1
|
Liang X, Zhou J, Wang M, Wang J, Song H, Xu Y, Li Y. Progress and prospect of polysaccharides as adjuvants in vaccine development. Virulence 2024; 15:2435373. [PMID: 39601191 PMCID: PMC11622597 DOI: 10.1080/21505594.2024.2435373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/07/2024] [Accepted: 11/24/2024] [Indexed: 11/29/2024] Open
Abstract
Vaccines are an effective approach to confer immunity against infectious diseases. Modern subunit vaccines offer more precise target and safe protection compared to traditional whole-pathogen vaccines. However, subunit vaccines require adjuvants to stimulate the immune system due to the less immunogenicity. Adjuvants strengthen immunogenicity by enhancing, modulating, and prolonging the immune response. Unfortunately, few adjuvants have sufficient potency and low enough toxicity for clinical use, highlighting the urgent need for new vaccine adjuvants with the characteristics of safety, efficacy, and cost-effectiveness. Notably, some natural polysaccharides have been approved as adjuvants in human vaccines, owing to their intrinsic immunomodulation, low toxicity, and high safety. Natural polysaccharides are mainly derived from plants, bacteria, and yeast. Partly owing to the difficulty of obtaining them, synthetic polysaccharides emerged in clinical trials. The immune mechanisms of both natural and synthetic polysaccharides remain incompletely understood, hindering the rational development of polysaccharide adjuvants. This comprehensive review primarily focused on several promising polysaccharide adjuvants, discussing their recent applications in vaccines and highlighting their immune-modulatory effects. Furthermore, the future perspectives of polysaccharides offer insightful guidance to adjuvant development and application.
Collapse
Affiliation(s)
- Xinlong Liang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jiaying Zhou
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Mengmeng Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Jing Wang
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Houhui Song
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yigang Xu
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
| | - Yuan Li
- Key Laboratory of Applied Biotechnology on Animal Science & Veterinary Medicine of Zhejiang Province, Zhejiang Engineering Research Center for Veterinary Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, Belt and Road International Joint Laboratory for One Health and Food Safety, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, Zhejiang Province, China
- Research and Development Department, Zhejiang Huijia Biotechnology Co. Ltd ., Huzhou, People’s Republic of China
| |
Collapse
|
2
|
Andreica BI, Mititelu-Tartau L, Rosca I, Pelin IM, Nicol E, Marin L. Biocompatible hydrogels based on quaternary ammonium salts of chitosan with high antimicrobial activity as biocidal agents for disinfection. Carbohydr Polym 2024; 342:122389. [PMID: 39048229 DOI: 10.1016/j.carbpol.2024.122389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/27/2024] [Accepted: 06/08/2024] [Indexed: 07/27/2024]
Abstract
The paper reports new hydrogels based on quaternary ammonium salts of chitosan designed as biocidal products. The chitosan derivative was crosslinked with salicylaldehyde via reversible imine bonds and supramolecular self-assemble to give dynamic hydrogels which respond to environmental stimuli. The crosslinking mechanism was demonstrated by 1H NMR and FTIR spectroscopy, and X-ray diffraction and polarized light microscopy. The hydrogel nature, self-healing and thixotropy were proved by rheological investigation and visual observation, and their morphology was assessed by scanning electron microscopy. The relevant properties for application as biocidal products, such as swelling, dissolution, bioadhesiveness, antimicrobial activity and ex-vivo hemocompatibility and in vivo local toxicity and biocompatibility on experimental mice were measured and analyzed in relationship with the imination degree and the influence of each component. It was found that the hydrogels are superabsorbent, have good adhesivity to skin and various surfaces and antimicrobial activity against relevant gram-positive and gram-negative bacteria, while being hemocompatible and biocompatible. Besides, the hydrogels are easily biodegraded in soil. All these properties recommend the studied hydrogels as ecofriendly biocidal agents for living tissues and surfaces, but also open the perspectives of their use as platform for in vivo applications in tissue engineering, wound healing, or drug delivery systems.
Collapse
Affiliation(s)
| | | | - Irina Rosca
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Irina Mihaela Pelin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| | - Erwan Nicol
- Institut des Molécules et Matériaux du Mans, France
| | - Luminita Marin
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, Iasi, Romania
| |
Collapse
|
3
|
Bouazzaoui A, Abdellatif AA. Vaccine delivery systems and administration routes: Advanced biotechnological techniques to improve the immunization efficacy. Vaccine X 2024; 19:100500. [PMID: 38873639 PMCID: PMC11170481 DOI: 10.1016/j.jvacx.2024.100500] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/21/2024] [Accepted: 05/14/2024] [Indexed: 06/15/2024] Open
Abstract
Since the first use of vaccine tell the last COVID-19 pandemic caused by spread of SARS-CoV-2 worldwide, the use of advanced biotechnological techniques has accelerated the development of different types and methods for immunization. The last pandemic showed that the nucleic acid-based vaccine, especially mRNA, has an advantage in terms of development time; however, it showed a very critical drawback namely, the higher costs when compared to other strategies, and its inability to protect against new variants. This showed the need of more improvement to reach a better delivery and efficacy. In this review we will describe different vaccine delivery systems including, the most used viral vector, and also variable strategies for delivering of nucleic acid-based vaccines especially lipid-based nanoparticles formulation, polymersomes, electroporation and also the new powerful tools for the delivery of mRNA, which is based on the use of cell-penetrating peptides (CPPs). Additionally, we will also discuss the main challenges associated with each system. Finlay, the efficacy and safety of the vaccines depends not only on the formulations and delivery systems, but also the dosage and route of administration are also important players, therefore we will see the different routes for the vaccine administration including traditionally routes (intramuscular, Transdermal, subcutaneous), oral inhalation or via nasal mucosa, and will describe the advantages and disadvantage of each administration route.
Collapse
Affiliation(s)
- Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
- Science and Technology Unit, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
| | - Ahmed A.H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, 51452 Qassim, Saudi Arabia
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, 71524 Assiut, Egypt
| |
Collapse
|
4
|
Masimov R, Wasan EK. Chitosan non-particulate vaccine delivery systems. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:12921. [PMID: 39114808 PMCID: PMC11303186 DOI: 10.3389/jpps.2024.12921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024]
Abstract
Chitosan is an extensively used polymer for drug delivery applications in particulate and non-particulate carriers. Chitosan-based particulate, nano-, and microparticle, carriers have been the most extensively studied for the delivery of therapeutics and vaccines. However, chitosan has also been used in vaccine applications for its adjuvant properties in various hydrogels or as a carrier coating material. The focus of this review will be on the usage of chitosan as a vaccine adjuvant based on its intrinsic immunogenicity; the various forms of chitosan-based non-particulate delivery systems such as thermosensitive hydrogels, microneedles, and conjugates; and the advantages of its role as a coating material for vaccine carriers.
Collapse
Affiliation(s)
| | - Ellen K. Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Li H, Liang X, Sun W, Zhuang B, Cao Y, Zhang J, Shen J, Wang Y, Yu L. Immunological evaluation of a recombinant vaccine delivered with an analogous hyaluronic acid chitosan nanoparticle-hydrogel against Toxoplasma gondii in mice. Microb Pathog 2023; 179:106092. [PMID: 37003502 DOI: 10.1016/j.micpath.2023.106092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is not only a threat to the public health but it also poses adverse impacts on the livestock industry. This study aimed to develop a recombinant vaccine composed of T. gondii microneme protein 6 (TgMIC6) and T. gondii rhoptry protein 18 (TgROP18).The vaccine was delivered with a novel vector, named analogous hyaluronic acid chitosan nanoparticle-hydrogel (AHACNP-HG) and its immune protection was evaluated. METHODS The recombinant MIC6 and ROP18 proteins were obtained by affinity chromatography and loaded onto AHACNP-HG by magnetic stirring. The characterizations of AHACNP-HG were investigated, including its structure, rheological property, nanoparticle size and zeta potential, its ability to release protein in vitro and toxicology in vivo. The immunological and anti-infection effects of AHACNP-HG/rMIC6/rROP18 were examined in the mice model. RESULTS AHACNP-HG presented a characteristic of composite system and possessed biosecurity with excellent protein control-release property. AHACNP-HG/rMIC6/rROP18 vaccine enhanced a mixed Th1/Th2 cellular immune response accompanied by an increased level of the cytokines, IFN-γ and IL-10. It also provoked a stronger humoral immune response. Additionally, after challenge with T. gondii tachyzoite, AHACNP-HG/rMIC6/rROP18 inoculation prolonged the survival time of mice. CONCLUSION Our data indicated that mixed rMIC6 and rROP18 induced strong immune response and played a certain protective role in controlling T. gondii infection, and the novel adjuvant AHACNP-HG improved modestly some immunogenicity properties in mouse model, which indicated that it can be used as a novel delivery system in vaccine development.
