1
|
Muñoz-Camargo C, Cruz JC. From inside to outside: exploring extracellular antimicrobial histone-derived peptides as multi-talented molecules. J Antibiot (Tokyo) 2024; 77:553-568. [PMID: 38871806 PMCID: PMC11347383 DOI: 10.1038/s41429-024-00744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/23/2024] [Accepted: 05/09/2024] [Indexed: 06/15/2024]
Abstract
The emergence of bacterial resistance to antibiotics poses a global health threat, necessitating innovative solutions. The contemporary challenge lies in bacterial resistance, impacting morbidity, mortality, and global economies. Antimicrobial peptides (AMPs) offer a promising avenue for addressing antibiotic resistance. The Antimicrobial Peptide Database catalogs 3569 peptides from various organisms, representing a rich resource for drug development. Histones, traditionally recognized for their role in nucleosome structures, have gained attention for their extracellular functions, including antimicrobial and immunomodulatory properties. This review aims to thoroughly investigate antimicrobial peptides derived from histones in various organisms, elucidating their mechanisms. In addition, it gives us clues about how extracellular histones might be used in drug delivery systems to fight bacterial infections. This comprehensive analysis emphasizes the importance of histone-derived peptides in developing innovative therapeutic strategies for evolving bacterial challenges.
Collapse
Affiliation(s)
- Carolina Muñoz-Camargo
- Grupo de investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Departamento de Ingeniería Biomédica, Universidad de los Andes, Bogotá, Colombia.
| | - Juan C Cruz
- Grupo de investigación en Nanobiomateriales, Ingeniería Celular y Bioimpresión (GINIB), Departamento de Ingeniería Biomédica, Universidad de los Andes, Bogotá, Colombia
| |
Collapse
|
2
|
Zong P, Feng J, Legere N, Li Y, Yue Z, Li CX, Mori Y, Miller B, Hao B, Yue L. TRPM2 enhances ischemic excitotoxicity by associating with PKCγ. Cell Rep 2024; 43:113722. [PMID: 38308841 PMCID: PMC11023021 DOI: 10.1016/j.celrep.2024.113722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/30/2023] [Accepted: 01/13/2024] [Indexed: 02/05/2024] Open
Abstract
N-methyl-D-aspartate receptor (NMDAR)-mediated glutamate excitotoxicity significantly contributes to ischemic neuronal death and post-recanalization infarction expansion. Despite tremendous efforts, targeting NMDARs has proven unsuccessful in clinical trials for mitigating brain injury. Here, we show the discovery of an interaction motif for transient receptor potential melastatin 2 (TRPM2) and protein kinase Cγ (PKCγ) association and demonstrate that TRPM2-PKCγ uncoupling is an effective therapeutic strategy for attenuating NMDAR-mediated excitotoxicity in ischemic stroke. We demonstrate that the TRPM2-PKCγ interaction allows TRPM2-mediated Ca2+ influx to promote PKCγ activation, which subsequently enhances TRPM2-induced potentiation of extrasynaptic NMDAR (esNMDAR) activity. By identifying the PKCγ binding motif on TRPM2 (M2PBM), which directly associates with the C2 domain of PKCγ, an interfering peptide (TAT-M2PBM) is developed to disrupt TRPM2-PKCγ interaction without compromising PKCγ function. M2PBM deletion or TRPM2-PKCγ dissociation abolishes both TRPM2-PKCγ and TRPM2-esNMDAR couplings, resulting in reduced excitotoxic neuronal death and attenuated ischemic brain injury.
Collapse
Affiliation(s)
- Pengyu Zong
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA; Institute for the Brain and Cognitive Sciences, University of Connecticut, 337 Mansfield Road, Unit 1272, Storrs, CT 06269, USA
| | - Jianlin Feng
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Nicholas Legere
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA; Department of Genetics and Genome Sciences, UConn Health, Farmington, CT 06030, USA
| | - Yunfeng Li
- Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Zhichao Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Cindy X Li
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA; Institute for the Brain and Cognitive Sciences, University of Connecticut, 337 Mansfield Road, Unit 1272, Storrs, CT 06269, USA
| | - Yasuo Mori
- Laboratory of Molecular Biology, Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Barbara Miller
- Departments of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, P.O. Box 850, Hershey, PA 17033, USA
| | - Bing Hao
- Department of Molecular Biology and Biophysics, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Lixia Yue
- Department of Cell Biology, Calhoun Cardiology Center, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA.
