1
|
Parekh PY, Patel VI, Khimani MR, Bahadur P. Self-assembly of bile salts and their mixed aggregates as building blocks for smart aggregates. Adv Colloid Interface Sci 2023; 312:102846. [PMID: 36736167 DOI: 10.1016/j.cis.2023.102846] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/11/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023]
Abstract
The present communication offers a comprehensive overview of the self-assembly of bile salts emphasizing their mixed smart aggregates with a variety of amphiphiles. Using an updated literature survey, we have explored the dissimilar interactions of bile salts with different types of surfactants, phospholipids, ionic liquids, drugs, and a variety of natural and synthetic polymers. While assembling this review, special attention was also provided to the potency of bile salts to alter the size/shape of aggregates formed by several amphiphiles to use these aggregates for solubility improvement of medicinally important compounds, active pharmaceutical ingredients, and also to develop their smart delivery vehicles. A fundamental understanding of bile salt mixed aggregates will enable the development of new strategies for improving the bioavailability of drugs solubilized in newly developed potential hosts and to formulate smart aggregates of desired morphology for specific targeted applications. It enriches our existing knowledge of the distinct interactions exerted in mixed systems of bile salts with variety of amphiphiles. By virtue of this, researchers can get innovative ideas to construct novel nanoaggregates from bile salts by incorporating various amphiphiles that serve as a building block for smart aggregates for their numerous industrial applications.
Collapse
Affiliation(s)
- Paresh Y Parekh
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India
| | - Vijay I Patel
- Department of Chemistry, Navyug Science College, Rander Road, Surat 395009, Gujarat, India.
| | - Mehul R Khimani
- Countryside International School, Nr. Bhesan Railway Crossing, CIS Barbodhan Road, Surat 394125, Gujarat, India
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, Gujarat, India
| |
Collapse
|
2
|
Kondoros BA, Jójárt-Laczkovich O, Berkesi O, Szabó-Révész P, Csóka I, Ambrus R, Aigner Z. Development of Solvent-Free Co-Ground Method to Produce Terbinafine Hydrochloride Cyclodextrin Binary Systems; Structural and In Vitro Characterizations. Pharmaceutics 2022; 14:pharmaceutics14040744. [PMID: 35456578 PMCID: PMC9025016 DOI: 10.3390/pharmaceutics14040744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/03/2022] Open
Abstract
Molecular complexation with cyclodextrins (CDs) has long been a known process for modifying the physicochemical properties of problematic active pharmaceutical ingredients with poor water solubility. In current times, the focus has been on the solvent-free co-grinding process, which is an industrially feasible process qualifying as a green technology. In this study, terbinafine hydrochloride (TER), a low solubility antifungal drug was used as a model drug. This study aimed to prepare co-ground products and follow through the preparation process of the co-grinding method in the case of TER and two amorphous CD derivatives: (2-hydroxypropyl)-β-cyclodextrin (HPBCD); heptakis-(2,6-di-O-methyl)-β-cyclodextrin (DIMEB). For this evaluation, the following analytical tools and methods were used: phase solubility studies, differential scanning calorimetry (DSC), X-ray powder diffractometry (XRPD), hot-stage X-ray powder diffractometry (HOT-XRPD), Fourier-transform infrared (FT-IR), Raman spectroscopy, and Scanning Electron Microscopy (SEM). Furthermore, in vitro characterization (dissolution and diffusion studies) was performed in two kinds of dissolution medium without enzymes. In the XRPD and SEM studies, it was found that the co-grinding of the components resulted in amorphous products. FT-IR and Raman spectroscopies confirmed the formation of an inclusion complex through the unsaturated aliphatic chain of TER and CDs. In vitro characterization suggested better dissolution properties for both CDs and decreased diffusion at higher pH levels in the case of HPBCD.
Collapse
Affiliation(s)
- Balázs Attila Kondoros
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (B.A.K.); (O.J.-L.); (P.S.-R.); (I.C.); (Z.A.)
| | - Orsolya Jójárt-Laczkovich
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (B.A.K.); (O.J.-L.); (P.S.-R.); (I.C.); (Z.A.)
| | - Ottó Berkesi
- Department of Physical Chemistry and Materials Science, Faculty of Science and Informatics, University of Szeged, H-6720 Szeged, Hungary;
| | - Piroska Szabó-Révész
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (B.A.K.); (O.J.-L.); (P.S.-R.); (I.C.); (Z.A.)
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (B.A.K.); (O.J.-L.); (P.S.-R.); (I.C.); (Z.A.)
| | - Rita Ambrus
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (B.A.K.); (O.J.-L.); (P.S.-R.); (I.C.); (Z.A.)
- Correspondence: ; Tel.: +36-62-545-575
| | - Zoltán Aigner
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, H-6720 Szeged, Hungary; (B.A.K.); (O.J.-L.); (P.S.-R.); (I.C.); (Z.A.)