Collapse
Affiliation(s)
- Hu Li
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China; Department of Clinical Laboratory, Taihe People's Hospital, Fuyang, 236600, China.
| | - Xiao Liang
- School of Life Sciences, Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230032, China.
| | - Wenze Sun
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Baocan Zhuang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yuanyuan Cao
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Junling Zhang
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Jilong Shen
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| | - Yongzhong Wang
- School of Life Sciences, Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, 230032, China.
| | - Li Yu
- Department of Microbiology and Parasitology, Anhui Province Key Laboratory of Microbiology and Parasitology, The Key Laboratory of Zoonoses of High Institutions in Anhui, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
6
|
Khwaza V, Buyana B, Nqoro X, Peter S, Mbese Z, Feketshane Z, Alven S, Aderibigbe BA. Strategies for delivery of antiviral agents. VIRAL INFECTIONS AND ANTIVIRAL THERAPIES 2023:407-492. [DOI: 10.1016/b978-0-323-91814-5.00018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
7
|
Bai Q, Wang Z, An Y, Tian J, Li Z, Yang Y, Dong Y, Chen M, Liu T. Chitosan-functionalized graphene oxide as adjuvant in HEV P239 vaccine. Vaccine 2022; 40:7613-7621. [PMID: 36371365 DOI: 10.1016/j.vaccine.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
Searching appropriate adjuvants for vaccine is a potent method to intense the immune efficacy. In the present study, we developed a novel Hepatitis E virus (HEV) vaccine by utilizing chitosan modified nano-graphene oxide (GO-CS) as an adjuvant to support HEV antigen P239 protein (GO/CS/P239). The characterization of GO/CS/P239 was observed by atomic force microscope. The safety of GO/CS/P239 was measured by CCK-8 method, hemolysis test and acute challenge test. The anti-HEV titers and cytokines production were analyzed by double antibody sandwich ELISA. As the results showed, by contrast with a vaccine that contained only the P239 protein, GO/CS/P239 vaccine can promote immune cells to produce more IgG antibodies and cytokines, which were able to stimulate the organism to produce stronger both cellular and humoral immunity. Collectively, GO/CS/P239 particles have been demonstrated to be safe both in vitro and in vivo, and can facilitate sufficient immune response to protect organisms from virus infection, which suggested that our exploration offers a promising alternative vaccine that can control HEV infection.
Collapse
Affiliation(s)
- Qianyu Bai
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Zhiwen Wang
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Yina An
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Jijing Tian
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Zhilin Li
- College of Pratacultural Science and Technology, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Yifei Yang
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Yanjun Dong
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Mingyong Chen
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China
| | - Tianlong Liu
- Laboratory of Veterinary Pathology and Nanopathology, College of Veterinary Medicine, China Agricultural University, No.2 West Road Yuanmingyuan, Beijing 100193, PR China.
| |
Collapse
|
8
|
Ali F, Khan I, Chen J, Akhtar K, Bakhsh EM, Khan SB. Emerging Fabrication Strategies of Hydrogels and Its Applications. Gels 2022; 8:gels8040205. [PMID: 35448106 PMCID: PMC9024659 DOI: 10.3390/gels8040205] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
Recently, hydrogels have been investigated for the controlled release of bioactive molecules, such as for living cell encapsulation and matrices. Due to their remote controllability and quick response, hydrogels are widely used for various applications, including drug delivery. The rate and extent to which the drugs reach their targets are highly dependent on the carriers used in drug delivery systems; therefore the demand for biodegradable and intelligent carriers is progressively increasing. The biodegradable nature of hydrogel has created much interest for its use in drug delivery systems. The first part of this review focuses on emerging fabrication strategies of hydrogel, including physical and chemical cross-linking, as well as radiation cross-linking. The second part describes the applications of hydrogels in various fields, including drug delivery systems. In the end, an overview of the application of hydrogels prepared from several natural polymers in drug delivery is presented.
Collapse
Affiliation(s)
- Fayaz Ali
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology Avenida Wai Long, Taipa, Macau 999078, China;
| | - Jianmin Chen
- School of Pharmacy and Medical Technology, Putian University, No. 1133 Xueyuan Zhong Jie, Putian 351100, China
- Correspondence: (J.C.); (S.B.K.)
| | - Kalsoom Akhtar
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Esraa M. Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (J.C.); (S.B.K.)
| |
Collapse
|
9
|
Zhang Y, Li Q, Hu J, Wang C, Wan D, Li Q, Jiang Q, Du L, Jin Y. Nasal Delivery of Cinnarizine Thermo- and Ion-Sensitive In Situ Hydrogels for Treatment of Microwave-Induced Brain Injury. Gels 2022; 8:gels8020108. [PMID: 35200489 PMCID: PMC8872061 DOI: 10.3390/gels8020108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
(1) Background: When the body is exposed to microwave radiation, the brain is more susceptible to damage than other organs. However, few effective drugs are available for the treatment of microwave-induced brain injury (MIBI) because most drugs are difficult to cross the blood–brain barrier (BBB) to reach the brain. (2) Methods: Nasal cinnarizine inclusion complexes with thermo-and ion-sensitive hydrogels (cinnarizine ISGs) were prepared to treat MIBI and the characteristics of the inclusion complexes and their thermo-and ion-sensitive hydrogels were evaluated. (3) Results: Due to high viscosity, cinnarizine ISGs can achieve long-term retention in the nasal cavity to achieve a sustained release effect. Compared with the model, the intranasal thermo-and ion-sensitive cinnarizine ISGs significantly improved the microwave-induced spatial memory and spontaneous exploration behavior with Morris water maze and open field tests. Cinnarizine ISGs inhibited the expression of calcineurin and calpain 1 in the brain, which may be related to the inhibition of calcium overload by cinnarizine. (4) Conclusion: Intranasal thermo- and ion-sensitive cinnarizine ISGs are a promising brain-targeted pharmaceutical preparation against MIBI.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Qian Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Jinglu Hu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Chunqing Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Delian Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Qi Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Qingwei Jiang
- Key Laboratory of Natural Medicine of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- Correspondence: (Q.J.); (L.D.)
| | - Lina Du
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
- School of Pharmacy, Henan University, Kaifeng 475004, China
- Correspondence: (Q.J.); (L.D.)
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
- School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
10
|
Dual-RNA controlled delivery system inhibited tumor growth by apoptosis induction and TME activation. J Control Release 2022; 344:97-112. [DOI: 10.1016/j.jconrel.2022.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 12/27/2022]
|
11
|
Cordeiro AS, Patil-Sen Y, Shivkumar M, Patel R, Khedr A, Elsawy MA. Nanovaccine Delivery Approaches and Advanced Delivery Systems for the Prevention of Viral Infections: From Development to Clinical Application. Pharmaceutics 2021; 13:2091. [PMID: 34959372 PMCID: PMC8707864 DOI: 10.3390/pharmaceutics13122091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Viral infections causing pandemics and chronic diseases are the main culprits implicated in devastating global clinical and socioeconomic impacts, as clearly manifested during the current COVID-19 pandemic. Immunoprophylaxis via mass immunisation with vaccines has been shown to be an efficient strategy to control such viral infections, with the successful and recently accelerated development of different types of vaccines, thanks to the advanced biotechnological techniques involved in the upstream and downstream processing of these products. However, there is still much work to be done for the improvement of efficacy and safety when it comes to the choice of delivery systems, formulations, dosage form and route of administration, which are not only crucial for immunisation effectiveness, but also for vaccine stability, dose frequency, patient convenience and logistics for mass immunisation. In this review, we discuss the main vaccine delivery systems and associated challenges, as well as the recent success in developing nanomaterials-based and advanced delivery systems to tackle these challenges. Manufacturing and regulatory requirements for the development of these systems for successful clinical and marketing authorisation were also considered. Here, we comprehensively review nanovaccines from development to clinical application, which will be relevant to vaccine developers, regulators, and clinicians.
