1
|
Liang H, Xing Y, Wang K, Zhang Y, Yin F, Li Z. Peptides: potential delivery systems for mRNA. RSC Chem Biol 2025; 6:666-677. [PMID: 40071030 PMCID: PMC11891934 DOI: 10.1039/d4cb00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
mRNA-based therapies have broad applications in various disease treatments and have been applied in protein replacement therapy, gene editing, and vaccine development. Numerous research studies have been carried out aiming to increase the stability of mRNA, improve its translational efficiency, and reduce its immunogenicity. However, given mRNA's large molecular size and strong electronegativity, the safety and efficient delivery of mRNA into the target cells remains the critical rate-limiting step in current mRNA drug development. Various nanocarriers, such as liposomes, lipid nanoparticles, polyetherimide, and mesoporous silica nanoparticles, have been employed for mRNA delivery in the past few decades. Among them, peptides have demonstrated great potential as promising carrier candidates for mRNA delivery due to their high cell membrane permeability, good biocompatibility, definite chemical structure, and ease of preparation. Here, peptide-based mRNA delivery systems are systematically analyzed, including their construction strategies, mechanisms of action in mRNA delivery, and the application limitations or challenges. It is hoped that this review will guide the design, optimization, and applications of peptide carriers in mRNA-based drug development.
Collapse
Affiliation(s)
- Huiting Liang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 China
| | - Yun Xing
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Kexin Wang
- Department of Chemistry, Southern University of Science and Technology Shenzhen 518055 China
| | - Yaping Zhang
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| | - Zigang Li
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory Shenzhen 518118 China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School Shenzhen 518055 China
| |
Collapse
|
2
|
Omidian H, Nokhodchi A, Babanejad N. Dry Powder Inhalers for Delivery of Synthetic Biomolecules. Pharmaceuticals (Basel) 2025; 18:175. [PMID: 40005989 PMCID: PMC11858879 DOI: 10.3390/ph18020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/15/2025] [Accepted: 01/25/2025] [Indexed: 02/27/2025] Open
Abstract
This manuscript provides a comprehensive review of advancements in dry powder inhaler (DPI) technology for pulmonary and systemic drug delivery, focusing on proteins, peptides, nucleic acids, and small molecules. Innovations in spray-drying (SD), spray freeze-drying (SFD), and nanocarrier engineering have led to enhanced stability, bioactivity, and aerosol performance. Studies reveal the critical role of excipients, particle morphology, and device design in optimizing deposition and therapeutic efficacy. Applications include asthma, cystic fibrosis, tuberculosis (TB), and lung cancer, with emerging platforms such as ternary formulations and siRNA-loaded systems demonstrating significant clinical potential. Challenges such as stability, scalability, and patient adherence are addressed through novel strategies, including Quality by Design (QbD) approaches and advanced imaging tools. This work outlines pathways for future innovation in pulmonary drug delivery.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Juddy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Ali Nokhodchi
- Lupin Inhalation Research Center, 4006 NW 124th Ave, Coral Springs, FL 33065, USA;
| | | |
Collapse
|
3
|
Zhang A, Zhang X, Chen J, Shi X, Yu X, He Z, Sun J, Sun M, Liu Z. Approaches and applications in transdermal and transpulmonary gene drug delivery. Front Bioeng Biotechnol 2025; 12:1519557. [PMID: 39881959 PMCID: PMC11775749 DOI: 10.3389/fbioe.2024.1519557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Gene therapy has emerged as a pivotal component in the treatment of diverse genetic and acquired human diseases. However, effective gene delivery remains a formidable challenge to overcome. The presence of degrading enzymes, acidic pH conditions, and the gastrointestinal mucus layer pose significant barriers for genetic therapy, necessitating exploration of alternative therapeutic options. In recent years, transdermal and transpulmonary gene delivery modalities offer promising avenues with multiple advantages, such as non-invasion, avoided liver first-pass effect and improved patient compliance. Considering the rapid development of gene therapeutics via transdermal and transpulmonary administration, here we aim to summarize the nearest advances in transdermal and transpulmonary gene drug delivery. In this review, we firstly elaborate on current delivery carrier in gene therapy. We, further, describe approaches and applications for enhancing transdermal and transpulmonary gene delivery encompassing microneedles, chemical enhancers, physical methods for transdermal administration as well as nebulized formulations, dry powder formulations, and pressurized metered dose formulations for efficient transpulmonary delivery. Last but not least, the opportunities and outlooks of gene therapy through both administrated routes are highlighted.
Collapse
Affiliation(s)
- Anni Zhang
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Xuran Zhang
- Department of Orthopedics, Fuxin Center Hospital, Fuxin, Liaoning, China
| | - Jiahui Chen
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
| | - Xianbao Shi
- Department of Pharmacy, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Xijuan Yu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Jin Sun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Mengchi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, Liaoning, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang, Liaoning, China
| | - Zhijun Liu
- Department of Ultrasound, Shengjing Hospital, China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Chen W, Gao Y, Liu Y, Luo Y, Xue X, Xiao C, Wei K. Tanshinone IIA Loaded Inhaled Polymer Nanoparticles Alleviate Established Pulmonary Fibrosis. ACS Biomater Sci Eng 2024; 10:6250-6262. [PMID: 39288315 DOI: 10.1021/acsbiomaterials.4c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a fatal respiratory disease characterized by chronic, progressive scarring of the lung parenchyma, leading to an irreversible decline in lung function. Apart from supportive care, there is currently no specific treatment available to reverse the disease. Based on the fact that tanshinone IIA (TAN) had an effect on protecting against TGF-β1-induced fibrosis through the inhibition of Smad and non-Smad signal pathways to avoid myofibroblasts activation, this study reported the development of the inhalable tanshinone IIA-loaded chitosan-oligosaccharides-coated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (CPN@TAN) for enhancing the pulmonary delivery of tanshinone IIA to treat pulmonary fibrosis. The CPN@TAN with a size of 206.5 nm exhibited excellent in vitro aerosol delivery characteristics, featuring a mass median aerodynamic diameter (MMAD) of 3.967 ± 0.025 μm and a fine particle fraction (FPF) of 70.516 ± 0.929%. Moreover, the nanoparticles showed good stability during atomization and enhanced the mucosal penetration capabilities. The results of confocal spectroscopy confirmed the potential of the nanoparticles as carriers that facilitated the uptake of drugs by NIH3T3, A549, and MH-S cells. Additionally, the nanoparticles demonstrated good in vitro biocompatibility. In a mouse model of bleomycin-induced pulmonary fibrosis, noninvasive inhalation of aerosol CPN@TAN greatly suppressed collagen formation and facilitated re-epithelialization of the destroyed alveolar epithelium without causing systemic toxicity compared with intravenous administration. Consequently, our noninvasive inhalation drug delivery technology based on polymers may represent a promising paradigm and open the door to overcoming the difficulties associated with managing pulmonary fibrosis.
Collapse
Affiliation(s)
- Wenyu Chen
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuanyuan Gao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yuanqi Liu
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Yujia Luo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Xinrui Xue
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Chujie Xiao
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| | - Kun Wei
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, P. R. China
| |
Collapse
|
5
|
Wang Q, Bu C, Dai Q, Chen J, Zhang R, Zheng X, Ren H, Xin X, Li X. Recent Progress in Nucleic Acid Pulmonary Delivery toward Overcoming Physiological Barriers and Improving Transfection Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309748. [PMID: 38460157 PMCID: PMC11095210 DOI: 10.1002/advs.202309748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/04/2024] [Indexed: 03/11/2024]
Abstract
Pulmonary delivery of therapeutic agents has been considered the desirable administration route for local lung disease treatment. As the latest generation of therapeutic agents, nucleic acid has been gradually developed as gene therapy for local diseases such as asthma, chronic obstructive pulmonary diseases, and lung fibrosis. The features of nucleic acid, specific physiological structure, and pathophysiological barriers of the respiratory tract have strongly affected the delivery efficiency and pulmonary bioavailability of nucleic acid, directly related to the treatment outcomes. The development of pharmaceutics and material science provides the potential for highly effective pulmonary medicine delivery. In this review, the key factors and barriers are first introduced that affect the pulmonary delivery and bioavailability of nucleic acids. The advanced inhaled materials for nucleic acid delivery are further summarized. The recent progress of platform designs for improving the pulmonary delivery efficiency of nucleic acids and their therapeutic outcomes have been systematically analyzed, with the application and the perspectives of advanced vectors for pulmonary gene delivery.