| |
Collapse
|
3
|
Zhang L, Xia Z, Liu B, Cui L, Ding W, Liu D. Preparation of Ginkgolide Solid Dispersions with Low-Molecular-Weight Chitosan and Assessment of their Protective Effect on Isoproterenol- Induced Myocardial Injury. Curr Drug Deliv 2021; 17:711-719. [PMID: 32621716 DOI: 10.2174/1567201817666200704133702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/27/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Ginkgolides are widely used in cardio-protective therapy; however, poor bioavailability currently limits their application. OBJECTIVE The purpose of this study was to demonstrate whether solid dispersions prepared with Low- Molecular-Weight Chitosan (LMWC) could improve the protective effect of ginkgolides on Myocardial Injury (MI). METHODS Ginkgolide Solid Dispersions (GKSD) were prepared with LMWC. Their properties were then characterized using differential scanning calorimetry, X-ray diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy. In vivo pharmacokinetic studies were performed in rats, and the protective effect of GKSD on MI was investigated by western blotting and immunohistochemical analyses. RESULTS Drug dissolution testing showed that GDSD were released at a significantly higher rate than ginkgolides, dissolved by alternative methods, suggesting that LMWC facilitates the release of ginkgolides. Differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy all showed that GKSD was amorphous. In-vivo testing revealed larger AUC0-t, higher Cmax, and shorter Tmax for GKSD compared to that in original ginkgolides. Myocardial injury was induced in rats with isoproterenol to test the protective effect of GKSD. GKSD alleviated MI and reduced myocardial fibrosis, as observed by Hematoxylin and Eosin staining. Compared with the crude drug group, the secretion of malonyl dialdehyde and nitric oxide and expression of NOX-2 and NOX-4 were lower. The activities of the cardiac marker enzymes SOD, CAT, GPX, GPX-1, and GSH were higher in GKSD-administered rats, indicating a beneficial effect of GKSD in eliminating free radicals during myocardial injury. Additionally, western blotting and immunohistochemical analysis showed that GKSD markedly reduced the expression of signaling proteins RHOA, ROCK1, ROCK2, and RAC1. CONCLUSION Solid dispersions prepared with low molecular weight chitosan improved the oral bioavailability of ginkgolide and enhanced its protective effect on myocardial injury.
Collapse
Affiliation(s)
- Li Zhang
- Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing Jiangsu 210028, China.,Ultrasonic Department, Jiangsu Provincial Academy of Chinese Medicine, 100 Shizi Road, Nanjing 210028, P.R. China
| | - Zhi Xia
- Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing Jiangsu 210028, China.,Ultrasonic Department, Jiangsu Provincial Academy of Chinese Medicine, 100 Shizi Road, Nanjing 210028, P.R. China
| | - Bojia Liu
- Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing Jiangsu 210028, China.,Ultrasonic Department, Jiangsu Provincial Academy of Chinese Medicine, 100 Shizi Road, Nanjing 210028, P.R. China
| | - Li Cui
- Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing Jiangsu 210028, China.,Ultrasonic Department, Jiangsu Provincial Academy of Chinese Medicine, 100 Shizi Road, Nanjing 210028, P.R. China
| | - Wenbo Ding
- Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing Jiangsu 210028, China.,Ultrasonic Department, Jiangsu Provincial Academy of Chinese Medicine, 100 Shizi Road, Nanjing 210028, P.R. China
| | - Dan Liu
- Clinical Laboratory, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing Jiangsu 210028, China.,Ultrasonic Department, Jiangsu Provincial Academy of Chinese Medicine, 100 Shizi Road, Nanjing 210028, P.R. China
| |
Collapse
|
4
|
Kecman S, Škrbić R, Badnjevic Cengic A, Mooranian A, Al-Salami H, Mikov M, Golocorbin-Kon S. Potentials of human bile acids and their salts in pharmaceutical nano delivery and formulations adjuvants. Technol Health Care 2021; 28:325-335. [PMID: 31594273 DOI: 10.3233/thc-191845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In the last decade, the attention of the scientific community has been focused on bile acids and their salts as systems for the transportation of drugs; specifically their role as carriers and integration into nanomedicine. Bile acids can play a critical role as drug carriers in the form of chemical conjugates, complexation, mixed micelles formation as well as stabilized bile acid liposomes (bilosomes). The unique molecular structure and interaction of these amphiphilic-steroidal compounds make them an interesting subject of research. This review is based on literature research in order to emphasize the importance of bile acids and their salts as absorption modulators in order to improve therapeutic potentials of low bioavailability drugs.
Collapse
Affiliation(s)
- S Kecman
- Hemofarm d.o.o., a Member of Stada Group, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | - R Škrbić
- Centre for Biomedical Research, Faculty of Medicine, University of Banja Luka, Banja Luka, Republic of Srpska, Bosnia and Herzegovina
| | | | - A Mooranian
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - H Al-Salami
- Biotechnology and Drug Development Research Laboratory, School of Pharmacy, Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - M Mikov
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| | - S Golocorbin-Kon
- Department of Pharmacy, Faculty of Medicine, University of Novi Sad, Novi Sad, Serbia
| |
Collapse
|
5
|
Vemuri VD, Lankalapalli S. Rosuvastatin cocrystals: an attempt to modulate physicochemical parameters. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00213-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The meager physicochemical properties like low solubility and low dissolution rate of rosuvastatin calcium remain as an obstruction for formulation development. In the present work, we explore the evolution of rosuvastatin cocrystal, which may offer the synergetic physico-chemical properties of the drug. Cocrystal crafting depends on two possible intermolecular interactions; heteromeric and the homomeric selection of compounds with complementary functional groups are contemplated as a possible cause of supramolecular synthons in cocrystal formation. Specifically, cocrystals of rosuvastatin with l-asparagine and l-glutamine with molar ratio (1:1) were fabricated by using slow solvent evaporation and slow evaporation techniques. Novel cocrystals of rosuvastatin-asparagine (RSC-C) and rosuvastatin-glutamine (RSC-G) cocrystals obtained by slow solvent evaporation were utilized for preliminary investigation and further scale-up was done by using the solvent evaporation technique.
Results
The novel cocrystals showed a new characteristic of powder X-ray diffraction, thermograms of differential scanning calorimetry, 1H liquid FT-NMR spectra, and scanning electron microscopy. These results signify the establishment of intermolecular interaction within the cocrystals. In both the novel cocrystals, rosuvastatin was determined to be engaged in the hydrogen bond interaction with the complementary functional groups of l-asparagine and l-glutamine. Compared with the pure rosuvastatin, RSC-C and RSC-G cocrystal showed 2.17-fold and 1.60-fold improved solubility respectively. The dissolution test showed that the RSC-C and RSC-G cocrystal exhibited 1.97-fold and 1.94-fold higher dissolution rate than the pure rosuvastatin in pH6.8 phosphate buffer respectively.
