1
|
Romero-Torrecilla JA, Echanove-González de Anleo M, Martínez-Ohárriz C, Ripalda-Cemboráin P, López-Martínez T, Abizanda G, Valdés-Fernández J, Prandota J, Muiños-López E, Garbayo E, Prósper F, Blanco-Prieto MJ, Granero-Moltó F. 3D-printed polycaprolactone scaffolds functionalized with poly(lactic-co-glycolic) acid microparticles enhance bone regeneration through tunable drug release. Acta Biomater 2025; 198:219-233. [PMID: 40220944 DOI: 10.1016/j.actbio.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Numerous tissue engineering strategies aim to enable the in situ and controlled release of both cells and biologically relevant factors, mimicking physiological regenerative processes. A notable example is the release of rhBMP-2 for treating bone nonunion. By adopting a quasi-physiological approach, we can mitigate the side effects that have hindered its clinical application. Here, we present a customizable 3D-printed polycaprolactone (PCL) scaffold functionalized with poly(lactic-co-glycolic) acid (PLGA) microparticles through covalent binding, designed to mimic the periosteum structure. This scaffold was then functionalized with PLGA microparticles through covalent binding, enabling in situ delivery of rhBMP-2. This construct exhibits significant osteogenic and osteoinductive potential in vitro, promoting the differentiation of periosteum-derived mesenchymal progenitor cells into osteoblasts. Moreover, in vivo testing using a nonunion model (critical size defect) demonstrated therapeutic efficacy with a reduced net morphogen dose. Therefore, this customizable 3D scaffold represents a valuable approach for enhancing bone regeneration and holds significant potential for promoting healing in cases of nonunion fractures. This approach combines a customizable 3D scaffold with controlled rhBMP-2 release, offering a potentially more effective and safer solution for bone regeneration compared to current methods. STATEMENT OF SIGNIFICANCE: As the incidence of bone fractures continues to rise, nonunion remains a significant challenge in orthopedics, becoming a major clinical and economic burden. We present a tissue engineering strategy employing a customizable 3D-printed polycaprolactone scaffold functionalized with covalently bound poly(lactic-co-glycolic acid) microparticles for the localized release of rhBMP-2. By mimicking key features of the periosteum, this scaffold promotes bone regeneration while minimizing the risk of ectopic bone formation. In vivo tests conducted in a critical-size defect model demonstrated effective bone bridging, highlighting the therapeutic potential of the scaffold. The simple manufacturing process, potential for scale-up production, long-term storage capability, and options for customization, including combinations of different molecules or adjuvants, demonstrate that this approach possesses significant translational potential.
Collapse
Affiliation(s)
- Juan Antonio Romero-Torrecilla
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain; Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Miguel Echanove-González de Anleo
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain; Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | | | - Purificación Ripalda-Cemboráin
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain; Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain; Department of Orthopedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Tania López-Martínez
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain; Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Gloria Abizanda
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain; Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - José Valdés-Fernández
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain; Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | | | - Emma Muiños-López
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain; Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain.
| | - Elisa Garbayo
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain; Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain.