| |
Collapse
|
3
|
Nasrullah M, Meenakshi Sundaram DN, Claerhout J, Ha K, Demirkaya E, Uludag H. Nanoparticles and cytokine response. Front Bioeng Biotechnol 2023; 11:1243651. [PMID: 37701495 PMCID: PMC10493271 DOI: 10.3389/fbioe.2023.1243651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/14/2023] [Indexed: 09/14/2023] Open
Abstract
Synthetic nanoparticles (NPs) are non-viral equivalents of viral gene delivery systems that are actively explored to deliver a spectrum of nucleic acids for diverse range of therapies. The success of the nanoparticulate delivery systems, in the form of efficacy and safety, depends on various factors related to the physicochemical features of the NPs, as well as their ability to remain "stealth" in the host environment. The initial cytokine response upon exposure to nucleic acid bearing NPs is a critical component of the host response and, unless desired, should be minimized to prevent the unintended consequences of NP administration. In this review article, we will summarize the most recent literature on cytokine responses to nanoparticulate delivery systems and identify the main factors affecting this response. The NP features responsible for eliciting the cytokine response are articulated along with other factors related to the mode of therapeutic administration. For diseases arising from altered cytokine pathophysiology, attempts to silence the individual components of cytokine response are summarized in the context of different diseases, and the roles of NP features on this respect are presented. We finish with the authors' perspective on the possibility of engineering NP systems with controlled cytokine responses. This review is intended to sensitize the reader with important issues related to cytokine elicitation of non-viral NPs and the means of controlling them to design improved interventions in the clinical setting.
Collapse
Affiliation(s)
- Mohammad Nasrullah
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | | | - Jillian Claerhout
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Khanh Ha
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Erkan Demirkaya
- Department of Paediatrics, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Hasan Uludag
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, AB, Canada
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
4
|
Sordi MB, Panahipour L, Gruber R. Oral squamous carcinoma cell lysates provoke exacerbated inflammatory response in gingival fibroblasts. Clin Oral Investig 2023; 27:4785-4794. [PMID: 37391526 PMCID: PMC10415472 DOI: 10.1007/s00784-023-05107-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/05/2023] [Indexed: 07/02/2023]
Abstract
OBJECTIVES To study whether damaged epithelial cells and gingival fibroblast could affect the expression of inflammatory cytokines in healthy cells. MATERIALS AND METHODS Cell suspensions were submitted to different treatments to obtain the lysates: no treatment (supernatant control), sonication, and freeze/thawing. All treatments were centrifuged, and the supernatants of the lysates were used for experimentation. Cell viability assays, RT-qPCR of IL1, IL6 and IL8, IL6 immunoassay, and immunofluorescence of NF-kB p65 were applied to verify the inflammatory crosstalk of damaged cells over healthy plated cells. Furthermore, titanium discs and collagen membranes were treated with lysates and checked for IL8 expression by RT-qPCR. RESULTS Lysates obtained upon sonication or freeze/thawing of oral squamous carcinoma cell lines provoked a robust increase in the expression of IL1, IL6, and IL8 by gingival fibroblasts, which was confirmed by IL6 immunoassays. Lysates obtained from the gingival fibroblasts failed to increase the expression of inflammatory cytokines in oral squamous carcinoma cells. Additionally, oral squamous carcinoma cell lysates caused the activation of the NF-kB signalling cascade in gingival fibroblasts as indicated by the phosphorylation and nuclear translocation of p65. Finally, oral squamous carcinoma cell lysates adhered to the titanium and collagen membrane surfaces and increased IL8 expression by gingival fibroblasts growing in these materials. CONCLUSIONS Injured oral epithelial cells can release factors that incite gingival fibroblasts to become pro-inflammatory. CLINICAL RELEVANCE Injuries affecting the oral mucosa generate epithelial fragments that may reach the underlying connective tissue and provoke inflammation. These injuries are routinely caused by mastication, sonication for teeth cleaning, teeth preparation, prostheses maladaptation, and implant drilling.
Collapse
Affiliation(s)
- Mariane Beatriz Sordi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
- Department of Dentistry, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland.
| |
Collapse
|
5
|
Sadeghian I, Heidari R, Raee MJ, Negahdaripour M. Cell-penetrating peptide-mediated delivery of therapeutic peptides/proteins to manage the diseases involving oxidative stress, inflammatory response and apoptosis. J Pharm Pharmacol 2022; 74:1085-1116. [PMID: 35728949 DOI: 10.1093/jpp/rgac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/22/2022] [Indexed: 11/13/2022]
Abstract
OBJECTIVES Peptides and proteins represent great potential for modulating various cellular processes including oxidative stress, inflammatory response, apoptosis and consequently the treatment of related diseases. However, their therapeutic effects are limited by their inability to cross cellular barriers. Cell-penetrating peptides (CPPs), which can transport cargoes into the cell, could resolve this issue, as would be discussed in this review. KEY FINDINGS CPPs have been successfully exploited in vitro and in vivo for peptide/protein delivery to treat a wide range of diseases involving oxidative stress, inflammatory processes and apoptosis. Their in vivo applications are still limited due to some fundamental issues of CPPs, including nonspecificity, proteolytic instability, potential toxicity and immunogenicity. SUMMARY Totally, CPPs could potentially help to manage the diseases involving oxidative stress, inflammatory response and apoptosis by delivering peptides/proteins that could selectively reach proper intracellular targets. More studies to overcome related CPP limitations and confirm the efficacy and safety of this strategy are needed before their clinical usage.