Conclusion
Modulation in the chemical environment, improvement in the solubility, and dissolution rate demonstrated the benefit of co-crystallization to improve the physicochemical properties of the drug.
Graphical abstract
Collapse
|
6
|
Miranda GM, Santos VORE, Bessa JR, Teles YCF, Yahouédéhou SCMA, Goncalves MS, Ribeiro-Filho J. Inclusion Complexes of Non-Steroidal Anti-Inflammatory Drugs with Cyclodextrins: A Systematic Review. Biomolecules 2021; 11:biom11030361. [PMID: 33673414 PMCID: PMC7996898 DOI: 10.3390/biom11030361] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/01/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are one of the most widely used classes of medicines in the treatment of inflammation, fever, and pain. However, evidence has demonstrated that these drugs can induce significant toxicity. In the search for innovative strategies to overcome NSAID-related problems, the incorporation of drugs into cyclodextrins (CDs) has demonstrated promising results. This study aims to review the impact of cyclodextrin incorporation on the biopharmaceutical and pharmacological properties of non-steroidal anti-inflammatory drugs. A systematic search for papers published between 2010 and 2020 was carried out using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) protocol and the following search terms: “Complexation”; AND “Cyclodextrin”; AND “non-steroidal anti-inflammatory drug”. A total of 24 different NSAIDs, 12 types of CDs, and 60 distinct inclusion complexes were identified, with meloxicam and β-CD appearing in most studies. The results of the present review suggest that CDs are drug delivery systems capable of improving the pharmacological and biopharmaceutical properties of non-steroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Gustavo Marinho Miranda
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
| | - Vitória Ohana Ramos e Santos
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
| | - Jonatas Reis Bessa
- Institute of Psychology (IPS), Federal University of Bahia (UFBA), Salvador, BA 40170-055, Brazil;
| | - Yanna C. F. Teles
- Agrarian Sciences Center (CCA), Department of Chemistry and Physics (DQF), Federal University of Paraiba (UFPB), Areia, PB 58397-000, Brazil;
| | - Setondji Cocou Modeste Alexandre Yahouédéhou
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
| | - Marilda Souza Goncalves
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
| | - Jaime Ribeiro-Filho
- Laboratory of Investigation in Genetics and Translational Hematology, Gonçalo Moniz Institute (IGM), Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA 40296-710, Brazil; (G.M.M.); (V.O.R.eS.); (S.C.M.A.Y.); (M.S.G.)
- Correspondence: ; Tel.: +55-71-3126-2226
| |
Collapse
|
7
|
da Silva JA, Sampaio PA, Dulcey LJL, Cominetti MR, Rabello MM, Rolim LA. Preparation and characterization of [6]-gingerol/β-cyclodextrin inclusion complexes. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Donalisio M, Argenziano M, Rittà M, Bastiancich C, Civra A, Lembo D, Cavalli R. Acyclovir-loaded sulfobutyl ether-β-cyclodextrin decorated chitosan nanodroplets for the local treatment of HSV-2 infections. Int J Pharm 2020; 587:119676. [DOI: 10.1016/j.ijpharm.2020.119676] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/17/2020] [Accepted: 07/18/2020] [Indexed: 12/20/2022]
|
9
|
Bannigan P, Flynn J, Hudson SP. The impact of endogenous gastrointestinal molecules on the dissolution and precipitation of orally delivered hydrophobic APIs. Expert Opin Drug Deliv 2020; 17:677-688. [DOI: 10.1080/17425247.2020.1743677] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Pauric Bannigan
- Department of Chemical Sciences, SSPC the SFI Pharmaceutical Centre, Bernal Institute, University of Limerick, Limerick, Ireland
| | - James Flynn
- Department of Chemical Sciences, SSPC the SFI Pharmaceutical Centre, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Sarah P. Hudson
- Department of Chemical Sciences, SSPC the SFI Pharmaceutical Centre, Bernal Institute, University of Limerick, Limerick, Ireland
| |
Collapse
|
10
|
Mura P. Advantages of the combined use of cyclodextrins and nanocarriers in drug delivery: A review. Int J Pharm 2020; 579:119181. [PMID: 32112928 DOI: 10.1016/j.ijpharm.2020.119181] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 01/09/2023]
Abstract
Complexation with cyclodextrins (CDs) has been widely and successfully used in pharmaceutical field, mainly for enhancing solubility, stability and bioavailability of a variety of drugs. However, some important drawbacks, including rapid removal from the bloodstream after in vivo administration, or possible replacement, in biological media, of the entrapped drug moieties by other molecules with higher affinity for the CD cavity, can limit the CDs effectiveness as drug carriers. This review is focused on combined strategies simultaneously exploiting CD complexation, and loading of the complexed drug into various colloidal carriers (liposomes, niosomes, polymeric nanoparticles, lipid nanoparticles, nanoemulsions, micelles) which have been investigated as a possible means for circumventing the problems associated with both such carriers, when used separately, and join their relative benefits in a unique delivery system. Several examples of applications have been reported, to illustrate the possible advantages achievable by such a dual strategy, depending on the CD-nanocarrier combination, and mainly resulting in enhanced performance of the delivery system and improved biopharmaceutical properties and therapeutic efficacy of drugs. The major problems and/or drawbacks found in the development of such systems, as well as the (rare) case of failures in achieving the expected improvements have also been highlighted.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, Florence University, via Schiff 6, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
11
|
Binary and ternary complexes of norfloxacin to improve the solubility of the active pharmaceutical ingredient. Ther Deliv 2019; 9:639-652. [PMID: 30189811 DOI: 10.4155/tde-2018-0028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
AIM Binary and ternary complexes with hydroxypropyl-β-cyclodextrin (HPβCD), using glutamic acid (GA), proline or lysine as the third component, were developed to increase the solubility and the dissolution rate of norfloxacin (NOR). METHODS/RESULTS Complexation was evaluated by phase solubility studies, obtaining the highest NOR solubility with GA and HPβCD. Thermal analysis suggested that different kinds of interactions occur among NOR, HPβCD and each amino acid, and when the systems were prepared by kneading or by means of freeze-drying technique. Dissolution studies, performed on simulated gastric fluid and subsequent simulated intestinal fluid, showed the highest rate of NOR from NOR-HPβCD-GA. CONCLUSION NOR:HPβCD:GA was the best approach for improving the bioavailability of NOR.