Collapse
Affiliation(s)
- Qiyue Wang
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
| | - Chaozhi Bu
- Wuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxi214002China
| | - Qihao Dai
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| | - Jinhua Chen
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Ruitao Zhang
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparation and ExcipientsNanjing210009China
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Xiaomin Zheng
- Wuxi Maternity and Child Health Care HospitalAffiliated Women's Hospital of Jiangnan UniversityWuxi214002China
| | - Hao Ren
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| | - Xiaofei Xin
- Center for Research Development and Evaluation of Pharmaceutical Excipients and Generic Drugs, Department of PharmaceuticsChina Pharmaceutical UniversityNanjing210009China
| | - Xueming Li
- School of Pharmaceutical ScienceNanjing Tech UniversityNanjing211816China
| |
Collapse
|
6
|
Yadav B, Chauhan M, Singh RP, Sonali, Shekhar S. Recent Progress and Challenges in Clinical Translation of Nanomedicines in Diagnosis and Treatment of Lung Cancer. Curr Drug Targets 2024; 25:12-24. [PMID: 38058096 DOI: 10.2174/0113894501273651231201061144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/18/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Lung cancer is one of the leading causes of death across the world. There are numerous challenges in the early diagnosis and effective treatment of lung cancer, including developing multidrug resistance. However, the diagnosis of lung cancer could be minimally invasive or non-invasive. Nowadays, nanomedicines offer solutions to several emerging challenges in drug delivery research areas. It has the potential to enhance the therapeutic efficacy of biologically and chemically active agents at the site of action. This approach can also be employed in molecular and cellular imaging, precise and early detection, screening, and targeting drugs for lung cancer treatment. A proper understanding of the disease and timely diagnosis using strategically designed effective nanocarriers can be a promising approach to effectively managing cancer. The present review explores issues related to lung cancer chemotherapy and the promises and hurdles of newer approaches like nanomedicine. The article also summarizes the preclinical studies on diagnosis and treatment, pitfalls, and challenges in the clinical translation of nanomedicines for lung cancer therapy.
Collapse
Affiliation(s)
- Bhavna Yadav
- Department of Pharmacy, School of Medical & Allied Sciences, G. D. Goenka University, Gurugram, 122103, India
| | - Mahima Chauhan
- Department of Pharmacy, School of Medical & Allied Sciences, G. D. Goenka University, Gurugram, 122103, India
| | - Rahul Pratap Singh
- Department of Pharmacy, School of Medical & Allied Sciences, G. D. Goenka University, Gurugram, 122103, India
| | - Sonali
- Guru Teg Bahadur Hospital, GTB Enclave, Dilshad Garden, New Delhi, Delhi, 110095, India
| | - Saurabh Shekhar
- Department of Pharmacy, School of Medical & Allied Sciences, G. D. Goenka University, Gurugram, 122103, India
| |
Collapse
|
7
|
Xu Y, Zheng Y, Ding X, Wang C, Hua B, Hong S, Huang X, Lin J, Zhang P, Chen W. PEGylated pH-responsive peptide-mRNA nano self-assemblies enhance the pulmonary delivery efficiency and safety of aerosolized mRNA. Drug Deliv 2023; 30:2219870. [PMID: 37336779 DOI: 10.1080/10717544.2023.2219870] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 06/21/2023] Open
Abstract
Inhalable messenger RNA (mRNA) has demonstrated great potential in therapy and vaccine development to confront various lung diseases. However, few gene vectors could overcome the airway mucus and intracellular barriers for successful pulmonary mRNA delivery. Apart from the low pulmonary gene delivery efficiency, nonnegligible toxicity is another common problem that impedes the clinical application of many non-viral vectors. PEGylated cationic peptide-based mRNA delivery vector is a prospective approach to enhance the pulmonary delivery efficacy and safety of aerosolized mRNA by oral inhalation administration. In this study, different lengths of hydrophilic PEG chains were covalently linked to an amphiphilic, water-soluble pH-responsive peptide, and the peptide/mRNA nano self-assemblies were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The in vitro mRNA binding and release, cellular uptake, transfection, and cytotoxicity were studied, and finally, a proper PEGylated peptide with enhanced pulmonary mRNA delivery efficiency and improved safety in mice was identified. These results showed that a proper N-terminus PEGylation strategy using 12-monomer linear monodisperse PEG could significantly improve the mRNA transfection efficiency and biocompatibility of the non-PEGylated cationic peptide carrier, while a longer PEG chain modification adversely decreased the cellular uptake and transfection on A549 and HepG2 cells, emphasizing the importance of a proper PEG chain length selection. Moreover, the optimized PEGylated peptide showed a significantly enhanced mRNA pulmonary delivery efficiency and ameliorated safety profiles over the non-PEGylated peptide and LipofectamineTM 2000 in mice. Our results reveal that the PEGylated peptide could be a promising mRNA delivery vector candidate for inhaled mRNA vaccines and therapeutic applications for the prevention and treatment of different respiratory diseases in the future.
Collapse
Affiliation(s)
- Yingying Xu
- School of Pharmacy, Fujian Medical University, Fuzhou, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
| | - Yijing Zheng
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xuqiu Ding
- School of Clinical Medicine, Fujian Medical University, Fuzhou, China
| | - Chengyan Wang
- Institute of Laboratory Animal Center, Fujian Medical University, Fuzhou, China
| | - Bin Hua
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Shilian Hong
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Xiaoman Huang
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Jiali Lin
- School of Pharmacy, Fujian Medical University, Fuzhou, China
| | - Peng Zhang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen, China
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou, China
| |
Collapse
|
8
|
Carneiro SP, Greco A, Chiesa E, Genta I, Merkel OM. Shaping the future from the small scale: dry powder inhalation of CRISPR-Cas9 lipid nanoparticles for the treatment of lung diseases. Expert Opin Drug Deliv 2023; 20:471-487. [PMID: 36896650 PMCID: PMC7614984 DOI: 10.1080/17425247.2023.2185220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/23/2023] [Indexed: 03/11/2023]
Abstract
INTRODUCTION Most lung diseases are serious conditions resulting from genetic and environmental causes associated with high mortality and severe symptoms. Currently, treatments available have a palliative effect and many targets are still considered undruggable. Gene therapy stands as an attractive approach to offering innovative therapeutic solutions. CRISPRCas9 has established a remarkable potential for genome editing with high selectivity to targeted mutations. To ensure high efficacy with minimum systemic exposure, the delivery and administration route are key components that must be investigated. AREAS COVERED This review is focused on the delivery of CRISPRCas9 to the lungs, taking advantage of lipid nanoparticles (LNPs), the most clinically advanced nucleic acid carriers. We also aim to highlight the benefits of pulmonary administration as a local delivery route and the use of spray drying to prepare stable nucleic-acid-based dry powder formulations that can overcome multiple lung barriers. EXPERT OPINION Exploring the pulmonary administration to deliver CRISPRCas9 loaded in LNPs as a dry powder increases the chances to achieve high efficacy and reduced adverse effects. CRISPRCas9 loaded in LNP-embedded microparticles has not yet been reported in the literature but has the potential to reach and accumulate in target cells in the lung, thus, enhancing overall efficacy and safety.
Collapse
Affiliation(s)
- Simone P. Carneiro
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| | - Antonietta Greco
- University School for Advanced Studies (IUSS), Piazza della Vittoria 15, 27100 Pavia, Italy
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia, Italy
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, V.le Taramelli 12, Pavia, Italy
| | - Olivia M. Merkel
- Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-University of Munich, Butenandtstraße 5, 81377 Munich, Germany
| |
Collapse
|
9
|
Patil SM, Barji DS, Aziz S, McChesney DA, Bagde S, Muttil P, Kunda NK. Pulmonary delivery of spray-dried Nisin ZP antimicrobial peptide for non-small cell lung cancer (NSCLC) treatment. Int J Pharm 2023; 634:122641. [PMID: 36709012 DOI: 10.1016/j.ijpharm.2023.122641] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/17/2023] [Accepted: 01/20/2023] [Indexed: 01/26/2023]
Abstract
Nisin ZP is an antimicrobial peptide (AMP) produced by the bacterium Lactococcus lactis, and we have previously demonstrated anticancer activity in NSCLC (A549) cells. In this study, we formulated a nisin ZP dry powder (NZSD) using a spray dryer to facilitate inhaled delivery for the treatment of NSCLC. Nisin ZP was spray-dried with mannitol, l-leucine, and trehalose in a ratio of 75:15:10 using Büchi mini spray-dryer B-290 in different drug loadings (10, 20, and 30% w/w). NZSD powder revealed a good powder yield of >55% w/w with ≤3 % w/w moisture content and high nisin ZP drug loading for all the peptide ratios. The NZSD powder particles were irregularly shaped with corrugated morphology. The presence of an endothermic peak in DSC thermograms and attenuated crystalline peaks in PXRD diffractograms confirmed the semi-crystalline powder nature of NZSD. The anticancer activity of nisin ZP was maintained after fabricating it into NZSD powder and showed a similar inhibitory concentration to free nisin ZP. Stability studies indicated that NZSD powders were stable for three months at 4 and 25 ℃ with more than 90% drug content and semi-crystalline nature, as confirmed by DSC and PXRD. Aerosolization studies performed using NGI indicated an aerodynamic diameter (MMAD) within the desired range (1-5 µm) and a high fine particle fraction (FPF > 75%) for all peptide ratios, suggesting powder deposition in the lung's respiratory airways. In conclusion, a dry powder of nisin ZP was formulated using a spray dryer with enhanced storage stability and suitable for inhaled delivery.