Collapse
Affiliation(s)
- Issa Sadeghian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Javad Raee
- Center for Nanotechnology in Drug Delivery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
6
|
Cell-Penetrating Peptides and Transportan. Pharmaceutics 2021; 13:pharmaceutics13070987. [PMID: 34210007 PMCID: PMC8308968 DOI: 10.3390/pharmaceutics13070987] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 12/21/2022] Open
Abstract
In the most recent 25–30 years, multiple novel mechanisms and applications of cell-penetrating peptides (CPP) have been demonstrated, leading to novel drug delivery systems. In this review, I present a brief introduction to the CPP area with selected recent achievements. This is followed by a nostalgic journey into the research in my own laboratories, which lead to multiple CPPs, starting from transportan and paving a way to CPP-based therapeutic developments in the delivery of bio-functional materials, such as peptides, proteins, vaccines, oligonucleotides and small molecules, etc.
Collapse
|
7
|
Yang Y, Li R, Zhang S, Zhang X. A fluorescent nanoprobe based on cell-penetrating peptides and quantum dots for ratiometric monitoring of pH fluctuation in lysosomes. Talanta 2021; 227:122208. [PMID: 33714476 DOI: 10.1016/j.talanta.2021.122208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
A lysosome-targeting ratiometric fluorescent nanoprobe based on cell-penetrating peptides (CPPs) and quantum dots (QDs) has been developed for monitoring pH fluctuation in living cells. The as-prepared nanoprobe is constructed by Rhodamine B labeled R9RGD CPPs as H+ response unit and the red fluorescent QDs as reference unit to achieve ratiometric pH measurement. With the help of RhB-R9RGD CPPs, the nanoprobe efficiently stains lysosomes and enables discernment of lysosomal pH fluctuation in cells treated with different pH buffers and drug stimulation. The method of using dye labeled CPPs to realize functionalization of nanoparticle in one-step reported herein is expected to obtain wider applications in the detection of subcellular active substances by combining different small molecular probes and functional peptides.
Collapse
Affiliation(s)
- Yan Yang
- College of Chemical Engineering, Qinghai University, Xining, 810016, China; Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Rui Li
- College of Chemical Engineering, Qinghai University, Xining, 810016, China
| | - Sichun Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China.
| | - Xinrong Zhang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
EJP18 peptide derived from the juxtamembrane domain of epidermal growth factor receptor represents a novel membrane-active cell-penetrating peptide. Biochem J 2020; 477:45-60. [DOI: 10.1042/bcj20190452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 01/18/2023]
Abstract
Membrane-active peptides have been extensively studied to probe protein–membrane interactions, to act as antimicrobial agents and cell-penetrating peptides (CPPs) for the delivery of therapeutic agents to cells. Hundreds of membrane-active sequences acting as CPPs have now been described including bioportides that serve as single entity modifiers of cell physiology at the intracellular level. Translation of promising CPPs in pre-clinical studies have, however, been disappointing as only few identified delivery systems have progressed to clinical trials. To search for novel membrane-active peptides a sequence from the EGFR juxtamembrane region was identified (named EJP18), synthesised, and examined in its L- and D-form for its ability to mediate the delivery of a small fluorophore and whole proteins to cancer cell lines. Initial studies identified the peptide as being highly membrane-active causing extensive and rapid plasma membrane reorganisation, blebbing, and toxicity. At lower, non-toxic concentrations the peptides outperformed the well-characterised CPP octaarginine in cellular delivery capacity for a fluorophore or proteins that were associated with the peptide covalently or via ionic interactions. EJP18 thus represents a novel membrane-active peptide that may be used as a naturally derived model for biophysical protein–membrane interactions or for delivery of cargo into cells for therapeutic or diagnostic applications.