Collapse
|
12
|
Ganesh M, Ubaidulla U, Rathnam G, Jang HT. Chitosan-telmisartan polymeric cocrystals for improving oral absorption: In vitro and in vivo evaluation. Int J Biol Macromol 2019; 131:879-885. [DOI: 10.1016/j.ijbiomac.2019.03.141] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/12/2019] [Accepted: 03/21/2019] [Indexed: 11/30/2022]
|
13
|
Deoxycholate-TPGS mixed nanomicelles for encapsulation of methotrexate with enhanced in vitro cytotoxicity on breast cancer cell lines. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.01.041] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Shekhawat P, Bagul M, Edwankar D, Pokharkar V. Enhanced dissolution/caco-2 permeability, pharmacokinetic and pharmacodynamic performance of re-dispersible eprosartan mesylate nanopowder. Eur J Pharm Sci 2019; 132:72-85. [PMID: 30797937 DOI: 10.1016/j.ejps.2019.02.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/11/2019] [Accepted: 02/15/2019] [Indexed: 02/06/2023]
Abstract
Eprosartan mesylate is an angiotensin receptor blocker which suffers from extremely poor bioavailability owing to its poor solubility and poor permeability. The rationale of the present work was to design the drug delivery system capable of overcoming these constraints. Nanoformulation of eprosartan mesylate was developed using ultrasonic wave-assisted liquid-antisolvent technique. Nanoformulation was further freeze dried with the addition of 1% of mannitol resulting in formation of re-dispersible EPM nanopowder. To prove our proof of principle, the re-dispersed nanopowder with z-average particle size 165.2 ± 1.8 nm was evaluated enormously for in-vitro dissolution behaviour and permeability assay through Caco-2 cell model. In-vitro dissolution study was performed at pH 1.2, pH 4.5 and pH 6.8. Result demonstrates enhanced dissolution from EPM nanopowder with negligible pH dependence. Transport studies accomplished using validated Caco-2 based cell model showed 11-fold enhanced apparent permeability of redispersed nanopowder when compared to pure EPM and corresponding physical mixture (p < 0.0001). In-vivo study reveals, exceptionally strong variations in plasma concentration of EPM through nanopowder (62 mg/kg) formulation when compared with physical mixture and pure EPM (62 mg/kg) group. Moreover, study manifests that 5-fold lower dose (12.4 mg/kg) of developed formulation yields higher exposure (4600 ± 36 ng·mL-1·h) than pure EPM (2349 ± 34 ng·mL-1·h) and corresponding physical mixture (2456 ± 49 ng·mL-1·h) at therapeutic dose (62 mg/kg). Further, L-NAME induced hypertensive model was undertaken to investigate effect of reduced dose of EPM nanopowder on systolic blood pressure, biochemical analysis and histopathology of heart. Results revealed pronounced antihypertensive potential of re-dispersed EPM nanopowder at 5-fold lower dose (12.4 mg/kg). In conclusion, our study indicates that nanopowder delivery might be the promising approach for providing enhanced oral bioavailability at lower dose.
Collapse
Affiliation(s)
- Prachi Shekhawat
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth University, Erandwane, Pune, India
| | - Milind Bagul
- Raptim Research Limited, Mahape, Navi Mumbai, Maharashtra, India
| | - Diptee Edwankar
- Raptim Research Limited, Mahape, Navi Mumbai, Maharashtra, India
| | - Varsha Pokharkar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharati Vidyapeeth University, Erandwane, Pune, India.
| |
Collapse
|
15
|
Jug M, Mura PA. Grinding as Solvent-Free Green Chemistry Approach for Cyclodextrin Inclusion Complex Preparation in the Solid State. Pharmaceutics 2018; 10:E189. [PMID: 30332804 PMCID: PMC6321573 DOI: 10.3390/pharmaceutics10040189] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 12/27/2022] Open
Abstract
Among the different techniques proposed for preparing cyclodextrin inclusion complex in the solid state, mechanochemical activation by grinding appears as a fast, highly efficient, convenient, versatile, sustainable, and eco-friendly solvent-free method. This review is intended to give a systematic overview of the currently available data in this field, highlighting both the advantages as well as the shortcomings of such an approach. The possible mechanisms involved in the inclusion complex formation in the solid state, by grinding, have been illustrated. For each type of applied milling device, the respective process variables have been examined and discussed, together with the characteristics of the obtained products, also in relation with the physicochemical characteristics of both the drug and cyclodextrin subjected to grinding. The critical process parameters were evidenced in order to provide a useful guide for a rational selection of the most suitable conditions for an efficient inclusion complex preparation by grinding, with the final purpose of promoting a wider use of this effective solvent-free cyclodextrin inclusion complex preparation method in the solid state.