Collapse
Affiliation(s)
- Suyash M Patil
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Druva Sarika Barji
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Sophia Aziz
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - David A McChesney
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Shapali Bagde
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA
| | - Pavan Muttil
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM 87131, USA
| | - Nitesh K Kunda
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Jamaica, NY 11439, USA.
| |
Collapse
|
10
|
Spray Freeze Drying of Biologics: A Review and Applications for Inhalation Delivery. Pharm Res 2022; 40:1115-1140. [DOI: 10.1007/s11095-022-03442-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022]
|
11
|
Wang H, Qin L, Zhang X, Guan J, Mao S. Mechanisms and challenges of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. J Control Release 2022; 352:970-993. [PMID: 36372386 PMCID: PMC9671523 DOI: 10.1016/j.jconrel.2022.10.061] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/17/2022]
Abstract
With the rapid development of biopharmaceuticals and the outbreak of COVID-19, the world has ushered in a frenzy to develop gene therapy. Therefore, therapeutic genes have received enormous attention. However, due to the extreme instability and low intracellular gene expression of naked genes, specific vectors are required. Viral vectors are widely used attributed to their high transfection efficiency. However, due to the safety concerns of viral vectors, nanotechnology-based non-viral vectors have attracted extensive investigation. Still, issues of low transfection efficiency and poor tissue targeting of non-viral vectors need to be addressed. Especially, pulmonary gene delivery has obvious advantages for the treatment of inherited lung diseases, lung cancer, and viral pneumonia, which can not only enhance lung targeting and but also reduce enzymatic degradation. For systemic diseases therapy, pulmonary gene delivery can enhance vaccine efficacy via inducing not only cellular, humoral immunity but also mucosal immunity. This review provides a comprehensive overview of nanocarriers as non-viral vectors of therapeutic genes for enhanced pulmonary delivery. First of all, the characteristics and therapeutic mechanism of DNA, mRNA, and siRNA are provided. Thereafter, the advantages and challenges of pulmonary gene delivery in exerting local and systemic effects are discussed. Then, the inhalation dosage forms for nanoparticle-based drug delivery systems are introduced. Moreover, a series of materials used as nanocarriers for pulmonary gene delivery are presented, and the endosomal escape mechanisms of nanocarriers based on different materials are explored. The application of various non-viral vectors for pulmonary gene delivery are summarized in detail, with the perspectives of nano-vectors for pulmonary gene delivery.
Collapse
Affiliation(s)
| | | | - Xin Zhang
- Corresponding authors at: School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| | | | - Shirui Mao
- Corresponding authors at: School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, 110016 Shenyang, China
| |
Collapse
|
12
|
Ke WR, Chang RYK, Chan HK. Engineering the right formulation for enhanced drug delivery. Adv Drug Deliv Rev 2022; 191:114561. [PMID: 36191861 DOI: 10.1016/j.addr.2022.114561] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/30/2022] [Accepted: 09/24/2022] [Indexed: 01/24/2023]
Abstract
Dry powder inhalers (DPIs) can be used with a wide range of drugs such as small molecules and biologics and offer several advantages for inhaled therapy. Early DPI products were intended to treat asthma and lung chronic inflammatory disease by administering low-dose, high-potency drugs blended with lactose carrier particles. The use of lactose blends is still the most common approach to aid powder flowability and dose metering in DPI products. However, this conventional approach may not meet the high demand for formulation physical stability, aerosolisation performance, and bioavailability. To overcome these issues, innovative techniques coupled with modification of the traditional methods have been explored to engineer particles for enhanced drug delivery. Different particle engineering techniques have been utilised depending on the types of the active pharmaceutical ingredient (e.g., small molecules, peptides, proteins, cells) and the inhaled dose. This review discusses the challenges of formulating DPI formulations of low-dose and high-dose small molecule drugs, and biologics, followed by recent and emerging particle engineering strategies utilised in developing the right inhalable powder formulations for enhanced drug delivery.
Collapse
Affiliation(s)
- Wei-Ren Ke
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
13
|
Mossadeq S, Shah R, Shah V, Bagul M. Formulation, Device, and Clinical Factors Influencing the Targeted Delivery of COVID-19 Vaccines to the Lungs. AAPS PharmSciTech 2022; 24:2. [PMID: 36416999 PMCID: PMC9684852 DOI: 10.1208/s12249-022-02455-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic has proven to be an unprecedented health crisis in the human history with more than 5 million deaths worldwide caused to the SARS-CoV-2 and its variants ( https://www.who.int/emergencies/diseases/novel-coronavirus-2019 ). The currently authorized lipid nanoparticle (LNP)-encapsulated mRNA vaccines have been shown to have more than 90% vaccine efficacy at preventing COVID-19 illness (Baden et al. New England J Med 384(5):403-416, 2021; Thomas et al., 2021). In addition to vaccines, other small molecules belonging to the class of anti-viral and anti-inflammatory compounds have also been prescribed to reduce the viral proliferation and the associated cytokine storm. These anti-viral and anti-inflammatory compounds have also been shown to be effective in reducing COVID-19 exacerbations especially in reducing the host inflammatory response to SARS-CoV-2. However, all of the currently FDA-authorized vaccines for COVID-19 are meant for intramuscular injection directly into the systemic circulation. Also, most of the small molecules investigated for their anti-COVID-19 efficacy have also been explored using the intravenous route with a few of them explored for the inhalation route (Ramakrishnan et al. Lancet Respir Med 9:763-772, 2021; Horby et al. N Engl J Med 384(8):693-704, 2021). The fact that the SARS-CoV-2 enters the human body mainly via the nasal and airway route resulting in the lungs being the primary organs of infection as characterized by acute respiratory distress syndrome (ARDS)-mediated cytokine storm in the alveolar region has made the inhalation route gain significant attention for the purposes of targeting both vaccines and small molecules to the lungs (Mitchell et al., J Aerosol Med Pulm Drug Deliv 33(4):235-8, 2020). While there have been many studies reporting the safety and efficacy of targeting various therapeutics to the lungs to treat COVID-19, there is still a need to match the choice of inhalation formulation and the delivery device platform itself with the patient-related factors like breathing pattern and respiratory rate as seen in a clinical setting. In that perspective, this review aims to describe the various formulation and patient-related clinical factors that can play an important role in the judicious choice of the inhalation delivery platforms or devices for the development of inhaled COVID-19 vaccines.
Collapse
Affiliation(s)
- Sayeed Mossadeq
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA.
| | - Rajen Shah
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA
| | - Viraj Shah
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA
| | - Milind Bagul
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA
| |
Collapse
|
14
|
Munir M, Kett VL, Dunne NJ, McCarthy HO. Development of a Spray-Dried Formulation of Peptide-DNA Nanoparticles into a Dry Powder for Pulmonary Delivery Using Factorial Design. Pharm Res 2022; 39:1215-1232. [PMID: 35441318 PMCID: PMC9197895 DOI: 10.1007/s11095-022-03256-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 04/05/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Gene therapy via pulmonary delivery holds the potential to treat various lung pathologies. To date, spray drying has been the most promising method to produce inhalable powders. The present study determined the parameters required to spray dry nanoparticles (NPs) that contain the delivery peptide, termed RALA (N-WEARLARALARALARHLARALARALRACEA-C), complexed with plasmid DNA into a dry powder form designed for inhalation. METHODS The spray drying process was optimised using full factorial design with 19 randomly ordered experiments based on the combination of four parameters and three centre points per block. Specifically, mannitol concentration, inlet temperature, spray rate, and spray frequency were varied to observe their effects on process yield, moisture content, a median of particle size distribution, Z-average, zeta potential, encapsulation efficiency of DNA NPs, and DNA recovery. The impact of mannitol concentration was also examined on the spray-dried NPs and evaluated via biological functionality in vitro. RESULTS The results demonstrated that mannitol concentration was the strongest variable impacting all responses apart from encapsulation efficiency. All measured responses demonstrated a strong dependency on the experimental variables. Furthermore, spray drying with the optimal variables in combination with a low mannitol concentration (1% and 3%, w/v) produced functional RALA/pDNA NPs. CONCLUSION The optimal parameters have been determined to spray dry RALA/pDNA NPs into an dry powder with excellent biological functionality, which have the potential to be used for gene therapy applications via pulmonary delivery.
Collapse
Affiliation(s)
- Miftakul Munir
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
- Research and Technology Center for Radioisotope and Radiopharmaceutical, National Research and Innovation Agency, South Tangerang, Indonesia
| | - Vicky L Kett
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | - Nicholas J Dunne
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK
- Centre for Medical Engineering Research, School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
- Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Manufacturing Research Centre (I-Form), School of Mechanical and Manufacturing Engineering, Dublin City University, Glasnevin, Dublin 9, Ireland
- Advanced Materials and Bioengineering Research Centre (AMBER), Royal College of Surgeons in Ireland and Trinity College Dublin, Dublin 2, Ireland
- Advanced Processing Technology Research Centre, Dublin City University, Dublin 9, Ireland
- Trinity Centre for Biomedical Engineering, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast, BT9 7BL, UK.