Collapse
|
9
|
Lee ACL, Harris JL, Khanna KK, Hong JH. A Comprehensive Review on Current Advances in Peptide Drug Development and Design. Int J Mol Sci 2019; 20:ijms20102383. [PMID: 31091705 PMCID: PMC6566176 DOI: 10.3390/ijms20102383] [Citation(s) in RCA: 417] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 11/16/2022] Open
Abstract
Protein-protein interactions (PPIs) execute many fundamental cellular functions and have served as prime drug targets over the last two decades. Interfering intracellular PPIs with small molecules has been extremely difficult for larger or flat binding sites, as antibodies cannot cross the cell membrane to reach such target sites. In recent years, peptides smaller size and balance of conformational rigidity and flexibility have made them promising candidates for targeting challenging binding interfaces with satisfactory binding affinity and specificity. Deciphering and characterizing peptide-protein recognition mechanisms is thus central for the invention of peptide-based strategies to interfere with endogenous protein interactions, or improvement of the binding affinity and specificity of existing approaches. Importantly, a variety of computation-aided rational designs for peptide therapeutics have been developed, which aim to deliver comprehensive docking for peptide-protein interaction interfaces. Over 60 peptides have been approved and administrated globally in clinics. Despite this, advances in various docking models are only on the merge of making their contribution to peptide drug development. In this review, we provide (i) a holistic overview of peptide drug development and the fundamental technologies utilized to date, and (ii) an updated review on key developments of computational modeling of peptide-protein interactions (PepPIs) with an aim to assist experimental biologists exploit suitable docking methods to advance peptide interfering strategies against PPIs.
Collapse
Affiliation(s)
- Andy Chi-Lung Lee
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan.
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou 333, Taiwan.
| | | | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia.
| | - Ji-Hong Hong
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan.
- Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou 333, Taiwan.
| |
Collapse
|
10
|
Tomich JM, Wessel E, Choi J, Avila LA. Nonviral Gene Therapy: Peptiplexes. NUCLEIC ACID NANOTHERANOSTICS 2019:247-276. [DOI: 10.1016/b978-0-12-814470-1.00008-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
11
|
Cell-Penetrating Peptides to Enhance Delivery of Oligonucleotide-Based Therapeutics. Biomedicines 2018; 6:biomedicines6020051. [PMID: 29734750 PMCID: PMC6027240 DOI: 10.3390/biomedicines6020051] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/21/2018] [Accepted: 05/03/2018] [Indexed: 01/16/2023] Open
Abstract
The promise of nucleic acid based oligonucleotides as effective genetic therapies has been held back by their low bioavailability and poor cellular uptake to target tissues upon systemic administration. One such strategy to improve upon delivery is the use of short cell-penetrating peptides (CPPs) that can be either directly attached to their cargo through covalent linkages or through the formation of noncovalent nanoparticle complexes that can facilitate cellular uptake. In this review, we will highlight recent proof-of-principle studies that have utilized both of these strategies to improve nucleic acid delivery and discuss the prospects for translation of this approach for clinical application.
Collapse
|
12
|
Kebebe D, Liu Y, Wu Y, Vilakhamxay M, Liu Z, Li J. Tumor-targeting delivery of herb-based drugs with cell-penetrating/tumor-targeting peptide-modified nanocarriers. Int J Nanomedicine 2018; 13:1425-1442. [PMID: 29563797 PMCID: PMC5849936 DOI: 10.2147/ijn.s156616] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer has become one of the leading causes of mortality globally. The major challenges of conventional cancer therapy are the failure of most chemotherapeutic agents to accumulate selectively in tumor cells and their severe systemic side effects. In the past three decades, a number of drug delivery approaches have been discovered to overwhelm the obstacles. Among these, nanocarriers have gained much attention for their excellent and efficient drug delivery systems to improve specific tissue/organ/cell targeting. In order to enhance targeting efficiency further and reduce limitations of nanocarriers, nanoparticle surfaces are functionalized with different ligands. Several kinds of ligand-modified nanomedicines have been reported. Cell-penetrating peptides (CPPs) are promising ligands, attracting the attention of researchers due to their efficiency to transport bioactive molecules intracellularly. However, their lack of specificity and in vivo degradation led to the development of newer types of CPP. Currently, activable CPP and tumor-targeting peptide (TTP)-modified nanocarriers have shown dramatically superior cellular specific uptake, cytotoxicity, and tumor growth inhibition. In this review, we discuss recent advances in tumor-targeting strategies using CPPs and their limitations in tumor delivery systems. Special emphasis is given to activable CPPs and TTPs. Finally, we address the application of CPPs and/or TTPs in the delivery of plant-derived chemotherapeutic agents.