Collapse
Affiliation(s)
- Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Paola Angela Mura
- Department of Chemistry 'Ugo Schiff', School of Human Health Sciences, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy.
| |
Collapse
|
16
|
Zhang L, Ren D, Zhou J, Peng G, Shu G, Yuan Z, Shi F, Zhao L, Yin L, Fan G, Liu C, Fu H. Toltrazuril mixed nanomicelle delivery system based on sodium deoxycholate–Brij C20 polyethylene ether–triton x100: Characterization, solubility, and bioavailability study. Colloids Surf B Biointerfaces 2018; 163:125-132. [DOI: 10.1016/j.colsurfb.2017.12.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/01/2017] [Accepted: 12/11/2017] [Indexed: 02/08/2023]
|
17
|
Zhang X, Wu Y, Zhang M, Mao J, Wu Y, Zhang Y, Yao J, Xu C, Guo W, Yu B. Sodium cholate-enhanced polymeric micelle system for tumor-targeting delivery of paclitaxel. Int J Nanomedicine 2017; 12:8779-8799. [PMID: 29263668 PMCID: PMC5732553 DOI: 10.2147/ijn.s150196] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Polymeric micelles are attractive nanocarriers for tumor-targeted delivery of paclitaxel (PTX). High antitumor efficacy and low toxicity require that PTX mainly accumulated in tumors with little drug exposure to normal tissues. However, many PTX-loaded micelle formulations suffer from low stability, fast drug release, and lack of tumor-targeting capability in the circulation. To overcome these challenges, we developed a micellar formulation that consists of sodium cholate (NaC) and monomethoxy poly (ethylene glycol)-block-poly (d,l-lactide) (mPEG-PDLLA). METHODS PTX-loaded NaC-mPEG-PDLLA micelles (PTX-CMs) and PTX-loaded mPEG-PDLLA micelles (PTX-Ms) were formulated, and their characteristics, particle size, surface morphology, release behavior in vitro, pharmacokinetics and in vivo biodistributions were researched. In vitro and in vivo tumor inhibition effects were systematically investigated. Furthermore, the hemolysis and acute toxicity of PTX-CMs were also evaluated. RESULTS The size of PTX-CMs was 53.61±0.75 nm and the ζ-potential was -19.73±0.68 mV. PTX was released much slower from PTX-CMs than PTX-Ms in vitro. Compared with PTX-Ms, the cellular uptake of PTX-CMs was significantly reduced in macrophages and significantly increased in human cancer cells, and therefore, PTX-CMs showed strong growth inhibitory effects on human cancer cells. In vivo, the plasma AUC0-t of PTX-CMs was 1.8-fold higher than that of PTX-Ms, and 5.2-fold higher than that of Taxol. The biodistribution study indicated that more PTX-CMs were accumulated in tumor than PTX-Ms and Taxol. Furthermore, the significant antitumor efficacy of PTX-CMs was observed in mice bearing BEL-7402 hepatocellular carcinoma and A549 lung carcinoma. Results from drug safety assessment studies including acute toxicity and hemolysis test revealed that the PTX-CMs were safe for in vivo applications. CONCLUSION These results strongly revealed that NaC-mPEG-PDLLA micelles can tumor-target delivery of PTX and enhance drug penetration in tumor, suggesting that NaC-mPEG-PDLLA micelles are promising nanocarrier systems for anticancer drugs delivery.
Collapse
Affiliation(s)
- Xiaomin Zhang
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing
- Push-Kang Biotechnology, Hangzhou
| | - Yibo Wu
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing
| | - Min Zhang
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing
| | - Jing Mao
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing, China
| | - Yun Wu
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, USA
| | | | - Ju Yao
- Push-Kang Biotechnology, Hangzhou
| | - Chang Xu
- Push-Kang Biotechnology, Hangzhou
| | - Wenli Guo
- Beijing Key Laboratory of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing
| | - Bo Yu
- Push-Kang Biotechnology, Hangzhou
| |
Collapse
|
18
|
Peng LQ, Cao J, Du LJ, Zhang QD, Xu JJ, Chen YB, Shi YT, Li RR. Rapid ultrasonic and microwave-assisted micellar extraction of zingiberone, shogaol and gingerols from gingers using biosurfactants. J Chromatogr A 2017; 1515:37-44. [PMID: 28789800 DOI: 10.1016/j.chroma.2017.07.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
Abstract
Two kinds of extraction methods ultrasonic-assisted micellar extraction (UAME) and microwave-assisted micellar extraction (MAME) coupled with ultra-high performance liquid chromatography with ultraviolet detector (UHPLC-UV) were developed and evaluated for extraction and determination of zingerone, 6-gingerol, 8-gingerol, 6-shogaol and 10-gingerol in Rhizoma Zingiberis and Rhizoma Zingiberis Preparata. A biosurfactant, hyodeoxycholic acid sodium salt, was used in micellar extraction. Several experimental parameters were studied separately by a univariate method. The result indicated that the MAME was more efficient than UAME. The optimal conditions of MAME were as follows: 100mM of hyodeoxycholic acid sodium salt was used as surfactant, the irradiation time was set at 10s and the extraction temperature was set at 60°C. The validation results indicated that the limits of detection were in the range of 3.80-8.11ng/mL. The average recoveries were in the range of 87.32-103.12% for the two samples at two spiking levels. Compared with other reported methods, the proposed MAME-UHPLC-UV method was more effective, quicker (10s) and more eco-friendly.
Collapse
Affiliation(s)
- Li-Qing Peng
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China.