| | - Felipe Prósper
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain; Department of Hematology, Clínica Universidad de Navarra, Pamplona, Spain
| | - María J Blanco-Prieto
- Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain; Department of Pharmaceutical Sciences, Faculty of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Froilán Granero-Moltó
- Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain; Biomedical Engineering Program, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain; Department of Orthopedic Surgery and Traumatology, Clínica Universidad de Navarra, Pamplona, Spain; Instituto de Investigaciones Sanitarias de Navarra (IdiSNA), Pamplona, Spain
| |
Collapse
|
2
|
Sagoe PNK, Velázquez EJM, Espiritusanto YM, Gilbert A, Orado T, Wang Q, Jain E. Fabrication of PEG-PLGA Microparticles with Tunable Sizes for Controlled Drug Release Application. Molecules 2023; 28:6679. [PMID: 37764454 PMCID: PMC10534673 DOI: 10.3390/molecules28186679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Polymeric microparticles of polyethyleneglycol-polylactic acid-co-glycolic acid (PEG-PLGA) are widely used as drug carriers for a variety of applications due to their unique characteristics. Although existing techniques for producing polymeric drug carriers offer the possibility of achieving greater production yield across a wide range of sizes, these methods are improbable to precisely tune particle size while upholding uniformity of particle size and morphology, ensuring consistent production yield, maintaining batch-to-batch reproducibility, and improving drug loading capacity. Herein, we developed a novel scalable method for the synthesis of tunable-sized microparticles with improved monodispersity and batch-to-batch reproducibility via the coaxial flow-phase separation technique. The study evaluated the effect of various process parameters on microparticle size and polydispersity, including polymer concentration, stirring rate, surfactant concentration, and the organic/aqueous phase flow rate and volume ratio. The results demonstrated that stirring rate and polymer concentration had the most significant impact on the mean particle size and distribution, whereas surfactant concentration had the most substantial impact on the morphology of particles. In addition to synthesizing microparticles of spherical morphology yielding particle sizes in the range of 5-50 µm across different formulations, we were able to also synthesize several microparticles exhibiting different morphologies and particle concentrations as a demonstration of the tunability and scalability of this method. Notably, by adjusting key determining process parameters, it was possible to achieve microparticle sizes in a comparable range (5-7 µm) for different formulations despite varying the concentration of polymer and volume of polymer solution in the organic phase by an order of magnitude. Finally, by the incorporation of fluorescent dyes as model hydrophilic and hydrophobic drugs, we further demonstrated how polymer amount influences drug loading capacity, encapsulation efficiency, and release kinetics of these microparticles of comparable sizes. Our study provides a framework for fabricating both hydrophobic and hydrophilic drug-loaded microparticles and elucidates the interplay between fabrication parameters and the physicochemical properties of microparticles, thereby offering an itinerary for expanding the applicability of this method for producing polymeric microparticles with desirable characteristics for specific drug delivery applications.
Collapse
Affiliation(s)
- Paul Nana Kwame Sagoe
- Department of Biomedical and Chemical Engineering, Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, NY 13244, USA; (P.N.K.S.); (Y.M.E.); (T.O.)
| | | | - Yohely Maria Espiritusanto
- Department of Biomedical and Chemical Engineering, Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, NY 13244, USA; (P.N.K.S.); (Y.M.E.); (T.O.)
| | - Amelia Gilbert
- Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA;
| | - Thalma Orado
- Department of Biomedical and Chemical Engineering, Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, NY 13244, USA; (P.N.K.S.); (Y.M.E.); (T.O.)
| | - Qiu Wang
- School of Education, Syracuse University, Syracuse, NY 13244, USA;
| | - Era Jain
- Department of Biomedical and Chemical Engineering, Bioinspired Syracuse: Institute for Material and Living System, Syracuse University, Syracuse, NY 13244, USA; (P.N.K.S.); (Y.M.E.); (T.O.)
| |
Collapse
|
3
|
Mihalik NE, Wen S, Driesschaert B, Eubank TD. Formulation and In Vitro Characterization of PLGA/PLGA-PEG Nanoparticles Loaded with Murine Granulocyte-Macrophage Colony-Stimulating Factor. AAPS PharmSciTech 2021; 22:191. [PMID: 34169366 DOI: 10.1208/s12249-021-02049-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has demonstrated notable clinical activity in cancer immunotherapy, but it is limited by systemic toxicities, poor bioavailability, rapid clearance, and instability in vivo. Nanoparticles (NPs) may overcome these limitations and provide a mechanism for passive targeting of tumors. This study aimed to develop GM-CSF-loaded PLGA/PLGA-PEG NPs and evaluate them in vitro as a potential candidate for in vivo administration. NPs were created by a phase-separation technique that did not require toxic/protein-denaturing solvents or harsh agitation techniques and encapsulated GM-CSF in a more stable precipitated form. NP sizes were within 200 nm for enhanced permeability and retention (EPR) effect with negative zeta potentials, spherical morphology, and high entrapment efficiencies. The optimal formulation was identified by sustained release of approximately 70% of loaded GM-CSF over 24 h, alongside an average size of 143 ± 35 nm and entrapment efficiency of 84 ± 5%. These NPs were successfully freeze-dried in 5% (w/v) hydroxypropyl-β-cyclodextrin for long-term storage and further characterized. Bioactivity of released GM-CSF was determined by observing GM-CSF receptor activation on murine monocytes and remained fully intact. NPs were not cytotoxic to murine bone marrow-derived macrophages (BMDMs) at concentrations up to 1 mg/mL as determined by MTT and trypan blue exclusion assays. Lastly, NP components generated no significant transcription of inflammation-regulating genes from BMDMs compared to IFNγ+LPS "M1" controls. This report lays the preliminary groundwork to validate in vivo studies with GM-CSF-loaded PLGA/PEG-PLGA NPs for tumor immunomodulation. Overall, these data suggest that in vivo delivery will be well tolerated.