Collapse
Affiliation(s)
- Ana Sara Cordeiro
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Yogita Patil-Sen
- Wrightington, Wigan and Leigh Teaching Hospitals NHS Foundation Trust, National Health Service, Wigan WN6 0SZ, UK;
| | - Maitreyi Shivkumar
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| | - Ronak Patel
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK;
| | - Abdulwahhab Khedr
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed A. Elsawy
- Leicester Institute for Pharmaceutical Innovation, Leicester School of Pharmacy, De Montfort University, Leicester LE1 9BH, UK; (A.S.C.); (M.S.); (A.K.)
| |
Collapse
|
12
|
Moine L, Canali MM, Porporatto C, Correa SG. Reviewing the biological activity of chitosan in the mucosa: Focus on intestinal immunity. Int J Biol Macromol 2021; 189:324-334. [PMID: 34419549 DOI: 10.1016/j.ijbiomac.2021.08.098] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/13/2022]
Abstract
Chitosan is a polymer derived from the partial deacetylation of chitin with particular characteristics, such as mucoadhesiveness, tolerability, biocompatibility and biodegradability. Biomedical uses of chitosan cover a wide spectrum of applications as dietary fiber, immunoadjuvant and regulator of the intestinal microbiota or delivery agent. Chemical modification of chitosan is feasible because its reactive amino and hydroxyl groups can be modified by a diverse array of ligands, functional groups and molecules. This gives rise to numerous derivatives that allow different formulation types influencing their activity. Considering the multiple events resulting from the interaction with mucosal tissues, chitosan is a singular candidate for strategies targeting immune stimulation (i.e., tolerance induction, vaccination). Its role as a prebiotic and probiotic carrier represents an effective option to manage intestinal dysbiosis. In the intestinal scenario where the exposure of the immune system to a wide variety of antigens is permanent, chitosan increases IgA levels and favors a tolerogenic environment, thus becoming a key ally for host homeostasis.
Collapse
Affiliation(s)
- L Moine
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas-Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, CP: 5016 Córdoba Capital, Córdoba, Argentina
| | - M M Canali
- Université Côte d'Azur, INSERM, CNRS, IPMC, France
| | - C Porporatto
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB-CONICET), Universidad Nacional de Villa María (UNVM), Arturo Jauretche 1555, CP: 5900 Villa María, Córdoba, Argentina
| | - S G Correa
- Departamento de Bioquímica Clínica-Facultad de Ciencias Químicas-Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Universidad Nacional de Córdoba, Haya de la Torre y Medina Allende, CP: 5016 Córdoba Capital, Córdoba, Argentina.
| |
Collapse
|
13
|
|
14
|
Pathak K, Misra SK, Sehgal A, Singh S, Bungau S, Najda A, Gruszecki R, Behl T. Biomedical Applications of Quaternized Chitosan. Polymers (Basel) 2021; 13:polym13152514. [PMID: 34372116 PMCID: PMC8347635 DOI: 10.3390/polym13152514] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
The natural polymer chitosan is the second most abundant biopolymer on earth after chitin and has been extensively explored for preparation of versatile drug delivery systems. The presence of two distinct reactive functional groups (an amino group at C2, and a primary and secondary hydroxyl group at C3 and C6) of chitosan are involved in the transformation of expedient derivatives such as acylated, alkylated, carboxylated, quaternized and esterified chitosan. Amongst these, quaternized chitosan is preferred in pharmaceutical industries owing to its prominent features including superior water solubility, augmented antimicrobial actions, modified wound healing, pH-sensitive targeting, biocompatibility, and biodegradability. It has been explored in a large realm of pharmaceuticals, cosmeceuticals, and the biomedical arena. Immense classy drug delivery systems containing quaternized chitosan have been intended for tissue engineering, wound healing, gene, and vaccine delivery. This review article outlines synthetic techniques, basic characteristics, inherent properties, biomedical applications, and ubiquitous challenges associated to quaternized chitosan.
Collapse
Affiliation(s)
- Kamla Pathak
- Faculty of Pharmacy, Uttar Pradesh University of Medical Sciences, Etawah 206130, India;
| | - Shashi Kiran Misra
- University Institute of Pharmacy, Chhatrapati Sahuji Maharaj University, Kanpur 208026, India;
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (S.S.)
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (S.S.)
| | - Simona Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biological and Biomedical Sciences, University of Oradea, 410073 Oradea, Romania
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
- Correspondence: (A.N.); (T.B.)
| | - Robert Gruszecki
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (S.S.)
- Correspondence: (A.N.); (T.B.)
| |
Collapse
|
15
|
Dang LH, Doan P, Nhi TTY, Nguyen DT, Nguyen BT, Nguyen TP, Tran NQ. Multifunctional injectable pluronic-cystamine-alginate-based hydrogel as a novel cellular delivery system towards tissue regeneration. Int J Biol Macromol 2021; 185:592-603. [PMID: 34216661 DOI: 10.1016/j.ijbiomac.2021.06.183] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/18/2021] [Accepted: 06/26/2021] [Indexed: 10/21/2022]
Abstract
This paper presents a new thermal sensitive hydrogel system based on cystamine-functionalised sodium alginate-g-pluronic F127 (ACP). The introduction of cystamine to the alginate backbone not only creates a covalent bond with pluronic F127 but also provides intrinsic anti-bacterial activity for the resultant hydrogel. The amount of water uptake inside the hydrogel remained ~200% for 6 days and the degradation was completed in 12 days in physiological media. The ACP copolymer solution could form a hydrogel at body temperature (~37 °C) and could return to the solution phase if the temperature decreased below 25o °C. Fibroblast encapsulated in situ in the ACP hydrogel maintained their viability (≥90% based on the live/dead assay) for 7 days, demonstrating the good biocompatibility of the ACP hydrogel for long-term cell cultivation. In addition, three-dimensional (3D) culture showed that fibroblast attached to the hydrogels and successfully mimicked the porous structure of the ACP hydrogel after 5 days of culture. Fibroblast cells could migrate from the cell-ACP clusters and form a confluent cell layer on the surface of the culture dish. Altogether, the obtained results indicate that the thermal-responsive ACP hydrogel synthesised in this study may serve as a cellular delivery platform for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Le Hang Dang
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam.
| | - Phuong Doan
- Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam
| | - Tran Thi Yen Nhi
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Viet Nam; NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Dinh Trung Nguyen
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam
| | - Bich Tram Nguyen
- Department of Natural Science, Thu Dau Mot University, Thu Dau Mot City, Viet Nam
| | - Thi Phuong Nguyen
- Faculty of Chemical Technology, HCMC University of Food Industry, Ho Chi Minh City, Viet Nam
| | - Ngoc Quyen Tran
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, HCMC, Viet Nam; Institute of Applied Materials Science, Vietnam Academy of Science and Technology, HCMC, Viet Nam.
| |
Collapse
|
16
|
Li X, Xing R, Xu C, Liu S, Qin Y, Li K, Yu H, Li P. Immunostimulatory effect of chitosan and quaternary chitosan: A review of potential vaccine adjuvants. Carbohydr Polym 2021; 264:118050. [PMID: 33910752 DOI: 10.1016/j.carbpol.2021.118050] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/01/2021] [Accepted: 04/03/2021] [Indexed: 12/25/2022]
Abstract
Vaccines have always been the most effective preventive treatment. Advancements in the field of vaccine is inseparable from adjuvants. Adjuvants are substances added to vaccines to enhance immunogenicity and induce a stronger immune response. Chitosan fascinated considerable attention as vaccine adjuvant due to its unique physicochemical and biological properties. Many studies have shown that chitosan and its derivatives can effectively activate antigen-presenting cells and induce cytokine stimulation to produce an effective immune response and promote the balance of Th1/Th2 response. Among many derivatives, the quaternized chitosan performs better. This review presents the main factors affecting the adjuvant performance of chitosan and quaternized chitosan firstly. Then, we introduced not only the immune response they may cause, but also their metabolic research in detail. Furthermore, their future prospects are forecasted. Overall, chitosan and quaternized chitosan are both promising adjuvant materials, and quaternized chitosan shows greater potential.