| | - Li-Jing Du
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Qi-Dong Zhang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Jing-Jing Xu
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Yu-Bo Chen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Yu-Ting Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| | - Rong-Rong Li
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
19
|
Cugovčan M, Jablan J, Lovrić J, Cinčić D, Galić N, Jug M. Biopharmaceutical characterization of praziquantel cocrystals and cyclodextrin complexes prepared by grinding. J Pharm Biomed Anal 2017; 137:42-53. [DOI: 10.1016/j.jpba.2017.01.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/09/2017] [Accepted: 01/09/2017] [Indexed: 11/30/2022]
|
20
|
Mennini N, Maestrelli F, Cirri M, Mura P. Analysis of physicochemical properties of ternary systems of oxaprozin with randomly methylated-ß-cyclodextrin and l-arginine aimed to improve the drug solubility. J Pharm Biomed Anal 2016; 129:350-358. [PMID: 27454086 DOI: 10.1016/j.jpba.2016.07.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 07/15/2016] [Accepted: 07/16/2016] [Indexed: 10/21/2022]
Abstract
The influence of l-arginine on the complexing and solubilizing power of randomly-methylated-β-cyclodextrin (RameβCD) towards oxaprozin, a very poorly soluble anti-inflammatory drug, was examined. The interactions between the components were investigated both in solution, by phase-solubility analysis, and in the solid state, by differential scanning calorimetry, FTIR and X-ray powder diffractometry. The morphology of the solid products was examined by Scanning Electron Microscopy. Results of phase-solubility studies indicated that addition of arginine enhanced the RameβCD complexing and solubilizing power of about 3.0 and 4.5 times, respectively, in comparison with the binary complex (both at pH≈6.8). The effect of arginine was not simply additive, but synergistic, being the ternary system solubility higher than the sum of those of the respective drug-CD and drug-arginine binary systems. Solid equimolar ternary systems were prepared by physical mixing, co-grinding, coevaporation and kneading techniques, to explore the effect of the preparation method on the physicochemical properties of the final products. The ternary co-ground product exhibited a dramatic increase in both drug dissolution efficiency and percent dissolved at 60min, whose values (83.6 and 97.1, respectively) were about 3 times higher than the sum of those given by the respective drug-CD and drug-aminoacid binary systems. Therefore, the ternary co-ground system with arginine and RameβCD appears as a very valuable product for the development of new more effective delivery systems of oxaprozin, with improved safety and bioavailability.
Collapse
Affiliation(s)
- Natascia Mennini
- Department of Chemistry, School of Human Health Sciences, University of Florence, Via Schiff 6, Sesto Fiorentino I-50019, Florence, Italy
| | - Francesca Maestrelli
- Department of Chemistry, School of Human Health Sciences, University of Florence, Via Schiff 6, Sesto Fiorentino I-50019, Florence, Italy
| | - Marzia Cirri
- Department of Chemistry, School of Human Health Sciences, University of Florence, Via Schiff 6, Sesto Fiorentino I-50019, Florence, Italy
| | - Paola Mura
- Department of Chemistry, School of Human Health Sciences, University of Florence, Via Schiff 6, Sesto Fiorentino I-50019, Florence, Italy.
| |
Collapse
|
21
|
Maestrelli F, Bragagni M, Mura P. Advanced formulations for improving therapies with anti-inflammatory or anaesthetic drugs: A review. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2015.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
22
|
Aitipamula S, Wong ABH, Chow PS, Tan RBH. Novel solid forms of oxaprozin: cocrystals and an extended release drug–drug salt of salbutamol. RSC Adv 2016. [DOI: 10.1039/c6ra01802e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel solid forms of an anti-inflammatory drug, oxaprozin, were identified. A drug–drug salt of oxaprozin with salbutamol was proved promising for development of extended release tablet formulations of salbutamol.
Collapse
Affiliation(s)
- Srinivasulu Aitipamula
- Crystallization and Particle Science
- Institute of Chemical and Engineering Sciences
- A*STAR (Agency for Science, Technology and Research)
- Singapore
| | - Annie B. H. Wong
- Crystallization and Particle Science
- Institute of Chemical and Engineering Sciences
- A*STAR (Agency for Science, Technology and Research)
- Singapore
| | - Pui Shan Chow
- Crystallization and Particle Science
- Institute of Chemical and Engineering Sciences
- A*STAR (Agency for Science, Technology and Research)
- Singapore
| | - Reginald B. H. Tan
- Crystallization and Particle Science
- Institute of Chemical and Engineering Sciences
- A*STAR (Agency for Science, Technology and Research)
- Singapore
- Department of Chemical & Biomolecular Engineering
| |
Collapse
|
23
|
Lopes-de-Araújo J, Neves AR, Gouveia VM, Moura CC, Nunes C, Reis S. Oxaprozin-Loaded Lipid Nanoparticles towards Overcoming NSAIDs Side-Effects. Pharm Res 2015; 33:301-14. [PMID: 26350105 DOI: 10.1007/s11095-015-1788-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 08/31/2015] [Indexed: 01/15/2023]
Abstract
PURPOSE Nanostructured Lipid Carriers (NLCs) loading oxaprozin were developed to address an effective drug packaging and targeted delivery, improving the drug pharmacokinetics and pharmacodynamics properties and avoiding the local gastric side-effects. Macrophages actively phagocyte particles with sizes larger than 200 nm and, when activated, over-express folate beta receptors - features that in the case of this work constitute the basis for passive and active targeting strategies. METHODS Two formulations containing oxaprozin were developed: NLCs with and without folate functionalization. In order to target the macrophages folate receptors, a DSPE-PEG2000-FA conjugate was synthesized and added to the NLCs. RESULTS These formulations presented a relatively low polydispersity index (approximately 0.2) with mean diameters greater than 200 nm and zeta potential inferior to -40 mV. The encapsulation efficiency of the particles was superior to 95% and the loading capacity was of 9%, approximately. The formulations retained the oxaprozin release in simulated gastric fluid (only around 10%) promoting its release on simulated intestinal fluid. MTT and LDH assays revealed that the formulations only presented cytotoxicity in Caco-2 cells for oxaprozin concentrations superior to 100 μM. Permeability studies in Caco-2 cells shown that oxaprozin encapsulation did not interfered with oxaprozin permeability (around 0.8 × 10(-5) cm/s in simulated intestinal fluid and about 1.45 × 10(-5) cm/s in PBS). Moreover, in RAW 264.7 cells NLCs functionalization promoted an increased uptake over time mainly mediated by a caveolae uptake mechanism. CONCLUSIONS The developed nanoparticles enclose a great potential for oxaprozin oral administration with significant less gastric side-effects.