Collapse
|
4
|
Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater 2020; 9:153-174. [PMID: 33058072 PMCID: PMC7718366 DOI: 10.1007/s40204-020-00139-y] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Polymeric microparticles (MPs) are recognized as very popular carriers to increase the bioavailability and bio-distribution of both lipophilic and hydrophilic drugs. Among different kinds of polymers, poly-(lactic-co-glycolic acid) (PLGA) is one of the most accepted materials for this purpose, because of its biodegradability (due to the presence of ester linkages that are degraded by hydrolysis in aqueous environments) and safety (PLGA is a Food and Drug Administration (FDA)-approved compound). Moreover, its biodegradability depends on the number of glycolide units present in the structure, indeed, lower glycol content results in an increased degradation time and conversely a higher monomer unit number results in a decreased time. Due to this feature, it is possible to design and fabricate MPs with a programmable and time-controlled drug release. Many approaches and procedures can be used to prepare MPs. The chosen fabrication methodology influences size, stability, entrapment efficiency, and MPs release kinetics. For example, lipophilic drugs as chemotherapeutic agents (doxorubicin), anti-inflammatory non-steroidal (indomethacin), and nutraceuticals (curcumin) were successfully encapsulated in MPs prepared by single emulsion technique, while water-soluble compounds, such as aptamer, peptides and proteins, involved the use of double emulsion systems to provide a hydrophilic compartment and prevent molecular degradation. The purpose of this review is to provide an overview about the preparation and characterization of drug-loaded PLGA MPs obtained by single, double emulsion and microfluidic techniques, and their current applications in the pharmaceutical industry.Graphic abstract.
Collapse
Affiliation(s)
- Elena Lagreca
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| |
Collapse
|
5
|
Infante JC. Nanoparticle-Based Systems for Delivery of Protein Therapeutics to the Spinal Cord. Front Neurosci 2018; 12:484. [PMID: 30072866 PMCID: PMC6060369 DOI: 10.3389/fnins.2018.00484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
Recent studies have demonstrated that delivery of protein therapeutics to the spinal cord may promote functional axon regeneration, providing a pathway for recovery of certain motor skills. The timeframe for delivery of protein therapeutics, however, must be modulated to prevent bulk release of the therapeutics and minimize the frequency of implantations. This perspective examines both affinity-based and nanoparticle-based strategies for delivery of neurotrophic factors (NFs) to the spinal cord in an effective, safe, and tunable manner.
Collapse
Affiliation(s)
- Juan C Infante
- Department of Molecular and Cellular Biology, Harvard College, Harvard University, Cambridge, MA, United States
| |
Collapse
|
6
|
Haji Mansor M, Najberg M, Contini A, Alvarez-Lorenzo C, Garcion E, Jérôme C, Boury F. Development of a non-toxic and non-denaturing formulation process for encapsulation of SDF-1α into PLGA/PEG-PLGA nanoparticles to achieve sustained release. Eur J Pharm Biopharm 2018; 125:38-50. [DOI: 10.1016/j.ejpb.2017.12.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 12/12/2017] [Accepted: 12/29/2017] [Indexed: 12/28/2022]
|
7
|
Ali ME, Lamprecht A. Spray freeze drying as an alternative technique for lyophilization of polymeric and lipid-based nanoparticles. Int J Pharm 2017; 516:170-177. [DOI: 10.1016/j.ijpharm.2016.11.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/12/2016] [Accepted: 11/08/2016] [Indexed: 12/01/2022]
|
8
|
Ergul Yilmaz Z, Cordonnier T, Debuigne A, Calvignac B, Jerome C, Boury F. Protein encapsulation and release from PEO-b-polyphosphoester templated calcium carbonate particles. Int J Pharm 2016; 513:130-137. [DOI: 10.1016/j.ijpharm.2016.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/30/2016] [Accepted: 09/02/2016] [Indexed: 11/16/2022]
|
9
|
Fabien V, Minh-Quan L, Michelle S, Guillaume B, Van-Thanh T, Marie-Claire VJ. Development of prilling process for biodegradable microspheres through experimental designs. Int J Pharm 2016; 498:96-109. [PMID: 26656302 DOI: 10.1016/j.ijpharm.2015.11.051] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/27/2015] [Accepted: 11/28/2015] [Indexed: 01/29/2023]
Abstract
The prilling process proposes a microparticle formulation easily transferable to the pharmaceutical production, leading to monodispersed and highly controllable microspheres. PLGA microspheres were used for carrying an encapsulated protein and adhered stem cells on its surface, proposing a tool for regeneration therapy against injured tissue. This work focused on the development of the production of PLGA microspheres by the prilling process without toxic solvent. The required production quality needed a complete optimization of the process. Seventeen parameters were studied through experimental designs and led to an acceptable production. The key parameters and mechanisms of formation were highlighted.
