra of drug release patterns with release periods ranging from a few days up to several months could easily be provided when varying the initial drug content and type of lipid, irrespective of the type of drug. The diameter of the implants can be as small as 1mm, facilitating injection. MALDI-TOF MS imaging revealed homogeneous macroscopic drug distributions within the systems, but steep drug concentration gradients in radial and axial direction at the lower micrometer level, indicating drug- and lipid-rich domains. As the implants do not significantly swell, local irritation upon administration due to mechanical stress can be expected to be limited. Good agreement between experimentally measured and theoretically calculated drug release kinetics revealed that diffusional mass transport plays a major role for the control of drug release from this type of advanced drug delivery systems.
Collapse
Affiliation(s)
- F Kreye
- College of Pharmacy, University of Lille, 3 Rue du Prof. Laguesse, 59006 Lille, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Güres S, Siepmann F, Siepmann J, Kleinebudde P. Drug release from extruded solid lipid matrices: Theoretical predictions and independent experiments. Eur J Pharm Biopharm 2012; 80:122-9. [DOI: 10.1016/j.ejpb.2011.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 09/28/2011] [Accepted: 10/03/2011] [Indexed: 11/28/2022]
|
24
|
Siepmann J, Siepmann F. Modeling of diffusion controlled drug delivery. J Control Release 2011; 161:351-62. [PMID: 22019555 DOI: 10.1016/j.jconrel.2011.10.006] [Citation(s) in RCA: 534] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/04/2011] [Accepted: 10/06/2011] [Indexed: 11/17/2022]
Abstract
Mathematical modeling of drug release can be very helpful to speed up product development and to better understand the mechanisms controlling drug release from advanced delivery systems. Ideally, in silico simulations can quantitatively predict the impact of formulation and processing parameters on the resulting drug release kinetics. The aim of this article is to give an overview on the current state of the art of modeling drug release from delivery systems, which are predominantly controlled by diffusional mass transport. The inner structure of the device, the ratio "initial drug concentration:drug solubility" as well as the device geometry determine which type of mathematical equation must be applied. A straightforward "road map" is given, explaining how to identify the appropriate equation for a particular type of drug delivery system. The respective equations for a broad range of devices are indicated, including reservoir and matrix systems, exhibiting or not an initial excess of drug and the geometry of slabs, spheres and cylinders. The assumptions the models are based on as well as their limitations are pointed out. Practical examples illustrate the usefulness of mathematical modeling of diffusion controlled drug delivery. Due to the advances in information technology the importance of in silico optimization of advanced drug delivery systems can be expected to significantly increase in the future.
Collapse
Affiliation(s)
- Juergen Siepmann
- University of Lille, College of Pharmacy, 3 Rue du Prof. Laguesse, 59006 Lille, France.
| | | |
Collapse
|
25
|
Mathematical modeling of drug release from lipid dosage forms. Int J Pharm 2011; 418:42-53. [DOI: 10.1016/j.ijpharm.2011.07.015] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 11/22/2022]
|