Collapse
Affiliation(s)
- Dereje Kebebe
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Yuanyuan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yumei Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Maikhone Vilakhamxay
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiawei Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
13
|
Erlich‐Hadad T, Hadad R, Feldman A, Greif H, Lictenstein M, Lorberboum‐Galski H. TAT-MTS-MCM fusion proteins reduce MMA levels and improve mitochondrial activity and liver function in MCM-deficient cells. J Cell Mol Med 2018; 22:1601-1613. [PMID: 29265583 PMCID: PMC5824393 DOI: 10.1111/jcmm.13435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/25/2017] [Indexed: 12/14/2022] Open
Abstract
Methylmalonic aciduria (MMA) is a disorder of organic acid metabolism resulting from a functional defect of the mitochondrial enzyme, methylmalonyl-CoA mutase (MCM). The main treatments for MMA patients are dietary restriction of propiogenic amino acids and carnitine supplementation. Liver or combined liver/kidney transplantation has been used to treat those with the most severe clinical manifestations. Thus, therapies are necessary to help improve quality of life and prevent liver, renal and neurological complications. Previously, we successfully used the TAT-MTS-Protein approach for replacing a number of mitochondrial-mutated proteins. In this targeted system, TAT, an 11 a.a peptide, which rapidly and efficiently can cross biological membranes, is fused to a mitochondrial targeting sequence (MTS), followed by the mitochondrial mature protein which sends the protein into the mitochondria. In the mitochondria, the TAT-MTS is cleaved off and the native protein integrates into its natural complexes and is fully functional. In this study, we used heterologous MTSs of human, nuclear-encoded mitochondrial proteins, to target the human MCM protein into the mitochondria. All fusion proteins reached the mitochondria and successfully underwent processing. Treatment of MMA patient fibroblasts with these fusion proteins restored mitochondrial activity such as ATP production, mitochondrial membrane potential and oxygen consumption, indicating the importance of mitochondrial function in this disease. Treatment with the fusion proteins enhanced cell viability and most importantly reduced MMA levels. Treatment also enhanced albumin and urea secretion in a CRISPR/Cas9-engineered HepG2 MUT (-/-) liver cell line. Therefore, we suggest using this TAT-MTS-Protein approach for the treatment of MMA.
Collapse
Affiliation(s)
- Tal Erlich‐Hadad
- Department of Biochemistry and Molecular BiologyInstitute for Medical Research Israel‐Canada (IMRIC)Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Rita Hadad
- Department of Biochemistry and Molecular BiologyInstitute for Medical Research Israel‐Canada (IMRIC)Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | | | | | - Michal Lictenstein
- Department of Biochemistry and Molecular BiologyInstitute for Medical Research Israel‐Canada (IMRIC)Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| | - Haya Lorberboum‐Galski
- Department of Biochemistry and Molecular BiologyInstitute for Medical Research Israel‐Canada (IMRIC)Faculty of MedicineHebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
14
|
Bolhassani A, Jafarzade BS, Mardani G. In vitro and in vivo delivery of therapeutic proteins using cell penetrating peptides. Peptides 2017; 87:50-63. [PMID: 27887988 DOI: 10.1016/j.peptides.2016.11.011] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/18/2016] [Accepted: 11/21/2016] [Indexed: 02/07/2023]
Abstract
The failure of proteins to penetrate mammalian cells or target tumor cells restricts their value as therapeutic tools in a variety of diseases such as cancers. Recently, protein transduction domains (PTDs) or cell penetrating peptides (CPPs) have been shown to promote the delivery of therapeutic proteins or peptides into live cells. The successful delivery of proteins mainly depends on their physicochemical properties. Although, linear cell penetrating peptides are one of the most effective delivery vehicles; but currently, cyclic CPPs has been developed to potently transport bioactive full-length proteins into cells. Up to now, several small protein transduction domains from viral proteins including Tat or VP22 could be fused to other peptides or proteins to entry them in various cell types at a dose-dependent approach. A major disadvantage of PTD-fusion proteins is primary uptake into endosomal vesicles leading to inefficient release of the fusion proteins into the cytosol. Recently, non-covalent complex formation (Chariot) between proteins and CPPs has attracted a special interest to overcome some delivery limitations (e.g., toxicity). Many preclinical and clinical trials of CPP-based delivery are currently under evaluation. Generally, development of more efficient protein transduction domains would significantly increase the potency of protein therapeutics. Moreover, the synergistic or combined effects of CPPs with other delivery systems for protein/peptide drug delivery would promote their therapeutic effects in cancer and other diseases. In this review, we will describe the functions and implications of CPPs for delivering the therapeutic proteins or peptides in preclinical and clinical studies.
Collapse
Affiliation(s)
- Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| | | | - Golnaz Mardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
15
|
Intelligent substance delivery into cells using cell-penetrating peptides. Bioorg Med Chem Lett 2016; 27:121-130. [PMID: 27956345 DOI: 10.1016/j.bmcl.2016.11.083] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 11/22/2016] [Accepted: 11/26/2016] [Indexed: 12/18/2022]
Abstract
Cell-penetrating peptides (CPPs) are oligopeptides that can permeate the cell membrane. The use of a CPP-mediated transport system could be an excellent method for delivering cell-impermeable substances such as proteins, antibodies, antisense oligonucleotides, siRNAs, plasmids, drugs, fluorescent compounds, and nanoparticles as covalently or noncovalently conjugated cargo into cells. Nonetheless, the mechanisms through which CPPs are internalized remain unclear. Endocytosis and direct translocation through the membrane are the generally accepted routes. Internalization via both pathways can occur simultaneously, depending on cellular conditions. However, the peculiar property of CPPs has attracted many researchers, especially in drug discovery or development, who intend to deliver impermeable substances into cells through the cell membrane. The delivery of drugs using CPPs may non-invasively solve the problem of drug penetration into cells with the added benefit of low cytotoxicity. Moreover, macromolecules can also be delivered by this transport system. In this review, I discuss the possibilities and advantages of substance delivery into cells using CPPs.