- School of Chemical Sciences, Dublin City University, Dublin 9, Ireland.
| |
Collapse
|
15
|
Kunde SS, Ghosh R, Wairkar S. Emerging trends in pulmonary delivery of biopharmaceuticals. Drug Discov Today 2022; 27:1474-1482. [PMID: 35143963 DOI: 10.1016/j.drudis.2022.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/21/2021] [Accepted: 02/03/2022] [Indexed: 11/03/2022]
Abstract
Over the years, a tendency toward biopharmaceutical products as therapeutics has been witnessed compared with small molecular drugs. Biopharmaceuticals possess greater specificity, selectivity and potency with fewer side effects. The pulmonary route is a potential noninvasive route studied for the delivery of various molecules, including biopharmaceuticals. It directly delivers drugs to the lungs in higher concentrations and provides greater bioavailability than other noninvasive routes. This review focuses on the pulmonary route for the delivery of biopharmaceuticals. We have covered various biopharmaceuticals, including peptides, recombinant proteins, enzymes, monoclonal antibodies and nucleic acids, administered via a pulmonary route and discussed their rewards and drawbacks.
Collapse
Affiliation(s)
- Shalvi Sinai Kunde
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Ritushree Ghosh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India
| | - Sarika Wairkar
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKMs NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, Maharashtra 400056, India.
| |
Collapse
|
16
|
Spray drying: Inhalable powders for pulmonary gene therapy. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 133:112601. [DOI: 10.1016/j.msec.2021.112601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/04/2021] [Accepted: 12/04/2021] [Indexed: 12/13/2022]
|
17
|
Rout-Pitt N, Donnelley M, Parsons D. In vitro optimization of miniature bronchoscope lentiviral vector delivery for the small animal lung. Exp Lung Res 2021; 47:417-425. [PMID: 34632894 DOI: 10.1080/01902148.2021.1989523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Current gene therapy delivery protocols for small animal lungs typically utilize indirect dose delivery via the nasal airways, or bolus delivery directly into the trachea. Both methods can result in variable transduction throughout the lung, as well as between animals, and cannot be applied in a targeted manner. To minimize variability and improve lung coverage we previously developed and validated a method to visualize and dose gene vectors into pre-selected lobes of rat lungs using a mini-bronchoscope. Lentiviral (LV) vectors are known to be fragile and can be inactivated easily by temperature or the application of shear stresses. There are several ways that the bronchoscope could be configured to deliver the LV vector, and these could result in different amounts of functional LV vector being delivered to the lung. This study evaluated several methods of LV vector delivery through the bronchoscope, and how flow rates and LV vector stabilizing diluents impact LV vector delivery. NIH-3T3 cells were exposed to LV vector containing the green fluorescent protein (GFP) reporter gene using various bronchoscopic delivery techniques and the number of GFP-positive cells produced by each was quantified by flow cytometry. The results showed that directly drawing the LV vector into the bronchoscope tip resulted in 80-90% recovery of viable vector, and was also the simplest method of delivery. The fluid delivery rate and the use of stabilizing serum in the vector diluent had no effect on the viability of the LV vector delivered. These findings can be used to optimize LV vector dose delivery into individual lung lobes of small animal models.
Collapse
Affiliation(s)
- Nathan Rout-Pitt
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia
| | - Martin Donnelley
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia
| | - David Parsons
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia.,Adelaide Medical School, University of Adelaide, Adelaide, South Australia.,Department of Respiratory and Sleep Medicine, Women's and Children's Hospital, North Adelaide, South Australia
| |
Collapse
|
18
|
Eedara BB, Alabsi W, Encinas-Basurto D, Polt R, Mansour HM. Spray-Dried Inhalable Powder Formulations of Therapeutic Proteins and Peptides. AAPS PharmSciTech 2021; 22:185. [PMID: 34143327 DOI: 10.1208/s12249-021-02043-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 05/10/2021] [Indexed: 01/21/2023] Open
Abstract
Respiratory diseases are among the leading causes of morbidity and mortality worldwide. Innovations in biochemical engineering and understanding of the pathophysiology of respiratory diseases resulted in the development of many therapeutic proteins and peptide drugs with high specificity and potency. Currently, protein and peptide drugs are mostly administered by injections due to their large molecular size, poor oral absorption, and labile physicochemical properties. However, parenteral administration has several limitations such as frequent dosing due to the short half-life of protein and peptide in blood, pain on administration, sterility requirement, and poor patient compliance. Among various noninvasive routes of administrations, the pulmonary route has received a great deal of attention and is a better alternative to deliver protein and peptide drugs for treating respiratory diseases and systemic diseases. Among the various aerosol dosage forms, dry powder inhaler (DPI) systems appear to be promising for inhalation delivery of proteins and peptides due to their improved stability in solid state. This review focuses on the development of DPI formulations of protein and peptide drugs using advanced spray drying. An overview of the challenges in maintaining protein stability during the drying process and stabilizing excipients used in spray drying of proteins and peptide drugs is discussed. Finally, a summary of spray-dried DPI formulations of protein and peptide drugs, their characterization, various DPI devices used to deliver protein and peptide drugs, and current clinical status are discussed.
Collapse
Affiliation(s)
- Basanth Babu Eedara
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA
| | - Wafaa Alabsi
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA.,Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, USA
| | - David Encinas-Basurto
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA
| | - Robin Polt
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, Arizona, USA.,The BIO5 Institute, The University of Arizona, Tucson, Arizona, USA
| | - Heidi M Mansour
- Skaggs Pharmaceutical Sciences Center, College of Pharmacy, The University of Arizona, 1703 E. Mabel St, Tucson, Arizona, 85721-0207, USA. .,The BIO5 Institute, The University of Arizona, Tucson, Arizona, USA. .,Department of Medicine, Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, Arizona, USA.
| |
Collapse
|
19
|
Designing enhanced spray dried particles for inhalation: A review of the impact of excipients and processing parameters on particle properties. POWDER TECHNOL 2021. [DOI: 10.1016/j.powtec.2021.02.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
20
|
Chang RYK, Chow MY, Khanal D, Chen D, Chan HK. Dry powder pharmaceutical biologics for inhalation therapy. Adv Drug Deliv Rev 2021; 172:64-79. [PMID: 33705876 DOI: 10.1016/j.addr.2021.02.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/17/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022]
Abstract
Therapeutic biologics such as genes, peptides, proteins, virus and cells provide clinical benefits and are becoming increasingly important tools in respiratory medicine. Pulmonary delivery of therapeutic biologics enables the potential for safe and effective treatment option for respiratory diseases due to high bioavailability while minimizing absorption into the systemic circulation, reducing off-target toxicity to other organs. Development of inhalable powder formulation requires stabilization of complex biological materials, and each type of biologics may present unique challenges and require different formulation strategy combined with manufacture process to ensure biological and physical stabilities during production and over shelf-life. This review examines key formulation strategies for stabilizing proteins, nucleic acids, virus (bacteriophages) and bacterial cells in inhalable powders. It also covers characterization methods used to assess physicochemical properties and aerosol performance of the powders, biological activity and structural integrity of the biologics, and chemical analysis at the nanoscale. Furthermore, the review includes manufacture technologies which are based on lyophilization and spray-drying as they have been applied to manufacture Food and Drug Administration (FDA)-approved protein powders. In perspective, formulation and manufacture of inhalable powders for biologic are highly challenging but attainable. The key requirements are the stability of both the biologics and the powder, along with the powder dispersibility. The formulation to be developed depends on the manufacture process as it will subject the biologics to different stresses (temperature, mechanical and chemical) which could lead to degradation by different pathways. Stabilizing excipients coupled with the suitable choice of process can alleviate the stability issues of inhaled powders of biologics.
Collapse
|
21
|
Lavanya MN, Preethi R, Moses JA, Anandharamakrishnan C. Aerosol-based Pulmonary Delivery of Therapeutic Molecules from Food Sources: Delivery Mechanism, Research Trends, and the Way Forward. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1888971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- M. N. Lavanya
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - R. Preethi
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - J. A. Moses
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| | - C. Anandharamakrishnan
- Computational Modeling and Nanoscale Processing Unit, Indian Institute of Food Processing Technology (IIFPT), Ministry of Food Processing Industries, Govt. Of India, India
| |
Collapse
|
22
|
Chow MYT, Chang RYK, Chan HK. Inhalation delivery technology for genome-editing of respiratory diseases. Adv Drug Deliv Rev 2021; 168:217-228. [PMID: 32512029 PMCID: PMC7274121 DOI: 10.1016/j.addr.2020.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/21/2020] [Accepted: 06/01/2020] [Indexed: 12/25/2022]
Abstract
The clustered regulatory interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (CRISPR/Cas9) system has significant therapeutic potentials for lung congenital diseases such as cystic fibrosis, as well as other pulmonary disorders like lung cancer and obstructive diseases. Local administration of CRISPR/Cas9 therapeutics through inhalation can achieve high drug concentration and minimise systemic exposure. While the field is advancing with better understanding on the biological functions achieved by CRISPR/Cas9 systems, the lack of progress in inhalation formulation and delivery of the molecule may impede their clinical translation efficiently. This forward-looking review discussed the current status of formulations and delivery for inhalation of relevant biologics such as genes (plasmids and mRNAs) and proteins, emphasising on their design strategies and preparation methods. By adapting and optimising formulation strategies used for genes and proteins, we envisage that development of inhalable CRISPR/Cas9 liquid or powder formulations for inhalation administration can potentially be fast-tracked in near future.