Collapse
Affiliation(s)
- José Lopes-de-Araújo
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Ana Rute Neves
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Virgínia M Gouveia
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Catarina C Moura
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Salette Reis
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
| |
Collapse
|
24
|
Abstract
The human body has long provided pharmaceutical science with biomaterials of interesting applications. Bile salts (BSs) are biomaterials reminiscent of traditional surfactants with peculiar structure and self-assembled topologies. In the pharmaceutical field, BSs were employed on the basis of two different concepts. The first concept exploited BSs' metabolic and homeostatic functions in disease modulation, whereas the second one utilized BSs' potential to modify drug-delivery characteristics, which recently involved nanotechnology. This review is the first to gather major pharmaceutical applications of BSs from endogenous organotropism up to integration into nanomedicine, with a greater focus on the latter domain. Endogenous applications highlighted the role of BS in modulating hypercholesterolemia and cancer therapy in view of enterohepatic circulation. In addition, recent BS-integrated nanomedicines have been surveyed, chiefly size-tunable cholate nanoparticles, BS-lecithin mixed micelles, bilosomes, probilosomes, and surface-engineered bilosomes. A greater emphasis has been laid on nanosystems for vaccine and cancer therapy. The comparative advantages of BS-integrated nanomedicines over conventional nanocarriers have been noted. Paradoxical effects, current pitfalls, future perspectives, and opinions have also been outlined.
Collapse
Affiliation(s)
- Yosra SR Elnaggar
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
25
|
Cirri M, Maestrelli F, Mennini N, Mura P. Combined use of bile acids and aminoacids to improve permeation properties of acyclovir. Int J Pharm 2015; 490:351-9. [PMID: 26037934 DOI: 10.1016/j.ijpharm.2015.05.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/19/2015] [Accepted: 05/20/2015] [Indexed: 11/16/2022]
Abstract
The aim of this work was to develop a topical formulation with improved permeation properties of acyclovir. Ursodeoxycholic (UDC) and dehydrocholic (DHC) acids were tested as potential enhancers, alone or in combination with different aminoacids. Equimolar binary and ternary systems of acyclovir with cholic acids and basic, hydrophilic or hydrophobic aminoacids were prepared by co-grinding in a high vibrational micromill. Differential scanning calorimetry (DSC) was used to characterize the solid state of these systems, while their permeation properties were evaluated in vitro through a lipophilic artificial membrane. UDC was more than 2 times more effective than DHC in improving drug AUC and permeation rate. As for the ternary systems drug-UDC-aminoacid, only the combined use of l-lysine with UDC acid produced an evident synergistic effect in enhancing drug permeation properties, enabling an almost 3 and 8 times AUC increase compared to the binary UDC system or the pure drug, respectively. The best systems were selected for the development of topical cream formulations, adequately characterized and tested for in vitro drug permeation properties and stability on storage. The better performance revealed by acyclovir-UDC-l-lysine was mainly attributed to the formation of a more permeable activated system induced by the multicomponent co-grinding process.
Collapse
Affiliation(s)
- M Cirri
- Dept. of Chemistry, School of Sciences of Human Health, University of Florence, via U. Schiff, 6 Sesto Fiorentino 50019 Florence, Italy.
| | - F Maestrelli
- Dept. of Chemistry, School of Sciences of Human Health, University of Florence, via U. Schiff, 6 Sesto Fiorentino 50019 Florence, Italy
| | - N Mennini
- Dept. of Chemistry, School of Sciences of Human Health, University of Florence, via U. Schiff, 6 Sesto Fiorentino 50019 Florence, Italy
| | - P Mura
- Dept. of Chemistry, School of Sciences of Human Health, University of Florence, via U. Schiff, 6 Sesto Fiorentino 50019 Florence, Italy
| |
Collapse
|
26
|
Sjögren E, Abrahamsson B, Augustijns P, Becker D, Bolger MB, Brewster M, Brouwers J, Flanagan T, Harwood M, Heinen C, Holm R, Juretschke HP, Kubbinga M, Lindahl A, Lukacova V, Münster U, Neuhoff S, Nguyen MA, Peer AV, Reppas C, Hodjegan AR, Tannergren C, Weitschies W, Wilson C, Zane P, Lennernäs H, Langguth P. In vivo methods for drug absorption – Comparative physiologies, model selection, correlations with in vitro methods (IVIVC), and applications for formulation/API/excipient characterization including food effects. Eur J Pharm Sci 2014; 57:99-151. [PMID: 24637348 DOI: 10.1016/j.ejps.2014.02.010] [Citation(s) in RCA: 196] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 02/15/2014] [Accepted: 02/17/2014] [Indexed: 01/11/2023]
|
27
|
Chougule MB, Patel AR, Patlolla R, Jackson T, Singh M. Epithelial transport of noscapine across cell monolayer and influence of absorption enhancers on in vitro permeation and bioavailability: implications for intestinal absorption. J Drug Target 2014; 22:498-508. [PMID: 24731057 DOI: 10.3109/1061186x.2014.894046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The purpose of this study was to investigate the permeation of Noscapine (Nos) across the Caco-2 and Madin-Darby canine kidney (MDCK) cell monolayers and to evaluate the influence of absorption enhancers on in vitro and in vivo absorption of Nos. The bidirectional transport of Nos was studied in Caco-2 and MDCK cell monolayers at pH 5.0-7.8. The effect of 0.5% w/v chitosan (CH) or Captisol (CP) on Nos permeability was investigated at pH 5.0 and 5.8. The effect of 1-5% w/v of CP on oral bioavailability of Nos (150 mg/kg) was evaluated in Sprague-Dawley rats. The effective permeability coefficients (Peff) of Nos across Caco-2 and MDCK cell monolayers was found to be in the order of pH 5.0 > 5.8 > 6.8 > 7.8. The efflux ratios of Peff < 2 demonstrated that active efflux does not limit the absorption of Nos. The use of CH or CP have shown significant (***, p < 0.001) enhancement in Peff of Nos across cell monolayer compared with the control group. The CP (1-5% w/v) based Nos formulations resulted in significant (***, p < 0.001) increase in the bioavailability of Nos compared with Nos solution. The use of CP represents viable approach for enhancing the oral bioavailability of Nos and reducing the required dose.