Collapse
Affiliation(s)
- Xiaomin Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ronge Xing
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chaojie Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Song Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Yukun Qin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Kecheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Huahua Yu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| | - Pengcheng Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology (Qingdao), No. 1 Wenhai Road, Qingdao, 266237, China
| |
Collapse
|
17
|
Chitosan hydrogel loaded with recombinant protein containing epitope C from HSP90 of Candida albicans induces protective immune responses against systemic candidiasis. Int J Biol Macromol 2021; 173:327-340. [PMID: 33482211 DOI: 10.1016/j.ijbiomac.2021.01.105] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/23/2022]
Abstract
We reported previously a recombinant protein (rP-HSP90C) containing epitope C from heat shock protein 90 of Candida albicans mediates protective immune responses against systemic candidiasis. However, it exhibits weak immunogenicity. Therefore, we evaluated the potential and mechanisms of thermosensitive chitosan hydrogel (CH-HG) as an adjuvant in rP-HSP90C vaccine. CH-HG synthesized by ionic cross-linking showed buffering capacity and control-released rP-HSP90C in vitro. In comparison to naked rP-HSP90C, CH-HG-loaded rP-HSP90C (CH-HG/rP-HSP90C) not only evoked a long-lasting rP-HSP90C-specific IgG, but also enhanced Th1, Th2, Th17 responses and the ratio of Th1/Th2 in vivo; Meanwhile, CH-HG/rP-HSP90C provoked a stronger CTL response than rP-HSP90C. Notably, CH-HG increased the protective immune responses against systemic candidiasis in rP-HSP90C-immunized mice since CH-HG/rP-HSP90C enhanced the survival rate of infected mice, and diminished the CFUs in kidneys compared to rP-HSP90C, which were similar to that of QuilA. Further in vitro investigation displayed CH-HG upgraded the expressions of costimulators, MHCs and cytokines in BMDCs compared to rP-HSP90C;CH-HG also promoted cellular uptake, endosomal escape and "cross-presentation" of rP-HSP90C. In addition, it recruited immune cells at the injection site. Our study demonstrated that CH-HG can be an efficient adjuvant in fungal vaccines.
Collapse
|
18
|
An Overview of Current Knowledge on the Properties, Synthesis and Applications of Quaternary Chitosan Derivatives. Polymers (Basel) 2020; 12:polym12122878. [PMID: 33266285 PMCID: PMC7759937 DOI: 10.3390/polym12122878] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 12/18/2022] Open
Abstract
Chitosan, a chitin-derivative polysaccharide, known for its non-toxicity, biocompatibility and biodegradability, presents limited applications due to its low solubility in neutral or basic pH medium. Quaternization stands out as an alternative to modify this natural polymer, aiming to improve its solubility over a wide pH range and, consequently, expand its range of applications. Quaternization occurs by introducing a quaternary ammonium moiety onto or outside the chitosan backbone, via chemical reactions with primary amino and hydroxyl groups, under vast experimental conditions. The oldest and most common forms of quaternized chitosan involve N,N,N-trimethyl chitosan (TMC) and N-[(2-hydroxy-3-trimethyl ammonium) propyl] chitosan (HTCC) and, more recently, quaternized chitosan by insertion of pyridinium or phosphonium salts. By modifying chitosan through the insertion of a quaternary moiety, permanent cationic charges on the polysaccharide backbone are achieved and properties such as water solubility, antimicrobial activity, mucoadhesiveness and permeability are significantly improved, enabling the application mainly in the biomedical and pharmaceutical areas. In this review, the main quaternized chitosan compounds are addressed in terms of their structure, properties, synthesis routes and applications. In addition, other less explored compounds are also presented, involving the main findings and future prospects regarding the field of quaternized chitosans.
Collapse
|
19
|
Zhao J, Li J, Jiang Z, Tong R, Duan X, Bai L, Shi J. Chitosan, N,N,N-trimethyl chitosan (TMC) and 2-hydroxypropyltrimethyl ammonium chloride chitosan (HTCC): The potential immune adjuvants and nano carriers. Int J Biol Macromol 2020; 154:339-348. [DOI: 10.1016/j.ijbiomac.2020.03.065] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/11/2020] [Accepted: 03/10/2020] [Indexed: 12/12/2022]
|
20
|
Pastor Y, Ting I, Martínez AL, Irache JM, Gamazo C. Intranasal delivery system of bacterial antigen using thermosensitive hydrogels based on a Pluronic-Gantrez conjugate. Int J Pharm 2020; 579:119154. [PMID: 32081801 DOI: 10.1016/j.ijpharm.2020.119154] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 02/07/2023]
Abstract
Thermosensitive hydrogels have been studied as feasible needle-avoidance alternative to vaccine delivery. In this work, we report the development of a new thermal-sensitive hydrogel for intranasal vaccine delivery. This delivery system was formulated with a combination of the polymer Gantrez® AN119 and the surfactant Pluronic® F127 (PF127), with a high biocompatibility, biodegradability and immunoadjuvant properties. Shigella flexneri outer membrane vesicles were used as the antigen model. A stable and easy-to-produce thermosensitive hydrogel which allowed the incorporation of the OMV-antigenic complex was successfully synthetized. A rapid gel formation was achieved at body temperature, which prolonged the OMV-antigens residence time in the nasal cavity of BALB/c mice when compared to intranasal delivery of free-OMVs. In addition, the bacterial antigens showed a fast release profile from the hydrogel in vitro, with a peak at 30 min of incubation at 37 °C. Hydrogels appeared to be non-cytotoxic in the human epithelial HeLa cell line and nose epithelium as well, as indicated by the absence of histopathological features. Immunohistochemical studies revealed that after intranasal administration the OMVs reached the nasal associated lymphoid tissue. These results support the use of here described thermosensitive hydrogels as a potential platform for intranasal vaccination.
Collapse
Affiliation(s)
- Yadira Pastor
- Department of Microbiology and Parasitology, Institute of Tropical Health University of Navarra, 31008 Pamplona, Spain
| | - Isaiah Ting
- Department of Microbiology and Parasitology, Institute of Tropical Health University of Navarra, 31008 Pamplona, Spain
| | - Ana Luisa Martínez
- Department of Technology and Pharmaceutical Chemistry, University of Navarra, Spain
| | - Juan Manuel Irache
- Department of Technology and Pharmaceutical Chemistry, University of Navarra, Spain
| | - Carlos Gamazo
- Department of Microbiology and Parasitology, Institute of Tropical Health University of Navarra, 31008 Pamplona, Spain.
| |
Collapse
|
21
|
Li Y, Li G, Sha X, Li L, Zhang K, Liu D, Hao Y, Cui X, Wang L, Wang H. An intelligent vancomycin release system for preventing surgical site infections of bone tissues. Biomater Sci 2020; 8:3202-3211. [PMID: 32374304 DOI: 10.1039/d0bm00255k] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
An intelligent anti-bacterial system can be constructed on implants during surgery.
Collapse
Affiliation(s)
- Yuan Li
- College of Medicine
- Southwest Jiaotong University
- Chengdu 610036
- China
- CAS Center for Excellence in Nanoscience
| | - Guang Li
- College of Medicine
- Hebei North University
- Zhangjiakou 075000
- China
| | - Xiaoling Sha
- College of Medicine
- Southwest Jiaotong University
- Chengdu 610036
- China
- CAS Center for Excellence in Nanoscience
| | - Litao Li
- Department of Orthopaedics
- The 8thMedical Center of Chinese PLA General Hospital
- Beijing 100000
- China
| | - Kuo Zhang
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100000
- China
| | - Daohong Liu
- Department of Orthopaedics
- The 8thMedical Center of Chinese PLA General Hospital
- Beijing 100000
- China
| | - Yanfei Hao
- Department of Orthopaedics
- The 8thMedical Center of Chinese PLA General Hospital
- Beijing 100000
- China
| | - Xu Cui
- Department of Orthopaedics
- The 8thMedical Center of Chinese PLA General Hospital
- Beijing 100000
- China
| | - Lei Wang
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100000
- China
| | - Hao Wang
- CAS Center for Excellence in Nanoscience
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- National Center for Nanoscience and Technology (NCNST)
- Beijing 100000
- China
| |
Collapse
|
22
|
Wu J, Ma G. Biomimic strategies for modulating the interaction between particle adjuvants and antigen-presenting cells. Biomater Sci 2020; 8:2366-2375. [DOI: 10.1039/c9bm02098e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The design strategies of particle adjuvants by mimicking natural pathogens to strengthen their interaction with antigen-presenting cells.