Collapse
Affiliation(s)
- Michael Y T Chow
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
23
|
Tran TT, Amalina N, Cheow WS, Hadinoto K. Effects of storage on the stability and aerosolization efficiency of dry powder inhaler formulation of plasmid DNA-Chitosan nanoparticles. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Kumar M, Jha A, Dr M, Mishra B. Targeted drug nanocrystals for pulmonary delivery: a potential strategy for lung cancer therapy. Expert Opin Drug Deliv 2020; 17:1459-1472. [PMID: 32684002 DOI: 10.1080/17425247.2020.1798401] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Lung cancer and metastases are major concerns worldwide. Although systemic chemotherapy is the recommended treatment, it is associated with various disadvantages, including nonselective drug distribution and systemic toxicity. In contrast, the pulmonary route ensures the localized delivery of drugs to the lung. Still, the pulmonary route is prone to clearance, limited drug dissolution, and local toxicity to healthy lung cells. Drug nanocrystals provide a potential strategy to enhance the therapeutic efficacy and mitigate the limitations of pulmonary delivery. AREAS COVERED The development and potential application of nanocrystals in pulmonary delivery, their role in overcoming associated barriers, and strategies for site-specific and stimuli-responsive pulmonary delivery are outlined. This review also traces different in-vitro pulmonary models for assessments of the performance of drug nanocrystals and nanocrystals loaded carriers in pulmonary delivery. EXPERT OPINION Enhanced stability, high aerosolization performance, better particle size distribution, improved penetration, sustained release of the drug, and minimal excipients usage makes drug nanocrystal an ideal candidate for pulmonary delivery. Besides, drug nanocrystals may provide selective cellular internalization with minimum clearance and maximum deposition. Furthermore, surface modified nanocrystals and nanocrystals in nanocarriers can exhibit a more prolonged, and site-specific release of the drug to cancer cells in the lungs.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) , Varanasi, India
| | - Abhishek Jha
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) , Varanasi, India
| | - Madhu Dr
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) , Varanasi, India
| | - Brahmeshwar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU) , Varanasi, India
| |
Collapse
|
25
|
Pulmonary delivery of Nanocomposite Microparticles (NCMPs) incorporating miR-146a for treatment of COPD. Int J Pharm 2019; 569:118524. [PMID: 31319144 DOI: 10.1016/j.ijpharm.2019.118524] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 12/20/2022]
Abstract
The treatment and management of COPD by inhalation to the lungs has emerged as an attractive alternative route to oral dosing due to higher concentrations of the drug being administered to site of action. In this study, Nanocomposite Microparticles (NCMPs) of microRNA (miR-146a) containing PGA-co-PDL nanoparticles (NPs) for dry powder inhalation were formulated using l-leucine and mannitol. The spray-drying (Buchi B290) process was optimised and used to incorporate NPs into NCMPs using mix of l-leucine and mannitol excipients in different ratios (F1; 100:0% w/w, F2; 75:25% w/w, F3; 50:50% w/w, F4; 25:75% w/w, F5; 0:100% w/w) to investigate yield %, moisture content, aerosolisation performance and miR-146a biological activity. The optimum condition was performed at feed rate 0.5 ml/min, aspirator rate 28 m3/h, atomizing air flow rate 480 L/h, and inlet drying temperature 70 °C which produced highest yield percentage and closest recovered NPs size to original prior spray-drying. The optimum formulation (F4) had a high yield (86.0 ± 15.01%), recovered NPs size after spray-drying 409.7 ± 10.05 nm (initial NPs size 244.8 ± 4.40 nm) and low moisture content (2.02 ± 0.03%). The aerosolisation performance showed high Fine Particle Fraction (FPF) 51.33 ± 2.9%, Emitted Dose (ED) of 81.81 ± 3.0%, and the mass median aerodynamic diameter (MMAD) was ≤5 µm suggesting a deposition in the respirable region of the lungs. The biological activity of miR-146a was preserved after spray-drying process and miR-146a loaded NCMPs produced target genes IRAK1 and TRAF6 silencing. These results indicate the optimal process parameters for the preparation of NCMPs of miR-146a-containing PGA-co-PDL NPs suitable for inhalation in the treatment and management of COPD.
Collapse
|
26
|
Formulation of RNA interference-based drugs for pulmonary delivery: challenges and opportunities. Ther Deliv 2019; 9:731-749. [PMID: 30277138 DOI: 10.4155/tde-2018-0029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
With recent advances in the field of RNAi-based therapeutics, it is possible to make any target gene 'druggable', at least in principle. The present review focuses on aspects critical for pulmonary delivery of formulations of nucleic acid-based drugs. The first part introduces the therapeutic potential of RNAi-based drugs for the treatment of lung diseases. Subsequently, we discuss opportunities for formulation-enabled pulmonary delivery of RNAi drugs in light of key physicochemical properties and physiological barriers. In the following section, an overview is included of methodologies for imparting inhalable characteristics to nucleic acid formulations. Finally, we review one of the bottlenecks in the early preclinical testing of inhalable nucleic acid-based formulations, in other words, devices suitable for pulmonary administration of powder-based formulations in rodents.
Collapse
|
27
|
Asha K, Kumar P, Sanicas M, Meseko CA, Khanna M, Kumar B. Advancements in Nucleic Acid Based Therapeutics against Respiratory Viral Infections. J Clin Med 2018; 8:jcm8010006. [PMID: 30577479 PMCID: PMC6351902 DOI: 10.3390/jcm8010006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Several viruses cause pulmonary infections due to their shared tropism with cells of the respiratory tract. These respiratory problems due to viral infection become a public health concern due to rapid transmission through air/aerosols or via direct-indirect contact with infected persons. In addition, the cross-species transmission causes alterations to viral genetic makeup thereby increasing the risk of emergence of pathogens with new and more potent infectivity. With the introduction of effective nucleic acid-based technologies, post translational gene silencing (PTGS) is being increasingly used to silence viral gene targets and has shown promising approach towards management of many viral infections. Since several host factors are also utilized by these viruses during various stages of infection, silencing these host factors can also serve as promising therapeutic tool. Several nucleic acid-based technologies such as short interfering RNAs (siRNA), antisense oligonucleotides, aptamers, deoxyribozymes (DNAzymes), and ribozymes have been studied and used against management of respiratory viruses. These therapeutic nucleic acids can be efficiently delivered through the airways. Studies have also shown efficacy of gene therapy in clinical trials against respiratory syncytial virus (RSV) as well as models of respiratory diseases including severe acute respiratory syndrome (SARS), measles and influenza. In this review, we have summarized some of the recent advancements made in the area of nucleic acid based therapeutics and highlighted the emerging roles of nucleic acids in the management of some of the severe respiratory viral infections. We have also focused on the methods of their delivery and associated challenges.
Collapse
Affiliation(s)
- Kumari Asha
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| | - Prashant Kumar
- Amity Institute of Virology and Immunology, Amity University, Noida 201303, India.
| | - Melvin Sanicas
- Sanofi Pasteur, Asia and JPAC Region, Singapore 257856, Singapore.
| | - Clement A Meseko
- Regional Centre for Animal Influenza, National Veterinary Research Institute, Vom 930010, Nigeria.
| | - Madhu Khanna
- Department of Respiratory Virology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi 110007, India.
| | - Binod Kumar
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
28
|
Using two-fluid nozzle for spray freeze drying to produce porous powder formulation of naked siRNA for inhalation. Int J Pharm 2018; 552:67-75. [PMID: 30244146 DOI: 10.1016/j.ijpharm.2018.09.045] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/01/2018] [Accepted: 09/18/2018] [Indexed: 01/05/2023]
Abstract
Spray freeze drying is an attractive technology to produce powder formulation for inhalation. It can be used to generate large porous particles which tend to aerosolize efficiently and do not aggregate readily. It also avoids material to be exposed to elevated temperature. In this study, we reported the use of two-fluid nozzle to produce spray freeze dried powder of small interfering RNA (siRNA). The effect of atomization gas flow rate and liquid feed rate were inspected initially using herring sperm DNA (hsDNA) as nucleic acid model. The atomization gas flow rate was found to have a major impact on the aerosol properties. The higher the atomization gas flow rate, the smaller the particle size, the higher the fine particle fraction (FPF). In contrast, the liquid feed rate had very minor effect. Subsequently, spray freeze dried siRNA powder was produced at various atomization gas flow rates. The particles produced were highly porous as examined with the scanning electron microscopy, and the structural integrity of the siRNA was demonstrated with gel electrophoresis. The gene-silencing effect of the siRNA was also successfully preserved in vitro. The best performing siRNA formulation was prepared at the highest atomization gas flow rate investigated with a moderate FPF of 30%. However, this was significantly lower than that obtained with the corresponding hsDNA counterparts (FPF ∼57%). A direct comparison between the hsDNA and siRNA formulations revealed that the former exhibited a lower density, hence a smaller aerodynamic diameter despite similar geometric size.