Collapse
Affiliation(s)
- Violet Fabien
- LUNAM Université, Micro et Nanomédecines Biomimétiques (MINT), F-49933 Angers, France; INSERM U1066, F-49933 Angers, France
| | - Le Minh-Quan
- LUNAM Université, Micro et Nanomédecines Biomimétiques (MINT), F-49933 Angers, France; INSERM U1066, F-49933 Angers, France
| | - Sergent Michelle
- Aix Marseille Université, LISA, EA 4672, 13013 Marseille, France
| | - Bastiat Guillaume
- LUNAM Université, Micro et Nanomédecines Biomimétiques (MINT), F-49933 Angers, France; INSERM U1066, F-49933 Angers, France
| | - Tran Van-Thanh
- LUNAM Université, Micro et Nanomédecines Biomimétiques (MINT), F-49933 Angers, France; INSERM U1066, F-49933 Angers, France
| | - Venier-Julienne Marie-Claire
- LUNAM Université, Micro et Nanomédecines Biomimétiques (MINT), F-49933 Angers, France; INSERM U1066, F-49933 Angers, France.
| |
Collapse
|
10
|
Sambiagio C, Munday RH, John Blacker A, Marsden SP, McGowan PC. Green alternative solvents for the copper-catalysed arylation of phenols and amides. RSC Adv 2016. [DOI: 10.1039/c6ra02265k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The use of alkyl acetates as green organic solvents for the Cu-catalysed arylation of phenols and amides is reported.
Collapse
Affiliation(s)
- Carlo Sambiagio
- Institute for Process Research and Development (iPRD)
- School of Chemistry
- University of Leeds
- Leeds
- UK
| | | | - A. John Blacker
- Institute for Process Research and Development (iPRD)
- School of Chemistry
- University of Leeds
- Leeds
- UK
| | - Stephen P. Marsden
- Institute for Process Research and Development (iPRD)
- School of Chemistry
- University of Leeds
- Leeds
- UK
| | - Patrick C. McGowan
- Institute for Process Research and Development (iPRD)
- School of Chemistry
- University of Leeds
- Leeds
- UK
| |
Collapse
|
11
|
Bone Regeneration from PLGA Micro-Nanoparticles. BIOMED RESEARCH INTERNATIONAL 2015; 2015:415289. [PMID: 26509156 PMCID: PMC4609778 DOI: 10.1155/2015/415289] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/04/2015] [Indexed: 12/19/2022]
Abstract
Poly-lactic-co-glycolic acid (PLGA) is one of the most widely used synthetic polymers for development of delivery systems for drugs and therapeutic biomolecules and as component of tissue engineering applications. Its properties and versatility allow it to be a reference polymer in manufacturing of nano- and microparticles to encapsulate and deliver a wide variety of hydrophobic and hydrophilic molecules. It additionally facilitates and extends its use to encapsulate biomolecules such as proteins or nucleic acids that can be released in a controlled way. This review focuses on the use of nano/microparticles of PLGA as a delivery system of one of the most commonly used growth factors in bone tissue engineering, the bone morphogenetic protein 2 (BMP2). Thus, all the needed requirements to reach a controlled delivery of BMP2 using PLGA particles as a main component have been examined. The problems and solutions for the adequate development of this system with a great potential in cell differentiation and proliferation processes under a bone regenerative point of view are discussed.