Collapse
Affiliation(s)
- Jie Wu
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P.R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- P.R. China
| |
Collapse
|
23
|
Croisfelt FM, Tundisi LL, Ataide JA, Silveira E, Tambourgi EB, Jozala AF, Souto EMB, Mazzola PG. Modified-release topical hydrogels: a ten-year review. JOURNAL OF MATERIALS SCIENCE 2019; 54:10963-10983. [DOI: 10.1007/s10853-019-03557-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/20/2019] [Indexed: 01/06/2025]
|
24
|
Updates on thermosensitive hydrogel for nasal, ocular and cutaneous delivery. Int J Pharm 2019; 559:86-101. [PMID: 30677480 DOI: 10.1016/j.ijpharm.2019.01.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 12/15/2022]
Abstract
Thermosensitive hydrogels are in situ gelling systems composed of hydrophilic homopolymers or block copolymers which remain as solutions at room temperature and form gels after administration into the body. Its application in advanced drug delivery has gained significant attention in recent years. The tunable characteristics of thermosensitive hydrogels make them versatile and capable of incorporating both hydrophilic and lipophilic compounds and macromolecules. The drug molecules can be included as free molecules or preformulated into nano- or micro-particles or liposomes. Although there were several reviews on the materials of thermosensitive hydrogels, the compatibility between the drug and thermosensitive material as well as its in vitro release mechanisms and in vivo performance have barely been investigated. The current review is proposed aiming to not only provide an update on the recent development in thermosensitive hydrogel formulations for nasal, ocular and cutaneous deliveries, but also identify the relationship between the drug characteristics and the loading strategies, and their impacts on the release mechanisms and the in vivo performance. Our current update for the first time highlights the essential features for successful development of in situ thermosensitive hydrogels to facilitate nasal, ocular or cutaneous drug deliveries.
Collapse
|
25
|
Yang Y, Xing R, Liu S, Qin Y, Li K, Yu H, Li P. Hydroxypropyltrimethyl ammonium chloride chitosan activates RAW 264.7 macrophages through the MAPK and JAK-STAT signaling pathways. Carbohydr Polym 2018; 205:401-409. [PMID: 30446121 DOI: 10.1016/j.carbpol.2018.10.101] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/13/2018] [Accepted: 10/28/2018] [Indexed: 12/31/2022]
Abstract
Hydroxypropyltrimethyl ammonium chloride chitosan (HACC) is a water-soluble derivative of chitosan. To investigate the immunostimulatory effects of HACC, quaternized chitosans with different molecular weights were prepared and their effects on RAW 264.7 macrophages were compared. The results showed that HACC promoted nitric oxide (NO) production in a molecular weight- and dose-dependent manner. Lower molecular weight HACC was more active in promoting NO production. Furthermore, flow cytometry analysis showed that HACC significantly promoted the production of interleukin-6 and tumor necrosis factor-α. These results were further demonstrated by quantitive real-time reverse transcription polymerase chain reaction and western blot analysis. Moreover, western blotting revealed that HACC induced the phosphorylation of extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, and signal transducer and activator of transcription (STAT) proteins. In conclusion, HACC activated RAW 264.7 cells through the mitogen-activated protein kinases and Janus kinase/STAT pathways.
Collapse
Affiliation(s)
- Yue Yang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China.
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China
| | - Yukun Qin
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China
| | - Huahua Yu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao 266071, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, PR China.
| |
Collapse
|
26
|
Sun Z, Liang J, Dong X, Wang C, Kong D, Lv F. Injectable Hydrogels Coencapsulating Granulocyte-Macrophage Colony-Stimulating Factor and Ovalbumin Nanoparticles to Enhance Antigen Uptake Efficiency. ACS APPLIED MATERIALS & INTERFACES 2018; 10:20315-20325. [PMID: 29808993 DOI: 10.1021/acsami.8b04312] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The combination of an antigen and adjuvant has synergistic effects on an immune response. Coadministration of an antigen and a granulocyte-macrophage colony-stimulating factor (GM-CSF) hydrogel delivery system will afford a novel strategy for enhancement of an immune response because of the dual role of the hydrogel as a vaccine carrier with a sustained release and a platform for recruiting dendritic cells (DCs). Herein, an injectable poly(caprolactone)-poly(ethylene glycol)-poly(caprolactone) thermosensitive hydrogel coencapsulating GM-CSF and ovalbumin nanoparticles was developed to enhance antigen uptake efficiency. The GM-CSF released from the hydrogel ensured accumulation of DCs; this effect improved the antigen uptake efficiency with the targeted delivery to antigen-presenting cells. Furthermore, the dual delivery system induced a stronger immune effect, including higher CD8+ T proportion, interferon γ secretion, and a greater cytotoxic T lymphocyte response, which may benefit from the recruitment of DCs, increasing antigen residence time, and the controllable antigen release owing to the combined effect of the hydrogel and nanoparticles. Meanwhile, the real-time antigen delivery process in vivo was revealed by a noninvasive fluorescence imaging method. All of the results indicated that the visible dual delivery system may have a greater potential for the efficient and trackable vaccine delivery.
Collapse
Affiliation(s)
- Zhiting Sun
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , P. R. China
| | - Jie Liang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , P. R. China
| | - Xia Dong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , P. R. China
| | - Chun Wang
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , P. R. China
- Department of Biomedical Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Deling Kong
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , P. R. China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials, Institute of Biomedical Engineering , Chinese Academy of Medical Sciences and Peking Union Medical College , Tianjin 300192 , P. R. China
| |
Collapse
|
27
|
Yang TT, Wen BF, Liu K, Qin M, Gao YY, Ding DJ, Li WT, Zhang YX, Zhang WF. Cyclosporine A/porous quaternized chitosan microspheres as a novel pulmonary drug delivery system. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:552-564. [PMID: 29688042 DOI: 10.1080/21691401.2018.1463231] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Ting-Ting Yang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, China
- Shandong New Time Pharmaceutical Co., Ltd, Linyi, Shandong, China
| | - Bao-Fang Wen
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, China
- Department of Emergency, Heze Municipal Hospital, Heze, Shandong, China
| | - Kang Liu
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, China
- Jewim Pharmaceutical (Shandong) Co., Taian, Shandong, China
| | - Meng Qin
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Yuan-Yuan Gao
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - De-Jun Ding
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Wen-Tong Li
- College of Clinical Medicine, Weifang Medical University, Weifang, Shandong, China
| | - Yun-Xiang Zhang
- Department of Pathology, Weifang People’s Hospital, Weifang, Shandong, China
| | - Wei-Fen Zhang
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
28
|
Tao W, Zheng HQ, Fu T, He ZJ, Hong Y. N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride: An immune-enhancing adjuvant for hepatitis E virus recombinant polypeptide vaccine in mice. Hum Vaccin Immunother 2017; 13:1818-1822. [PMID: 28604244 DOI: 10.1080/21645515.2017.1331191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Adjuvants are essential for enhancing vaccine potency by improving the humoral and/or cell-mediated immune response to vaccine antigens. This study was performed to evaluate the immuno-enhancing characteristic of N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride (HTCC), the cationically modified chitosan, as an adjuvant for hepatitis E virus (HEV) recombinant polypeptide vaccine. Animal experiments showed that HTCC provides adjuvant activity when co-administered with HEV recombinant polypeptide vaccine by intramuscularly route. Vaccination using HTCC as an adjuvant was associated with increases of the serum HEV-specific IgG antibodies, splenocytes proliferation and the growths of CD4+CD8- T lymphocytes and IFN-γ-secreting T lymphocytes in peripheral blood. These findings suggested that HTCC had strong immuno-enhancing effect. Our findings are the first to demonstrate that HTCC is safe and effective in inducing a good antibody response and stimulating Th1-biased immune responses for HEV recombinant polypeptide vaccine.