Collapse
|
16
|
Sánchez-Navarro M, Garcia J, Giralt E, Teixidó M. Using peptides to increase transport across the intestinal barrier. Adv Drug Deliv Rev 2016; 106:355-366. [PMID: 27155131 DOI: 10.1016/j.addr.2016.04.031] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/24/2016] [Accepted: 04/29/2016] [Indexed: 02/05/2023]
Abstract
The oral route is the preferred for the administration of drugs; however, it has some serious limitations. One of the main disadvantages is poor permeability across the intestinal barrier. Various approaches are currently being adopted to overcome this issue. In this review, we describe the alternatives that use peptides to enhance intestinal absorption. First, we define the various sources of peptide enhancers followed by the analysis of the absorption mechanism used. We then comment on the possible toxic effects derived from their use as permeation enhancers, as well as potential formulation strategies. Finally, the advantages and drawbacks of peptides as intestinal enhancers are examined.
Collapse
|
17
|
Overview on experimental models of interactions between nanoparticles and the immune system. Biomed Pharmacother 2016; 83:1365-1378. [DOI: 10.1016/j.biopha.2016.08.060] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/14/2016] [Accepted: 08/24/2016] [Indexed: 01/05/2023] Open
|
18
|
Cooper BM, Putnam D. Polymers for siRNA Delivery: A Critical Assessment of Current Technology Prospects for Clinical Application. ACS Biomater Sci Eng 2016; 2:1837-1850. [PMID: 33440520 DOI: 10.1021/acsbiomaterials.6b00363] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The number of polymer-based vectors for siRNA delivery in clinical trials lags behind other delivery strategies; however, the molecular architectures and chemical compositions available to polymers make them attractive candidates for further exploration. Polymer vectors are extensively investigated in academic laboratories worldwide with fundamental progress having recently been made in the areas of high-throughput screening, synthetic methods, cellular internalization, endosomal escape and computational prediction and analysis. This review assesses recent advances within the field and highlights relevant developments from within the complementary fields of nanotechnology and protein chemistry with the intent to propose future work that addresses key gaps within the current body of knowledge, potentially advancing the development of the next generation of polymeric vectors.
Collapse
Affiliation(s)
- Bailey M Cooper
- Meinig School of Biomedical Engineering and ‡Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - David Putnam
- Meinig School of Biomedical Engineering and Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Krautwald S, Dewitz C, Fändrich F, Kunzendorf U. Inhibition of regulated cell death by cell-penetrating peptides. Cell Mol Life Sci 2016; 73:2269-84. [PMID: 27048815 PMCID: PMC4887531 DOI: 10.1007/s00018-016-2200-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 12/18/2022]
Abstract
Development of the means to efficiently and continuously renew missing and non-functional proteins in diseased cells remains a major goal in modern molecular medicine. While gene therapy has the potential to achieve this, substantial obstacles must be overcome before clinical application can be considered. A promising alternative approach is the direct delivery of non-permeant active biomolecules, such as oligonucleotides, peptides and proteins, to the affected cells with the purpose of ameliorating an advanced disease process. In addition to receptor-mediated endocytosis, cell-penetrating peptides are widely used as vectors for rapid translocation of conjugated molecules across cell membranes into intracellular compartments and the delivery of these therapeutic molecules is generally referred to as novel prospective protein therapy. As a broad coverage of the enormous amount of published data in this field is unrewarding, this review will provide a brief, focused overview of the technology and a summary of recent studies of the most commonly used protein transduction domains and their potential as therapeutic agents for the treatment of cellular damage and the prevention of regulated cell death.