Collapse
|
29
|
Development of spray-freeze-dried siRNA/PEI powder for inhalation with high aerosol performance and strong pulmonary gene silencing activity. J Control Release 2018; 279:99-113. [PMID: 29627404 DOI: 10.1016/j.jconrel.2018.04.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/21/2018] [Accepted: 04/03/2018] [Indexed: 11/20/2022]
Abstract
In the present study, a novel dry small interfering RNA (siRNA) powder for inhalation, containing polyethyleneimine (PEI) as a delivery vector, was produced by spray freeze drying (SFD). The powder had spherical and highly porous structure of approximately 10 μm in diameter with high aerosol performance for emission and lung delivery. The reconstituted siRNA/PEI complex after dissolution of the powder had almost the same physicochemical properties and in vitro gene silencing activity as the original one constituted in the sample solution before SFD, showing that the integrity of the siRNA was maintained. In in vivo studies of intratracheal administration into lung metastasis mice and healthy mice, powder with a low dose of 3 μg siRNA exhibited strong and specific gene silencing activity against tumors metastasized to the lungs, whereas it caused no significant histological changes, lactate dehydrogenase leakage, or inflammatory cytokine induction in the lungs. These results strongly indicated that inhalable dry siRNA/PEI powders can provide effective pulmonary gene silencing without severe lung injury and that SFD can be applied to the production of such powders.
Collapse
|
30
|
Nishimura S, Takami T, Murakami Y. Porous PLGA microparticles formed by “one-step” emulsification for pulmonary drug delivery: The surface morphology and the aerodynamic properties. Colloids Surf B Biointerfaces 2017; 159:318-326. [DOI: 10.1016/j.colsurfb.2017.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/22/2017] [Accepted: 08/02/2017] [Indexed: 12/23/2022]
|
31
|
Liang W, Chan AYL, Chow MYT, Lo FFK, Qiu Y, Kwok PCL, Lam JKW. Spray freeze drying of small nucleic acids as inhaled powder for pulmonary delivery. Asian J Pharm Sci 2017; 13:163-172. [PMID: 32104389 PMCID: PMC7032260 DOI: 10.1016/j.ajps.2017.10.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/03/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
The therapeutic potential of small nucleic acids such as small interfering RNA (siRNA) to treat lung diseases has been successfully demonstrated in many in vivo studies. A major barrier to their clinical application is the lack of a safe and efficient inhaled formulation. In this study, spray freeze drying was employed to prepare dry powder of small nucleic acids. Mannitol and herring sperm DNA were used as bulking agent and model of small nucleic acid therapeutics, respectively. Formulations containing different solute concentration and DNA concentration were produced. The scanning electron microscope (SEM) images showed that the porosity of the particles increased as the solute concentration decreased. Powders prepared with solute concentration of 5% w/v were found to maintain a balance between porosity and robustness. Increasing concentration of DNA improved the aerosol performance of the formulation. The dry powder formulation containing 2% w/w DNA had a median diameter of 12.5 µm, and the aerosol performance study using next generation impactor (NGI) showed an emitted fraction (EF) and fine particle fraction (FPF) of 91% and 28% respectively. This formulation (5% w/v solute concentration and 2% w/w nucleic acid) was adopted subsequently to produce siRNA powder. The gel retardation and liquid chromatography assays showed that the siRNA remained intact after spray freeze drying even in the absence of delivery vector. The siRNA powder formulation exhibited a high EF of 92.4% and a modest FPF of around 20%. Further exploration of this technology to optimise inhaled siRNA powder formulation is warranted.
Collapse
Affiliation(s)
- Wanling Liang
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Alan Y L Chan
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Michael Y T Chow
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Fiona F K Lo
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yingshan Qiu
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Philip C L Kwok
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China.,Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, Building A15, Sydney, NSW 2006, Australia
| | - Jenny K W Lam
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| |
Collapse
|
32
|
|
33
|
Delivery of RNAi Therapeutics to the Airways-From Bench to Bedside. Molecules 2016; 21:molecules21091249. [PMID: 27657028 PMCID: PMC6272875 DOI: 10.3390/molecules21091249] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 12/12/2022] Open
Abstract
RNA interference (RNAi) is a potent and specific post-transcriptional gene silencing process. Since its discovery, tremendous efforts have been made to translate RNAi technology into therapeutic applications for the treatment of different human diseases including respiratory diseases, by manipulating the expression of disease-associated gene(s). Similar to other nucleic acid-based therapeutics, the major hurdle of RNAi therapy is delivery. Pulmonary delivery is a promising approach of delivering RNAi therapeutics directly to the airways for treating local conditions and minimizing systemic side effects. It is a non-invasive route of administration that is generally well accepted by patients. However, pulmonary drug delivery is a challenge as the lungs pose a series of anatomical, physiological and immunological barriers to drug delivery. Understanding these barriers is essential for the development an effective RNA delivery system. In this review, the different barriers to pulmonary drug delivery are introduced. The potential of RNAi molecules as new class of therapeutics, and the latest preclinical and clinical studies of using RNAi therapeutics in different respiratory conditions are discussed in details. We hope this review can provide some useful insights for moving inhaled RNAi therapeutics from bench to bedside.
Collapse
|
34
|
Xu Y, Liang W, Qiu Y, Cespi M, Palmieri GF, Mason AJ, Lam JKW. Incorporation of a Nuclear Localization Signal in pH Responsive LAH4-L1 Peptide Enhances Transfection and Nuclear Uptake of Plasmid DNA. Mol Pharm 2016; 13:3141-52. [PMID: 27458925 DOI: 10.1021/acs.molpharmaceut.6b00338] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The major intracellular barriers associated with DNA delivery using nonviral vectors are inefficient endosomal/lysosomal escape and poor nuclear uptake. LAH4-L1, a pH responsive cationic amphipathic peptide, is an efficient DNA delivery vector that promotes the release of nucleic acid into cytoplasm through endosomal escape. Here we further enhance the DNA transfection efficiency of LAH4-L1 by incorporating nuclear localizing signal (NLS) to promote nuclear importation. Four NLSs were investigated: Simian virus 40 (SV40) large T-antigen derived NLS, nucleoplasmin targeting signal, M9 sequence, and the reverse SV40 derived NLS. All peptides tested were able to form positively charged nanosized complexes with DNA. Significant improvement in DNA transfection was observed in slow-dividing epithelial cancer cells (Calu-3), macrophages (RAW264.7), dendritic cells (JAWSII), and thymidine-induced growth-arrested cells, but not in rapidly dividing cells (A549). Among the four NLS-modified peptides, PK1 (modified with SV40 derived NLS) and PK2 (modified with reverse SV40 derived NLS) were the most consistent in improving DNA transfection; up to a 10-fold increase in gene expression was observed for PK1 and PK2 over the unmodified LAH4-L1. Additionally PK1 and PK2 were shown to enhance cellular uptake as well as nuclear entry of DNA. Overall, we show that the incorporation of SV40 derived NLS, in particular, to LAH4-L1 is a promising strategy to improve DNA delivery efficiency in slow-dividing cells and dendritic cells, with development potential for in vivo applications and as a DNA vaccine carrier.
Collapse
Affiliation(s)
- Yingying Xu
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong , 21 Sassoon Road, Pokfulam, Hong Kong
| | - Wanling Liang
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong , 21 Sassoon Road, Pokfulam, Hong Kong
| | - Yingshan Qiu
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong , 21 Sassoon Road, Pokfulam, Hong Kong
| | - Marco Cespi
- School of Pharmacy, University of Camerino , Via S. Agostino 1, 62032 Camerino (MC), Italy
| | - Giovanni F Palmieri
- School of Pharmacy, University of Camerino , Via S. Agostino 1, 62032 Camerino (MC), Italy
| | - A James Mason
- Institute of Pharmaceutical Science, King's College London , 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Jenny K W Lam
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong , 21 Sassoon Road, Pokfulam, Hong Kong
| |
Collapse
|
35
|
Gomes Dos Reis L, Svolos M, Hartwig B, Windhab N, Young PM, Traini D. Inhaled gene delivery: a formulation and delivery approach. Expert Opin Drug Deliv 2016; 14:319-330. [PMID: 27426972 DOI: 10.1080/17425247.2016.1214569] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Gene therapy is a potential alternative to treat a number of diseases. Different hurdles are associated with aerosol gene delivery due to the susceptibility of plasmid DNA (pDNA) structure to be degraded during the aerosolization process. Different strategies have been investigated in order to protect and efficiently deliver pDNA to the lungs using non-viral vectors. To date, no successful therapy involving non-viral vectors has been marketed, highlighting the need for further investigation in this field. Areas covered: This review is focused on the formulation and delivery of DNA to the lungs, using non-viral vectors. Aerosol gene formulations are divided according to the current delivery systems for the lung: nebulizers, dry powder inhalers and pressurized metered dose inhalers; highlighting its benefits, challenges and potential application. Expert opinion: Successful aerosol delivery is achieved when the supercoiled DNA structure is protected during aerosolization. A formulation strategy or compounds that can protect, stabilize and efficiently transfect DNA into the cells is desired in order to produce an effective, low-cost and safe formulation. Nebulizers and dry powder inhalers are the most promising approaches to be used for aerosol delivery, due to the lower shear forces involved. In this context it is also important to highlight the importance of considering the 'pDNA-formulation-device system' as an integral part of the formulation development for a successful nucleic acid delivery.