Collapse
Affiliation(s)
- Wei Tao
- a Institute of Bioengineering, Zhejiang Academy of Medical Sciences , Hangzhou , Zhejiang , P. R. China
| | - Hai-Qun Zheng
- a Institute of Bioengineering, Zhejiang Academy of Medical Sciences , Hangzhou , Zhejiang , P. R. China
| | - Ting Fu
- a Institute of Bioengineering, Zhejiang Academy of Medical Sciences , Hangzhou , Zhejiang , P. R. China
| | - Zhuo-Jing He
- a Institute of Bioengineering, Zhejiang Academy of Medical Sciences , Hangzhou , Zhejiang , P. R. China
| | - Yan Hong
- a Institute of Bioengineering, Zhejiang Academy of Medical Sciences , Hangzhou , Zhejiang , P. R. China
| |
Collapse
|
29
|
Wei J, Xue W, Yu X, Qiu X, Liu Z. pH Sensitive phosphorylated chitosan hydrogel as vaccine delivery system for intramuscular immunization. J Biomater Appl 2017; 31:1358-1369. [DOI: 10.1177/0885328217704139] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the field of immunotherapy, immune vaccinations have received more and more attention for disease prevention and treatment. In immune vaccination, efficient vaccine adjuvants are necessary due to the weak immunogenicity of vaccines. Some traditional vaccine adjuvants have been widely used but have shown obvious limitations such as poor biosafety. Therefore, researchers make a great effort to develop more functional novel immune adjuvants such as chitosan-based immune adjuvants. However, chitosan is poorly water soluble, which greatly limits its application as immune adjuvants, regardless of its good biocompatibility, biodegradability, and other biological activities. In this work, we prepared a water-soluble chitosan derivative phosphorylated chitosan (PCS) and evaluated its potential as a novel immune adjuvant. PCS was found to be pH sensitive: specifically, it was water soluble at pH < 7.0 but began to gel at pH >7.0. By virtue of this, neutral PCS aqueous solutions containing ovalbumin (OVA) antigen was intramuscularly injected into test mice, which would transform to an OVA-containing gel network for OVA immunization. The results showed that the use of 30 mg/mL PCS-based hydrogel as vaccine delivery system contributed to significantly higher level of antigen-specific immune responses, including higher level of antigen-specific IgG antibodies, IFN-γ and IL-4 cytokines secretion by splenocytes, as well as memory CD4+ and CD8+ T cells. In vivo imaging and immunohistochemistry assays suggest that the improved immunization efficacy may be attributed to the controlled release of antigen from injection site by PCS gel network, and then prolonged antigen stimuli to the immune system. From the results, PCS could be developed as a promising vaccine delivery system for immunotherapy.
Collapse
Affiliation(s)
- Jianye Wei
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Wei Xue
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Xifei Yu
- The Polymer Composites Engineering Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Xiaozhong Qiu
- Key Laboratory of Construction and Detection of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Zonghua Liu
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
30
|
Tao W, Fu T, He Z, Hu R, Jia L, Hong Y. Evaluation of Immunostimulatory Effects of N-(2-Hydroxy) Propyl-3-Trimethylammonium Chitosan Chloride for Improving Live Attenuated Hepatitis A Virus Vaccine Efficacy. Viral Immunol 2016; 30:120-126. [PMID: 27918250 DOI: 10.1089/vim.2016.0099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study was to evaluate the immunostimulatory effects of N-(2-hydroxy) propyl-3-trimethylammonium chitosan chloride (HTCC) as an adjuvant for improving a commercial live attenuated hepatitis A virus (HAV) vaccine efficacy in mice. Mice in the experimental group were intraperitoneally immunized with a solution of HTCC and live attenuated HAV vaccine. And for those injected with sterile water, HTCC or live attenuated HAV vaccine were treated as mock group, negative group, and positive group in turn. The serum HAV-specific IgG titers and the ratios of the serum HAV-specific IgG2a/IgG1 in the experimental group were significantly increased (p = 0.00042 and p = 0.040, respectively). Splenocyte proliferation stimulation index in experimental group was higher than positive group (p = 0.021), and significantly higher than mock group and negative group (p = 0.0078 and p = 0.0050, respectively). The percentages of CD4+ T lymphocytes in the peripheral blood in experimental group were significantly higher than positive group, negative group, and mock group (p = 0.012, p = 0.012, and p = 0.045, respectively). Compared to the other three groups, experimental group showed a slightly higher ratio of CD4+/CD8+, but there were no significant differences (p > 0.05). In the percentages of CD8+ T lymphocytes, there were no significant differences among the four groups (p > 0.05). HTCC can enhance live attenuated HAV vaccine to generate stronger humoral responses and induce a Th1-biased immune response, as well as IgG2a class switching, compared with the live attenuated HAV vaccine alone. This study validated an important concept for further development of a safe and potent vaccine adjuvant.
Collapse
Affiliation(s)
- Wei Tao
- Institute of Bioengineering , Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Ting Fu
- Institute of Bioengineering , Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Zhuojing He
- Institute of Bioengineering , Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Ruxi Hu
- Institute of Bioengineering , Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Lan Jia
- Institute of Bioengineering , Zhejiang Academy of Medical Sciences, Hangzhou, China
| | - Yan Hong
- Institute of Bioengineering , Zhejiang Academy of Medical Sciences, Hangzhou, China
| |
Collapse
|
31
|
Wang X, Zhang Y, Xue W, Wang H, Qiu X, Liu Z. Thermo-sensitive hydrogel PLGA-PEG-PLGA as a vaccine delivery system for intramuscular immunization. J Biomater Appl 2016; 31:923-932. [PMID: 27888253 DOI: 10.1177/0885328216680343] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, we explored the potential of thermo-sensitive PLGA-PEG-PLGA with sol-gel transition temperature around 32℃ as an intramuscular vaccine delivery system by using ovalbumin as a model antigen. First, in vitro release test showed that the PLGA-PEG-PLGA-deriving hydrogels could release ovalbumin in vitro in a more sustainable way. From fluorescence living imaging, 50-200 mg/mL of PLGA-PEG-PLGA formulations could release antigen in a sustainable manner in vivo, suggesting that the PLGA-PEG-PLGA hydrogel worked as an antigen-depot. Further, the sustainable antigen release from the PLGA-PEG-PLGA hydrogels increased antigen availability in the spleens of the immunized mice. The intramuscular immunization results showed that 50-200 mg/mL of PLGA-PEG-PLGA formulations promoted significantly more potent antigen-specific IgG immune response. In addition, 200 mg/mL of PLGA-PEG-PLGA formulation significantly enhanced the secretion of both Th1 and Th2 cytokines. From in vitro splenocyte proliferation assay, 50-200 mg/mL of PLGA-PEG-PLGA formulations all initiated significantly higher splenocyte activation. These results indicate that the thermo-sensitive and injectable PLGA-PEG-PLGA hydrogels (particularly, 200 mg/mL of PLGA-PEG-PLGA-based hydrogel) own promising potential as an intramuscular vaccine delivery system.