Collapse
Affiliation(s)
- Stefan Krautwald
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany.
| | - Christin Dewitz
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Fred Fändrich
- Clinic for Applied Cellular Medicine, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| | - Ulrich Kunzendorf
- Department of Nephrology and Hypertension, University Hospital Schleswig-Holstein, 24105, Kiel, Germany
| |
Collapse
|
20
|
Dinca A, Chien WM, Chin MT. Intracellular Delivery of Proteins with Cell-Penetrating Peptides for Therapeutic Uses in Human Disease. Int J Mol Sci 2016; 17:263. [PMID: 26907261 PMCID: PMC4783992 DOI: 10.3390/ijms17020263] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/04/2016] [Accepted: 02/16/2016] [Indexed: 12/19/2022] Open
Abstract
Protein therapy exhibits several advantages over small molecule drugs and is increasingly being developed for the treatment of disorders ranging from single enzyme deficiencies to cancer. Cell-penetrating peptides (CPPs), a group of small peptides capable of promoting transport of molecular cargo across the plasma membrane, have become important tools in promoting the cellular uptake of exogenously delivered proteins. Although the molecular mechanisms of uptake are not firmly established, CPPs have been empirically shown to promote uptake of various molecules, including large proteins over 100 kiloDaltons (kDa). Recombinant proteins that include a CPP tag to promote intracellular delivery show promise as therapeutic agents with encouraging success rates in both animal and human trials. This review highlights recent advances in protein-CPP therapy and discusses optimization strategies and potential detrimental effects.
Collapse
Affiliation(s)
- Ana Dinca
- Department of Pathology, University of Washington, Seattle, WA 98109, USA.
| | - Wei-Ming Chien
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, WA 98109, USA.
| | - Michael T Chin
- Department of Pathology, University of Washington, Seattle, WA 98109, USA.
- Department of Medicine, Division of Cardiology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
21
|
Chen B, He XY, Yi XQ, Zhuo RX, Cheng SX. Dual-peptide-functionalized albumin-based nanoparticles with ph-dependent self-assembly behavior for drug delivery. ACS APPLIED MATERIALS & INTERFACES 2015; 7:15148-15153. [PMID: 26168166 DOI: 10.1021/acsami.5b03866] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Drug delivery has become an important strategy for improving the chemotherapy efficiency. Here we developed a multifunctionalized nanosized albumin-based drug-delivery system with tumor-targeting, cell-penetrating, and endolysosomal pH-responsive properties. cRGD-BSA/KALA/DOX nanoparticles were fabricated by self-assembly through electrostatic interaction between cell-penetrating peptide KALA and cRGD-BSA, with cRGD as a tumor-targeting ligand. Under endosomal/lysosomal acidic conditions, the changes in the electric charges of cRGD-BSA and KALA led to the disassembly of the nanoparticles to accelerate intracellular drug release. cRGD-BSA/KALA/DOX nanoparticles showed an enhanced inhibitory effect in the growth of αvβ3-integrin-overexpressed tumor cells, indicating promising application in cancer treatments.
Collapse
Affiliation(s)
- Bin Chen
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xiao-Yan He
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Xiao-Qing Yi
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei, People's Republic of China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
22
|
Durzyńska J, Przysiecka Ł, Nawrot R, Barylski J, Nowicki G, Warowicka A, Musidlak O, Goździcka-Józefiak A. Viral and other cell-penetrating peptides as vectors of therapeutic agents in medicine. J Pharmacol Exp Ther 2015; 354:32-42. [PMID: 25922342 DOI: 10.1124/jpet.115.223305] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/27/2015] [Indexed: 03/08/2025] Open
Abstract
Efficient delivery of heterologous molecules for treatment of cells is a great challenge in modern medicine and pharmacology. Cell-penetrating peptides (CPPs) may improve efficient delivery of a wide range of macromolecular cargos, including plasmid DNA, small interfering RNA, drugs, nanoparticulate pharmaceutical carriers, and anticancer drugs. In this paper, we present the history of CPPs' discovery with special attention drawn to sequences of viral origin. We also describe different CPP families with regard to their physicochemical properties and numerous mechanisms of CPP cell uptake by direct penetration and endocytotic pathways. A detailed description is focused on formation of carrier-cargo complexes, which are needed for practical use of CPPs in medicine and biotechnology. Examples of successful application of CPPs in treatment of human diseases are also presented, including decreased tumor growth and induction of cancer cell death. Finally, we review modern design approaches to novel CPPs and prediction of their activity. To sum up, the current review presents a thorough and up-to-date knowledge of CPPs and may be a valuable source of information for researchers in pharmacology designing new therapeutic agents.