Collapse
Affiliation(s)
- Mahavir B Chougule
- Department of Pharmaceutical Sciences, the Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo , Hilo, HI , USA and
| | | | | | | | | |
Collapse
|
28
|
Stojančević M, Pavlović N, Goločorbin-Kon S, Mikov M. Application of bile acids in drug formulation and delivery. FRONTIERS IN LIFE SCIENCE 2014. [DOI: 10.1080/21553769.2013.879925] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Zhong L, Zhu X, Luo X, Su W. Dissolution properties and physical characterization of telmisartan-chitosan solid dispersions prepared by mechanochemical activation. AAPS PharmSciTech 2013; 14:541-50. [PMID: 23430728 DOI: 10.1208/s12249-013-9937-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Accepted: 02/12/2013] [Indexed: 11/30/2022] Open
Abstract
Solid dispersion systems of telmisartan (a poorly water-soluble antihypertension drug) with biopolymer carrier chitosan have been investigated in this study. The mechanism of solubilization of chitosan for drug has been studied. In addition, the influence of several factors was carefully examined, including the preparation methods, the drug/carrier weight ratios, and the milling time. Drug dissolution and physical characterization of different binary systems were studied by in vitro dissolution test, particle size distribution, Fourier transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffractometry, and scanning electron microscopy. The results presented that the weak basic property of chitosan appeared as the main driving force for the drug dissolution enhancement. Other effects such as decreased drug crystallinity and size played a positive contributory role. Among the preparation methods, cogrinding was the best method showing strong drug amorphization, reduced particle size, and enhanced dissolution. The drug dissolution markedly improved with increasing the amount of chitosan in solid mixtures. As a result, a significant effect of chitosan increasing telmisartan dissolution has been demonstrated, and cogrinding in a roll ball mill was the best way to prepare solid dispersions, which had high degree of uniformity in drug content and had a practical application in manufacturing.
Collapse
|
30
|
Aloisio C, Gomes de Oliveira A, Longhi M. Characterization, inclusion mode, phase-solubility andin vitrorelease studies of inclusion binary complexes with cyclodextrins and meglumine using sulfamerazine as model drug. Drug Dev Ind Pharm 2013; 40:919-28. [DOI: 10.3109/03639045.2013.790408] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Yang JS, Yang L. Preparation and application of cyclodextrin immobilized polysaccharides. J Mater Chem B 2013; 1:909-918. [DOI: 10.1039/c2tb00107a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Alexander A, Tiwle R, . A, Giri TK, Tripathi DK, Jain V. An Exhaustive Review on Solubility Enhancement for Hydrophobic Compounds by Possible Applications of Novel Techniques. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/tasr.2012.596.619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Jablan J, Szalontai G, Jug M. Comparative analysis of zaleplon complexation with cyclodextrins and hydrophilic polymers in solution and in solid state. J Pharm Biomed Anal 2012; 71:35-44. [PMID: 22898722 DOI: 10.1016/j.jpba.2012.07.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/19/2012] [Accepted: 07/24/2012] [Indexed: 11/20/2022]
Abstract
The aim of this work was to investigate the potential synergistic effect of water-soluble polymers (hypromellose, HPMC and polyvinylpyrrolidone, PVP) on zaleplon (ZAL) complexation with parent β-cyclodextrin (βCD) and its randomly methylated derivative (RAMEB) in solution and in solid state. The addition of HPMC to the complexation medium improved ZAL complexation and solubilization with RAMEB (K(ZAL/RAMEB)=156±5M(-1) and K(ZAL/RAMEB/HPMC)=189±8M(-1); p<0.01), while such effect was not observed for βCD (K(ZAL/βCD)=112±2M(-1) and K(ZAL/βCD/HPMC)=119±8M(-1); p>0.05). Although PVP increased the ZAL aqueous solubility from 0.22 to 0.27mg/mL, it did not show any synergistic effects on ZAL solubilization with the cyclodextrins tested. Binary and ternary systems of ZAL with βCD, RAMEB and HPMC were prepared by spray-drying. Differential scanning calorimetry, X-ray powder diffraction and scanning electron microscopy demonstrated a partial ZAL amorphization in spray-dried binary and ternary systems with βCD, while the drug was completely amorphous in all samples with RAMEB. Furthermore, inclusion complex formation in all systems prepared was confirmed by solid-state NMR spectroscopy. The in vitro dissolution rate followed the rank order ZAL/RAMEB/HPMC>ZAL/RAMEB=ZAL/βCD/HPMC>ZAL/βCD≫ZAL, clearly demonstrating the superior performance of RAMEB on ZAL complexation in the solid state and its synergistic effect with HPMC on drug solubility. Surprisingly, when loaded into tablets made with insoluble microcrystalline cellulose, RAMEB complexes had no positive effect on drug dissolution, because HPMC and RAMEB acted as a binders inside the tablets, prolonging their disintegration. Oppositely, the formulation with mannitol, a soluble excipient, containing a ternary RAMEB system, released the complete drug-dose in only 5min, clearly demonstrating its suitability for the development of immediate-release oral formulation of ZAL.
Collapse
Affiliation(s)
- Jasna Jablan
- Department of Analytical Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | | | | |
Collapse
|
34
|
|
35
|
Buckley ST, Fischer SM, Fricker G, Brandl M. In vitro models to evaluate the permeability of poorly soluble drug entities: Challenges and perspectives. Eur J Pharm Sci 2012; 45:235-50. [DOI: 10.1016/j.ejps.2011.12.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/26/2011] [Accepted: 12/02/2011] [Indexed: 11/16/2022]
|