Collapse
Affiliation(s)
- Larissa Gomes Dos Reis
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Glebe , Australia
| | - Maree Svolos
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Glebe , Australia
| | - Benedikt Hartwig
- b Evonik Industries, Nutrition and Care AG , Darmstadt , Germany
| | - Norbert Windhab
- b Evonik Industries, Nutrition and Care AG , Darmstadt , Germany
| | - Paul M Young
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Glebe , Australia
| | - Daniela Traini
- a Respiratory Technology, Woolcock Institute of Medical Research and Discipline of Pharmacology, Sydney Medical School , Sydney University , Glebe , Australia
| |
Collapse
|
36
|
O'Connor G, Gleeson LE, Fagan-Murphy A, Cryan SA, O'Sullivan MP, Keane J. Sharpening nature's tools for efficient tuberculosis control: A review of the potential role and development of host-directed therapies and strategies for targeted respiratory delivery. Adv Drug Deliv Rev 2016; 102:33-54. [PMID: 27151307 DOI: 10.1016/j.addr.2016.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/04/2016] [Accepted: 04/20/2016] [Indexed: 12/18/2022]
Abstract
Centuries since it was first described, tuberculosis (TB) remains a significant global public health issue. Despite ongoing holistic measures implemented by health authorities and a number of new oral treatments reaching the market, there is still a need for an advanced, efficient TB treatment. An adjunctive, host-directed therapy designed to enhance endogenous pathways and hence compliment current regimens could be the answer. The integration of drug repurposing, including synthetic and naturally occurring compounds, with a targeted drug delivery platform is an attractive development option. In order for a new anti-tubercular treatment to be produced in a timely manner, a multidisciplinary approach should be taken from the outset including stakeholders from academia, the pharmaceutical industry, and regulatory bodies keeping the patient as the key focus. Pre-clinical considerations for the development of a targeted host-directed therapy are discussed here.
Collapse
Affiliation(s)
- Gemma O'Connor
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| | - Laura E Gleeson
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| | - Aidan Fagan-Murphy
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; SFI Centre for Research in Medical Devices (CURAM), Dublin 2, Ireland.
| | - Sally-Ann Cryan
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin 2, Ireland; Trinity Centre for Bioengineering, Trinity College Dublin, Dublin 2, Ireland; SFI Centre for Research in Medical Devices (CURAM), Dublin 2, Ireland.
| | - Mary P O'Sullivan
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| | - Joseph Keane
- Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin and St. James's Hospital, D08 W9RT, Dublin, Ireland.
| |
Collapse
|
37
|
Man DK, Chow MY, Casettari L, Gonzalez-Juarrero M, Lam JK. Potential and development of inhaled RNAi therapeutics for the treatment of pulmonary tuberculosis. Adv Drug Deliv Rev 2016; 102:21-32. [PMID: 27108702 DOI: 10.1016/j.addr.2016.04.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/05/2016] [Accepted: 04/13/2016] [Indexed: 02/06/2023]
Abstract
Tuberculosis (TB), caused by the infection of Mycobacterium tuberculosis (Mtb), continues to pose a serious threat to public health, and the situation is worsening with the rapid emergence of multidrug resistant (MDR) TB. Current TB regimens require long duration of treatment, and their toxic side effects often lead to poor adherence and low success rates. There is an urgent need for shorter and more effective treatment for TB. In recent years, RNA interference (RNAi) has become a powerful tool for studying gene function by silencing the target genes. The survival of Mtb in host macrophages involves the attenuation of the antimicrobial responses mounted by the host cells. RNAi technology has helped to improve our understanding of how these bacilli interferes with the bactericidal effect and host immunity during TB infection. It has been suggested that the host-directed intervention by modulation of host pathways can be employed as a novel and effective therapy against TB. This therapeutic approach could be achieved by RNAi, which holds enormous potential beyond a laboratory to the clinic. RNAi therapy targeting TB is being investigated for enhancing host antibacterial capacity or improving drug efficacy on drug resistance strains while minimizing the associated adverse effects. One of the key challenges of RNAi therapeutics arises from the delivery of the RNAi molecules into the target cells, and inhalation could serve as a direct administration route for the treatment of pulmonary TB in a non-invasive manner. However, there are still major obstacles that need to be overcome. This review focuses on the RNAi candidates that are currently explored for the treatment of TB and discusses the major barriers of pulmonary RNAi delivery. From this, we hope to stimulate further studies of local RNAi therapeutics for pulmonary TB treatment.
Collapse
|
38
|
Murphy MP, Caraher E. Current and Emerging Therapies for the Treatment of Cystic Fibrosis or Mitigation of Its Symptoms. Drugs R D 2016; 16:1-17. [PMID: 26747453 PMCID: PMC4767716 DOI: 10.1007/s40268-015-0121-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Clinical presentation of the chronic, heritable condition cystic fibrosis (CF) is complex, with a diverse range of symptoms often affecting multiple organs with varying severity. The primary source of morbidity and mortality is due to progressive destruction of the airways attributable to chronic inflammation arising from microbial colonisation. Antimicrobial therapy combined with practises to remove obstructive mucopurulent deposits form the cornerstone of current therapy. However, new treatment options are emerging which offer, for the first time, the opportunity to effect remission from the underlying cause of CF. Here, we discuss these therapies, their mechanisms of action, and their successes and failures in order to illustrate the shift in the nature of how CF will likely be managed into the future.
Collapse
Affiliation(s)
- Mark P Murphy
- Centre for Microbial-Host Interactions, Centre of Applied Science for Health, Institute of Technology Tallaght, Dublin 24, Ireland.
| | - Emma Caraher
- Centre for Microbial-Host Interactions, Centre of Applied Science for Health, Institute of Technology Tallaght, Dublin 24, Ireland.
| |
Collapse
|
39
|
Foldvari M, Chen DW, Nafissi N, Calderon D, Narsineni L, Rafiee A. Non-viral gene therapy: Gains and challenges of non-invasive administration methods. J Control Release 2015; 240:165-190. [PMID: 26686079 DOI: 10.1016/j.jconrel.2015.12.012] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/26/2015] [Accepted: 12/09/2015] [Indexed: 12/20/2022]
Abstract
Gene therapy is becoming an influential part of the rapidly increasing armamentarium of biopharmaceuticals for improving health and combating diseases. Currently, three gene therapy treatments are approved by regulatory agencies. While these treatments utilize viral vectors, non-viral alternative technologies are also being developed to improve the safety profile and manufacturability of gene carrier formulations. We present an overview of gene-based therapies focusing on non-viral gene delivery systems and the genetic therapeutic tools that will further revolutionize medical treatment with primary focus on the range and development of non-invasive delivery systems for dermal, transdermal, ocular and pulmonary administrations and perspectives on other administration methods such as intranasal, oral, buccal, vaginal, rectal and otic delivery.
Collapse
Affiliation(s)
- Marianna Foldvari
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada.
| | - Ding Wen Chen
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Nafiseh Nafissi
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Daniella Calderon
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Lokesh Narsineni
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Amirreza Rafiee
- School of Pharmacy, Waterloo Institute of Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada; Center for Bioengineering and Biotechnology, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
40
|
De Backer L, Cerrada A, Pérez-Gil J, De Smedt SC, Raemdonck K. Bio-inspired materials in drug delivery: Exploring the role of pulmonary surfactant in siRNA inhalation therapy. J Control Release 2015; 220:642-50. [PMID: 26363301 DOI: 10.1016/j.jconrel.2015.09.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 01/13/2023]
Abstract
Many pathologies of the respiratory tract are inadequately treated with existing small molecule-based therapies. The emergence of RNA interference (RNAi) enables the post-transcriptional silencing of key molecular disease factors that cannot readily be targeted with conventional small molecule drugs. Pulmonary administration of RNAi effectors, such as small interfering RNA (siRNA), allows direct delivery into the lung tissue, hence reducing systemic exposure. Unfortunately, the clinical translation of RNAi is severely hampered by inefficient delivery of siRNA therapeutics towards the cytoplasm of the target cells. In order to have a better control of the siRNA delivery process, both extra- and intracellular, siRNAs are typically formulated in nanosized delivery vehicles (nanoparticles, NPs). In the lower airways, which are the targeted sites of action for multiple pulmonary disorders, these siRNA-loaded NPs will encounter the pulmonary surfactant (PS) layer, covering the entire alveolar surface. The interaction between the instilled siRNA-loaded NPs and the PS at this nano-bio interface results in the adsorption of PS components onto the surface of the NPs. The formation of this so-called biomolecular corona conceals the original NP surface and will therefore profoundly determine the biological efficacy of the NP. Though this interplay has initially been regarded as a barrier towards efficient siRNA delivery to the respiratory target cell, recent reports have illustrated that the interaction with PS might also be beneficial for local pulmonary siRNA delivery.