Collapse
Affiliation(s)
- Julia Durzyńska
- Department of Molecular Virology (J.D., R.N., J.B., G.N., O.M., A.G.-J.), and NanoBioMedical Center (Ł.P., A.W.), Adam Mickiewicz University, Poznań, Poland
| | - Łucja Przysiecka
- Department of Molecular Virology (J.D., R.N., J.B., G.N., O.M., A.G.-J.), and NanoBioMedical Center (Ł.P., A.W.), Adam Mickiewicz University, Poznań, Poland
| | - Robert Nawrot
- Department of Molecular Virology (J.D., R.N., J.B., G.N., O.M., A.G.-J.), and NanoBioMedical Center (Ł.P., A.W.), Adam Mickiewicz University, Poznań, Poland
| | - Jakub Barylski
- Department of Molecular Virology (J.D., R.N., J.B., G.N., O.M., A.G.-J.), and NanoBioMedical Center (Ł.P., A.W.), Adam Mickiewicz University, Poznań, Poland
| | - Grzegorz Nowicki
- Department of Molecular Virology (J.D., R.N., J.B., G.N., O.M., A.G.-J.), and NanoBioMedical Center (Ł.P., A.W.), Adam Mickiewicz University, Poznań, Poland
| | - Alicja Warowicka
- Department of Molecular Virology (J.D., R.N., J.B., G.N., O.M., A.G.-J.), and NanoBioMedical Center (Ł.P., A.W.), Adam Mickiewicz University, Poznań, Poland
| | - Oskar Musidlak
- Department of Molecular Virology (J.D., R.N., J.B., G.N., O.M., A.G.-J.), and NanoBioMedical Center (Ł.P., A.W.), Adam Mickiewicz University, Poznań, Poland
| | - Anna Goździcka-Józefiak
- Department of Molecular Virology (J.D., R.N., J.B., G.N., O.M., A.G.-J.), and NanoBioMedical Center (Ł.P., A.W.), Adam Mickiewicz University, Poznań, Poland
| |
Collapse
|
23
|
Focosi D, Maggi F, Ceccherini-Nelli L, Pistello M. Cell therapies for treatment of human immunodeficiency virus infection. Rev Med Virol 2015; 25:156-74. [PMID: 25727480 DOI: 10.1002/rmv.1831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/30/2015] [Accepted: 02/05/2015] [Indexed: 12/15/2022]
Abstract
After the serendipitous discovery of HIV eradication in the "Berlin patient", interest has grown in curing HIV infection by replacing the patient's replication-competent blood cells with infection-resistant ones. At the same time, induced pluripotent stem cell technologies and genetic engineering have boosted cell therapy transfer into the clinic. Currently available cell therapy approaches to attempt to cure HIV infection include the following: (1) Transplantation of autologous or allogeneic cells spontaneously resistant or edited to resist HIV infection; (2) Transplantation of autologous T-lymphocytes spontaneously targeting or redirected against HIV; and (3) Transplantation of autologous cells engineered to work as anti-HIV antibody factories. We review here the preliminary results and potential for future applications of these approaches.
Collapse
Affiliation(s)
- Daniele Focosi
- Retrovirus Center and Virology Section, Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | | | | | | |
Collapse
|
24
|
Lee D, Pacheco S, Liu M. Biological effects of Tat cell-penetrating peptide: a multifunctional Trojan horse? Nanomedicine (Lond) 2014; 9:5-7. [PMID: 24354809 DOI: 10.2217/nnm.13.193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Affiliation(s)
- Daiyoon Lee
- Latner Thoracic Surgery Research Laboratories, Toronto General Research Institute, University Health Network; Institute of Medical Science, Faculty of Medicine, University of Toronto, ON, M5G 1L7, Canada
| | | | | |
Collapse
|
25
|
Distal phenylalanine modification for enhancing cellular delivery of fluorophores, proteins and quantum dots by cell penetrating peptides. J Control Release 2014; 195:55-62. [PMID: 25108152 DOI: 10.1016/j.jconrel.2014.07.055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/23/2014] [Accepted: 07/29/2014] [Indexed: 01/02/2023]
Abstract
For cell penetrating peptides (CPPs) to fulfil their promise as effective delivery vectors we need a better understanding of their mechanisms of cell binding and uptake. This is especially the case when they are linked to different types of cargo. Here we describe new studies based on our previous findings suggesting that, for peptide-CPP chimeras, distal hydrophobic residues upstream of the CPP sequence can have profound effects on the way they interact with cells. We studied peptides bearing an N-terminal Glycine or Phenylalanine linked via a neutral and flexible bridging group, SGSGSGSG, to three well-studied CPPs: octaarginine, penetratin and TP10. Using a combination of flow cytometry, live-cell imaging and image analysis we examined the effects of this single amino acid change on binding and uptake of Alexa488-fluorophore, bovine serum albumin and quantum dot cargoes. The influence of the glycine-phenylalanine switch for fluorophore delivery was most dramatic in TP10, increasing cellular uptake by 4.4 and 9.9 fold in non-adherent and adherent cells, respectively. Only penetratin showed effective uptake of bovine serum albumin with the phenylalanine variant showing an increase of 1.6 fold over the glycine variant. The uptake of quantum dots was most efficiently demonstrated by octaarginine, with the glycine variant increasing uptake 4.8 fold and the phenylalanine variant increasing uptake 9.5 fold over quantum dots alone. Overall the data demonstrate that hydrophobicity distal to the CPP could be utilised to enhance their capacity to bind to the cell membrane and deliver a range of macromolecules to the insides of cells.
Collapse
|