Collapse
|
12
|
Swed A, Cordonnier T, Dénarnaud A, Boyer C, Guicheux J, Weiss P, Boury F. Sustained release of TGF-β1 from biodegradable microparticles prepared by a new green process in CO2 medium. Int J Pharm 2015. [DOI: 10.1016/j.ijpharm.2015.07.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
13
|
Zeynep EY, Antoine D, Brice C, Frank B, Christine J. Double hydrophilic polyphosphoester containing copolymers as efficient templating agents for calcium carbonate microparticles. J Mater Chem B 2015; 3:7227-7236. [PMID: 32262830 DOI: 10.1039/c5tb00887e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The use of calcium carbonate (CaCO3) microparticles is becoming more and more attractive in many fields especially in biomedical applications in which the fine tuning of the size, morphology and crystalline form of the CaCO3 particles is crucial. Although some structuring compounds, like hyaluronic acid, give satisfying results, the control of the particle structure still has to be improved. To this end, we evaluated the CaCO3 structuring capacity of novel well-defined double hydrophilic block copolymers composed of poly(ethylene oxide) and a polyphosphoester segment with an affinity for calcium like poly(phosphotriester)s bearing pendent carboxylic acids or poly(phosphodiester)s with a negatively charged oxygen atom on each repeating monomer unit. These copolymers were synthesized by a combination of organocatalyzed ring opening polymerization, thiol-yne click chemistry and protection/deprotection methods. The formulation of CaCO3 particles was then performed in the presence of these block copolymers (i) by the classical chemical pathway involving CaCl2 and Na2CO3 and (ii) by a process based on supercritical carbon dioxide (scCO2) technology in which CO3 2- ions are generated in aqueous media and react with Ca2+ ions. Porous CaCO3 microspheres composed of vaterite nanocrystals were obtained. Moreover, a clear dependence of the particle size on the structure of the templating agent was emphasized. In this work, we show that the use of the supercritical process and the substitution of hyaluronic acid for a carboxylic acid containing copolymer decreases the size of the CaCO3 particles by a factor of 6 (∼1.5 μm) while preventing their aggregation.
Collapse
Affiliation(s)
- Ergul Yilmaz Zeynep
- Chemistry Department, Center for Education and Research on Macromolecules (CERM), University of Liège (ULg), Sart Tilman, Building B6a-third floor, Liège, B-4000, Belgium.
| | | | | | | | | |
Collapse
|
14
|
Tran MK, Swed A, Calvignac B, Dang KN, Hassani LN, Cordonnier T, Boury F. Preparation of polymeric particles in CO2 medium using non-toxic solvents: discussions on the mechanism of particle formation. J Mater Chem B 2015; 3:1573-1582. [DOI: 10.1039/c4tb01319k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Development of a novel and effective process for protein encapsulation into PLGA microparticles by the emulsification–extraction method in CO2 medium using non-toxic solvents.
Collapse
Affiliation(s)
- My-Kien Tran
- LUNAM Université
- Angers
- France
- INSERM U1066
- Micro-Nanomédecines Biomimétiques
| | - Amin Swed
- LUNAM Université
- Angers
- France
- INSERM U1066
- Micro-Nanomédecines Biomimétiques
| | - Brice Calvignac
- LUNAM Université
- Angers
- France
- INSERM U1066
- Micro-Nanomédecines Biomimétiques
| | - Kim-Ngan Dang
- LUNAM Université
- Angers
- France
- INSERM U1066
- Micro-Nanomédecines Biomimétiques
| | - Leila N. Hassani
- LUNAM Université
- Angers
- France
- INSERM U1066
- Micro-Nanomédecines Biomimétiques
| | - Thomas Cordonnier
- LUNAM Université
- Angers
- France
- INSERM U1066
- Micro-Nanomédecines Biomimétiques
| | - Frank Boury
- LUNAM Université
- Angers
- France
- INSERM U1066
- Micro-Nanomédecines Biomimétiques
| |
Collapse
|
15
|
Tran MK, Hassani L, Calvignac B, Beuvier T, Hindré F, Boury F. Lysozyme encapsulation within PLGA and CaCO3 microparticles using supercritical CO2 medium. J Supercrit Fluids 2013. [DOI: 10.1016/j.supflu.2013.02.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Hassani LN, Hindré F, Beuvier T, Calvignac B, Lautram N, Gibaud A, Boury F. Lysozyme encapsulation into nanostructured CaCO3 microparticles using a supercritical CO2 process and comparison with the normal route. J Mater Chem B 2013; 1:4011-4019. [DOI: 10.1039/c3tb20467g] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|