Collapse
Affiliation(s)
- Lynn De Backer
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Alejandro Cerrada
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, and Research Institute Hospital 12 Octubre, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain.
| | - Jesús Pérez-Gil
- Departamento de Bioquimica y Biologia Molecular, Facultad de Biologia, and Research Institute Hospital 12 Octubre, Universidad Complutense, José Antonio Novais 2, 28040 Madrid, Spain.
| | - Stefaan C De Smedt
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Laboratory for General Biochemistry and Physical Pharmacy, Faculty of Pharmacy, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
41
|
Okuda T, Suzuki Y, Kobayashi Y, Ishii T, Uchida S, Itaka K, Kataoka K, Okamoto H. Development of Biodegradable Polycation-Based Inhalable Dry Gene Powders by Spray Freeze Drying. Pharmaceutics 2015; 7:233-54. [PMID: 26343708 PMCID: PMC4588198 DOI: 10.3390/pharmaceutics7030233] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/18/2015] [Accepted: 08/19/2015] [Indexed: 12/27/2022] Open
Abstract
In this study, two types of biodegradable polycation (PAsp(DET) homopolymer and PEG-PAsp(DET) copolymer) were applied as vectors for inhalable dry gene powders prepared by spray freeze drying (SFD). The prepared dry gene powders had spherical and porous structures with a 5~10-μm diameter, and the integrity of plasmid DNA could be maintained during powder production. Furthermore, it was clarified that PEG-PAsp(DET)-based dry gene powder could more sufficiently maintain both the physicochemical properties and in vitro gene transfection efficiencies of polyplexes reconstituted after powder production than PAsp(DET)-based dry gene powder. From an in vitro inhalation study using an Andersen cascade impactor, it was demonstrated that the addition of l-leucine could markedly improve the inhalation performance of dry powders prepared by SFD. Following pulmonary delivery to mice, both PAsp(DET)- and PEG-PAsp(DET)-based dry gene powders could achieve higher gene transfection efficiencies in the lungs compared with a chitosan-based dry gene powder previously reported by us.
Collapse
Affiliation(s)
- Tomoyuki Okuda
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| | - Yumiko Suzuki
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| | - Yuko Kobayashi
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| | - Takehiko Ishii
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan.
| | - Satoshi Uchida
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Keiji Itaka
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Kazunori Kataoka
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo 113-8656, Japan.
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| | - Hirokazu Okamoto
- Faculty of Pharmacy, Meijo University, 150 Yagotoyama, Tempaku-ku, Nagoya 468-8503, Japan.
| |
Collapse
|
42
|
Kwok PCL, Grabarek A, Chow MYT, Lan Y, Li JCW, Casettari L, Mason AJ, Lam JKW. Inhalable spray-dried formulation of D-LAK antimicrobial peptides targeting tuberculosis. Int J Pharm 2015; 491:367-74. [PMID: 26151107 DOI: 10.1016/j.ijpharm.2015.07.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/29/2015] [Accepted: 07/01/2015] [Indexed: 10/23/2022]
Abstract
Tuberculosis (TB) is a global disease that is becoming more difficult to treat due to the emergence of multidrug resistant (MDR) Mycobacterium tuberculosis. Inhalable antimicrobial peptides (AMPs) are potentially useful alternative anti-TB agents because they can overcome resistance against classical antibiotics, reduce systemic adverse effects, and achieve local targeting. The aims of the current study were to produce inhalable dry powders containing d-enantiomeric AMPs (D-LAK120-HP13 and D-LAK120-A) and evaluate their solid state properties, aerosol performance, and structural conformation. These two peptides were spray dried with mannitol as a bulking agent at three mass ratios (peptide:mannitol 1:99, 1:49, and 1:24) from aqueous solutions. The resultant particles were spherical, with those containing D-LAK120-HP13 being more corrugated than those with D-LAK120-A. The median volumetric diameter of the particles was approximately 3μm. The residual water content of all powders were <3% w/w and crystalline, due to the low hygroscopicity and crystallinity of mannitol, respectively. The mannitol changed from a mixture of alpha- and beta-forms to delta form with an increasing proportion of AMP in the formulation. The emitted fraction and fine particle fraction of the powders when dispersed from an Osmohaler(®) at 90L/min were about 80% and 50-60% of the loaded dose, respectively, indicating good aerosol performance. Circular dichroism data showed that D-LAK120-HP13 dissolved in Tris buffer at pH 7.15 was of a disordered conformation. In contrast, D-LAK120-A showed greater α-helical conformation. Since the conformations of the AMPs were comparable to the controls (unprocessed peptides), the spray drying process did not substantially affect their secondary structures. In conclusion, spray dried powders containing d-enantiomeric AMPs with preserved secondary molecular structures and good aerosol performance could be successfully produced. They may potentially be used for treating MDR-TB when delivered by inhalation.
Collapse
Affiliation(s)
- Philip Chi Lip Kwok
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong
| | - Adam Grabarek
- School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N A1X, United Kingdom
| | - Michael Y T Chow
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong
| | - Yun Lan
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong
| | - Johnny C W Li
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino, Piazza Rinascimento, 6, Urbino 61029, Italy
| | - A James Mason
- Institute of Pharmaceutical Science, King's College London, 150 Stamford Street, London SE1 9NH, United Kingdom
| | - Jenny K W Lam
- Department of Pharmacology & Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, 21 Sassoon Road, Hong Kong.
| |
Collapse
|
43
|
Liang W, Chow MYT, Lau PN, Zhou QT, Kwok PCL, Leung GPH, Mason AJ, Chan HK, Poon LLM, Lam JKW. Inhalable dry powder formulations of siRNA and pH-responsive peptides with antiviral activity against H1N1 influenza virus. Mol Pharm 2015; 12:910-21. [PMID: 25599953 DOI: 10.1021/mp500745v] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Pulmonary delivery of siRNA has considerable therapeutic potential for treating viral respiratory infectious diseases including influenza. By introducing siRNA that targets the conserved region of viral genes encoding nucleocapsid protein (NP), viral mRNAs can be degraded and viral replication can be inhibited in mammalian cells. To enable siRNA to be used as an antiviral agent, the nucleic acid delivery barrier must be overcome. Effective local delivery of siRNA to lung tissues is required to reduce the therapeutic dose and minimize systemic adverse effects. To develop a formulation suited for clinical application, complexes of pH-responsive peptides, containing either histidine or 2,3-diaminopropionic acid (Dap), and siRNA were prepared into dry powders by spray drying with mannitol, which was used as a bulking agent. The spray-dried (SD) powders were characterized and found to be suitable for inhalation with good stability, preserving the integrity of the siRNA as well as the biological and antiviral activities. The formulations mediated highly effective in vitro delivery of antiviral siRNA into mammalian lung epithelial cells, leading to significant inhibition of viral replication when the transfected cells were subsequently challenged with H1N1 influenza virus. SD siRNA powders containing pH-responsive peptides are a promising inhalable formulation to deliver antiviral siRNA against influenza and are readily adapted for the treatment of other respiratory diseases.
Collapse
Affiliation(s)
- Wanling Liang
- Department of Pharmacology & Pharmacy, ‡School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong , 21 Sassoon Road, Pokfulam, Hong Kong
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Pulmonary drug delivery by powder aerosols. J Control Release 2014; 193:228-40. [DOI: 10.1016/j.jconrel.2014.04.055] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 04/27/2014] [Accepted: 04/29/2014] [Indexed: 12/24/2022]
|
45
|
Manipulating the pH response of 2,3-diaminopropionic acid rich peptides to mediate highly effective gene silencing with low-toxicity. J Control Release 2013; 172:929-38. [PMID: 24144917 PMCID: PMC3858832 DOI: 10.1016/j.jconrel.2013.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 09/06/2013] [Accepted: 09/16/2013] [Indexed: 12/27/2022]
Abstract
Cationic amphipathic pH responsive peptides possess high in vitro and in vivo nucleic acid delivery capabilities and function by forming a non-covalent complex with cargo, protecting it from nucleases, facilitating uptake via endocytosis and responding to endosomal acidification by being released from the complex and inserting into and disordering endosomal membranes. We have designed and synthesised peptides to show how Coulombic interactions between ionizable 2,3-diaminopropionic acid (Dap) side chains can be manipulated to tune the functional pH response of the peptides to afford optimal nucleic acid transfer and have modified the hydrogen bonding capabilities of the Dap side chains in order to reduce cytotoxicity. When compared with benchmark delivery compounds, the peptides are shown to have low toxicity and are highly effective at mediating gene silencing in adherent MCF-7 and A549 cell lines, primary human umbilical vein endothelial cells and both differentiated macrophage-like and suspension monocyte-like THP-1 cells.
Collapse
|