Collapse
Affiliation(s)
- Xiaoyan Wang
- 1 Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Yu Zhang
- 1 Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Wei Xue
- 1 Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Hong Wang
- 2 College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaozhong Qiu
- 3 Key Laboratory of Construction and Detection of Guangdong Province, Southern Medical University, Guangzhou, China
| | - Zonghua Liu
- 1 Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, China
| |
Collapse
|
32
|
Vashist A, Kaushik A, Vashist A, Jayant RD, Tomitaka A, Ahmad S, Gupta YK, Nair M. Recent trends on hydrogel based drug delivery systems for infectious diseases. Biomater Sci 2016; 4:1535-1553. [PMID: 27709137 PMCID: PMC5162423 DOI: 10.1039/c6bm00276e] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Since centuries, the rapid spread and cure of infectious diseases have been a major concern to the progress and survival of humans. These diseases are a global burden and the prominent cause for worldwide deaths and disabilities. Nanomedicine has emerged as the most excellent tool to eradicate and halt their spread. Various nanoformulations (NFs) using advanced nanotechnology are in demand. Recently, hydrogel and nanogel based drug delivery devices have posed new prospects to simulate the natural intelligence of various biological systems. Owing to their unique porous interpenetrating network design, hydrophobic drug incorporation and stimulus sensitivity hydrogels owe excellent potential as targeted drug delivery systems. The present review is an attempt to highlight the recent trends of hydrogel based drug delivery systems for the delivery of therapeutic agents and diagnostics for major infectious diseases including acquired immune deficiency syndrome (AIDS), malaria, tuberculosis, influenza and ebola. Future prospects and challenges are also described.
Collapse
Affiliation(s)
- Arti Vashist
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| | - Ajeet Kaushik
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Rahul Dev Jayant
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| | - Asahi Tomitaka
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| | - Sharif Ahmad
- Materials Research Laboratory, Department of Chemistry, New Delhi, 110025, India
| | - Y K Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Madhavan Nair
- Center of Personalized Nanomedicine, Institute of Neuroimmune Pharmacology, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL-33199, USA.
| |
Collapse
|
33
|
Chitosan-based mucosal adjuvants: Sunrise on the ocean. Vaccine 2015; 33:5997-6010. [PMID: 26271831 PMCID: PMC7185844 DOI: 10.1016/j.vaccine.2015.07.101] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/22/2015] [Accepted: 07/28/2015] [Indexed: 12/20/2022]
Abstract
Metabolism and safety profile of chitosan and its derivatives on mucosal application. Mechanisms of chitosan as potent mucosal adjuvant. Different types and forms of chitosan in pre-clinical applications. Clinical perspectives.
Mucosal vaccination, which is shown to elicit systemic and mucosal immune responses, serves as a non-invasive and convenient alternative to parenteral administration, with stronger capability in combatting diseases at the site of entry. The exploration of potent mucosal adjuvants is emerging as a significant area, based on the continued necessity to amplify the immune responses to a wide array of antigens that are poorly immunogenic at the mucosal sites. As one of the inspirations from the ocean, chitosan-based mucosal adjuvants have been developed with unique advantages, such as, ability of mucosal adhesion, distinct trait of opening the junctions to allow the paracellular transport of antigen, good tolerability and biocompatibility, which guaranteed the great potential in capitalizing on their application in human clinical trials. In this review, the state of art of chitosan and its derivatives as mucosal adjuvants, including thermo-sensitive chitosan system as mucosal adjuvant that were newly developed by author's group, was described, as well as the clinical application perspective. After a brief introduction of mucosal adjuvants, chitosan and its derivatives as robust immune potentiator were discussed in detail and depth, in regard to the metabolism, safety profile, mode of actions and preclinical and clinical applications, which may shed light on the massive clinical application of chitosan as mucosal adjuvant.
Collapse
|
34
|
Li X, Du L, Chen X, Ge P, Wang Y, Fu Y, Sun H, Jiang Q, Jin Y. Nasal delivery of analgesic ketorolac tromethamine thermo- and ion-sensitive in situ hydrogels. Int J Pharm 2015; 489:252-60. [PMID: 25957699 DOI: 10.1016/j.ijpharm.2015.05.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/15/2015] [Accepted: 05/04/2015] [Indexed: 12/21/2022]
Abstract
Ketorolac tromethamine (KT) was potent to treat moderate to moderately severe pains. However, KT solutions for nasal delivery lost quickly from the nasal route. Thermo- and ion-sensitive in-situ hydrogels (ISGs) are appropriate for nasal drug delivery because the intranasal temperature maintains ∼37 °C and nasal fluids consist of plentiful cations. In this study, a novel nasal thermo- and ion-sensitive ISG of KT was prepared with thermo-sensitive poloxamer 407 (P407) and ion-sensitive deacetylated gellan gum (DGG). The optimal formulation of the KT ISG consisted of 3% (w/v) DGG and 18% (w/v) P407 and its viscosity was up to 7.63 Pas at 37 °C. Furthermore, penetration enhancers and bacterial inhibitors were added and their fractions in the ISG were optimized based on transmucosal efficiencies and toxicity on toad pili. Sulfobutyl ether-β-cyclodextrin of 2.5% (w/v) and chlorobutanol of 0.5% (w/v) were chosen as the penetration enhancer and the bacterial inhibitor, respectively. The Fick's diffusion and dissolution of KT could drive it continuous release from the dually sensitive ISG according to the in vitro investigation. Two methods, writhing frequencies induced by acetic acid and latency time of tails retracting from hot water, were used to evaluate the pharmacodynamics of the KT ISG on the mouse models. The writhing frequencies significantly decreased and the latency time of tail retracting was obviously prolonged (p<0.05) for the KT ISG compared to the control. The thermo- and ion-sensitive KT ISG had appropriate gelation temperature, sustained drug release, improved intranasal absorption, obvious pharmacodynamic effect, and negligible nasal ciliotoxicity. It is a promising intranasal analgesic formulation.
Collapse
Affiliation(s)
- Xin Li
- Chinese PLA General Hospital, Beijing 100853, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xu Chen
- Chinese PLA General Hospital, Beijing 100853, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pingju Ge
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng 475004, China
| | - Yu Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yangmu Fu
- Chinese PLA General Hospital, Beijing 100853, China
| | - Haiyan Sun
- Affiliated Hospital of Academy of Military Medical Sciences, Beijing 100071, China
| | - Qingwei Jiang
- Beijing Institute of Tianheng Drug Development, Beijing 100141, China.
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| |
Collapse
|
35
|
Bento D, Staats HF, Gonçalves T, Borges O. Development of a novel adjuvanted nasal vaccine: C48/80 associated with chitosan nanoparticles as a path to enhance mucosal immunity. Eur J Pharm Biopharm 2015; 93:149-64. [PMID: 25818119 DOI: 10.1016/j.ejpb.2015.03.024] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 02/19/2015] [Accepted: 03/20/2015] [Indexed: 11/15/2022]
Abstract
In a time in which mucosal vaccines development has been delayed by the lack of safe and effective mucosal adjuvants, the combination of adjuvants has started to be explored as a strategy to obtain potent vaccine formulations. This study describes a novel adjuvant combination as an effective approach for a nasal vaccine - the association of the mast cell activator compound 48/80 with chitosan based nanoparticles. It was hypothesized that mucoadhesive nanoparticles would promote the cellular uptake and prolong the antigen residence time on nasal cavity. Simultaneously, mast cell activation would promote a local microenvironment favorable to the development of an immune response. To test this hypothesis, two different C48/80 loaded nanoparticles (NPs) were prepared: Chitosan-C48/80 NP (Chi-C48/80 NP) and Chitosan/Alginate-C48/80 NP (Chi/Alg-C48/80 NP). The potential as a vaccine adjuvant of the two delivery systems was evaluated and directly compared. Both formulations had a mean size near 500nm and a positive charge; however, Chi-C48/80 NP was a more effective adjuvant delivery system when compared with Chi/Alg-C48/80 NP or C48/80 alone. Chi-C48/80 NP activated mast cells at a greater extent, were better internalized by antigen presenting cells than Chi/Alg-C48/80 NP and successfully enhanced the nasal residence time of a model antigen. Superiority of Chi-C48/80 NP as adjuvant was also observed in vivo. Therefore, nasal immunization of mice with Bacillus anthracis protective antigen (PA) adsorbed on Chi-C48/80 NP elicited high levels of serum anti-PA neutralizing antibodies and a more balanced Th1/Th2 profile than C48/80 in solution or Chi/Alg-C48/80 NP. The incorporation of C48/80 within Chi NP also promoted a mucosal immunity greater than all the other adjuvanted groups tested, showing that the combination of a mast cell activator and chitosan NP could be a promising strategy for nasal immunization.
Collapse
Affiliation(s)
- D Bento
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - H F Staats
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - T Gonçalves
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Institute of Microbiology, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - O Borges
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
36
|
Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydr Polym 2014; 117:524-536. [PMID: 25498667 DOI: 10.1016/j.carbpol.2014.09.094] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 11/23/2022]
Abstract
Chitosan is non-toxic, biocompatible and biodegradable polysaccharide composed of glucosamine and derived by deacetylation of chitin. Chitosan thermosensitive hydrogel has been developed to form a gel in situ, precluding the need for surgical implantation. In this review, the recent advances in chitosan thermosensitive hydrogels based on different glycerophosphate are summarized. The hydrogel is prepared with chitosan and β-glycerophosphate or αβ-glycerophosphate which is liquid at room temperature and transits into gel as temperature increases. The gelation mechanism may involve multiple interactions between chitosan, glycerophosphate, and water. The solution behavior, rheological and physicochemical properties, and gelation process of the hydrogel are affected not only by the molecule weight, deacetylation degree, and concentration of chitosan, but also by the kind and concentration of glycerophosphate. The properties and the three-dimensional networks of the hydrogel offer them wide applications in biomedical field including local drug delivery and tissue engineering.
Collapse
|
37
|
Chen F, Song S, Wang H, Zhang W, Lin C, Ma S, Ye T, Zhang L, Yang X, Qin X, Pan W. Injectable chitosan thermogels for sustained and localized delivery of pingyangmycin in vascular malformations. Int J Pharm 2014; 476:232-40. [PMID: 25283699 DOI: 10.1016/j.ijpharm.2014.09.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/27/2014] [Accepted: 09/30/2014] [Indexed: 01/08/2023]
Abstract
Pingyangmycin (PYM) is an effective drug to treat vascular malformations (VM), but can easily diffuse from the injection site, which will reduce its therapeutic effect and increase side effect. Our study was to evaluate PYM-loaded chitosan thermogels for sustained and localized embolization therapy. It was shown that in vitro release of PYM thermogels could be delayed up to 12 days. The results measured by MTT assay showed that PYM thermogels could inhibit proliferation and induce apoptosis of EA.hy926 cells in a concentration and time dependent manner. In vivo pharmacokinetics study demonstrated that compared with PYM injections, PYM thermogels had a better sustained delivery of PYM. Macroscopic observation and histological examination of rabbit ear veins displayed that after administration with PYM thermogels for 18 days, obvious venous embolization and inflammatory response could be found. These results indicate that PYM thermogels is likely to achieve excellent prospects for VM treatment.
Collapse
Affiliation(s)
- Fen Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Shuangshuang Song
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Hongwei Wang
- Department of Oromaxillofacial Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, PR China
| | - Wenji Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Congcong Lin
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Shilin Ma
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Tiantian Ye
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Ling Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Xinggang Yang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China
| | - Xingjun Qin
- Department of Oromaxillofacial Head and Neck Oncology, Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University, School of Medicine, Shanghai Key Laboratory of Stomatology, 639 Zhizaoju Road, Shanghai 200011, PR China.
| | - Weisan Pan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, PR China.
| |
Collapse
|
38
|
Singh A, Peppas NA. Hydrogels and scaffolds for immunomodulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:6530-41. [PMID: 25155610 PMCID: PMC4269549 DOI: 10.1002/adma.201402105] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 06/27/2014] [Indexed: 05/17/2023]
Abstract
For over two decades, immunologists and biomaterials scientists have co-existed in parallel world with the rationale of understanding the molecular profile of immune responses to vaccination, implantation, and treating incurable diseases. Much of the field of biomaterial-based immunotherapy has relied on evaluating model antigens such as chicken egg ovalbumin in mouse models but their relevance to humans has been point of much discussion. Nevertheless, such model antigens have provided important insights into the mechanisms of immune regulation and served as a proof-of-concept for plethora of biomaterial-based vaccines. After years of extensive development of numerous biomaterials for immunomodulation, it is only recently that an experimental scaffold vaccine implanted beneath the skin has begun to use the human model to study the immune responses to cancer vaccination by co-delivering patient-derived tumor lysates and immunomodulatory proteins. If successful, this scaffold vaccine will change the way we approached untreatable cancers, but more importantly, will allow a faster and more rational translation of therapeutic regimes to other cancers, chronic infections, and autoimmune diseases. Most materials reviews have focused on immunomodulatory adjuvants and micro-nano-particles. Here we provide an insight into emerging hydrogel and scaffold based immunomodulatory approaches that continue to demonstrate efficacy against immune associated diseases.
Collapse
Affiliation(s)
- Ankur Singh
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Nicholas A. Peppas
- Department of Chemical Engineering, Department of Biomedical Engineering and College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
39
|
Lee C, Choi JS, Kim I, Byeon HJ, Kim TH, Oh KT, Lee ES, Lee KC, Youn YS. Decanoic acid-modified glycol chitosan hydrogels containing tightly adsorbed palmityl-acylated exendin-4 as a long-acting sustained-release anti-diabetic system. Acta Biomater 2014; 10:812-20. [PMID: 24140611 DOI: 10.1016/j.actbio.2013.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 10/02/2013] [Accepted: 10/10/2013] [Indexed: 11/16/2022]
Abstract
Decanoic acid-modified glycol chitosan (DA-GC) hydrogels containing tightly adsorbed palmitic acid-modified exendin-4 (Ex4-C16) were prepared, and their pharmaceutical abilities as a long-acting sustained-release exendin-4 system for the treatment of diabetes were evaluated. Glycol chitosan (GC) was conjugated with N-hydroxysuccinimide-activated decanoic acid (DA) in anhydrous 0.4% dimethylaminopyridine/dimethylsulfoxide at different feed ratios. DA-GC hydrogels formed by physical self-assembly during dialysis vs. deionized water, and their inner network structures, swelling or gel-forming abilities and release properties were examined. The hypoglycemia caused by Ex4-C16-loaded DA-GC hydrogels was evaluated by subcutaneous administration in type 2 diabetic db/db mice. The results obtained showed that GC prepared at a DA:GC feed ratio of 1:100 had optimal properties with respect to hydrogel swelling, stiffness and Ex4-C16 incorporation, whereas DA-GC hydrogels prepared at a feed ratio of greater than 1:100 formed gels that were too stiff. The in vitro and in vivo release of Ex4-C16 from DA-GC hydrogels was dramatically delayed compared with native Ex4 probably due to strong hydrophobic interactions. In particular, Ex4-C16 in DA-GC hydrogels was found to be present around the injection site up to 10 days after subcutaneous administration, whereas Ex4 in DA-GC hydrogels was cleared from injection sites in ≈ 2 days in ICR mice. Finally, the hypoglycemia induced by Ex4-C16 DA-GC hydrogels was maintained for >7 days. Our findings demonstrate that Ex4-C16 DA-GC hydrogels offer a potential delivery system for the long-term treatment of type 2 diabetes.
Collapse
Affiliation(s)
- Changkyu Lee
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Ji Su Choi
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Insoo Kim
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Hyeong Jun Byeon
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Tae Hyung Kim
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Kyung Taek Oh
- College of Pharmacy, Chung-Ang University, 221 Heukseok dong, Dongjak-gu, Seoul 155-756, Republic of Korea
| | - Eun Seong Lee
- Division of Biotechnology, The Catholic University of Korea, 43-1 Yeokgok 2-dong, Wonmi-gu, Bucheon-si, Gyeonggi-do 420-743, Republic of Korea
| | - Kang Choon Lee
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, Republic of Korea
| | - Yu Seok Youn
- School of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon 440-746, Republic of Korea.
| |
Collapse
|
40
|
Abstract
The National Key Laboratory of Biochemical Engineering established in 1995 is affiliated with the Institute of Process Engineering, Chinese Academy of Sciences (CAS), and located in Zhong-guan-cun (Beijing, China). The National Key Laboratory of Biochemical Engineering is working towards developments in the fields of bio-reaction, bioseparation and bio-formulation, by chemical and material methods. Over the last 5 years, approximately 200 scientists and students have worked at the laboratory, and published over 400 articles. Numerous universities, companies and institutes have established cooperative relationships with this laboratory, and over 70 cooperative research programs with other researchers have been conducted in the past few years.
Collapse
|