1
|
Kosksi T, Bustos-Salgado P, Rejeb M, Selmi A, Debbabi N, Espinoza LC, Sosa L, Silva-Abreu M, Calpena AC, Chekir-Ghedira L. Development of Polymeric Nanoparticles Loaded with Phlomis crinita Extract: A Promising Approach for Enhanced Wound Healing. Int J Mol Sci 2025; 26:2124. [PMID: 40076748 PMCID: PMC11901007 DOI: 10.3390/ijms26052124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/24/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
The use of nanoparticles improves the stability, solubility, and skin permeability of natural compounds in skincare products. Based on these advantages, this study aimed to incorporate the Phlomis crinita extract into polymeric nanoparticles to improve its topical skin delivery for wound healing purposes. The study involved the preparation of nanoparticles of PLGA and PLGA-PEG (PCE-PLGA-NPs and PCE-PLGA-PEG-NPs) using the solvent displacement method, physicochemical and biopharmaceutical characterization, tolerance studies by the HET-CAM assay and evaluation of skin integrity parameters, and in vitro efficacy via a scratch wound healing experiment. The prepared nanoparticles were nanometer-sized with spherical form and demonstrated an encapsulation efficiency greater than 90%. The major component (luteolin) was released following a kinetic model of hyperbola for PCE-PLGA-PEG-NPs and one-phase exponential association for PCE-PLGA-NPs. Moreover, the important permeability of luteolin skin was observed, especially for PCE-PLGA-PEG-NPs. Both formulations exhibited no irritation and no damaging effects on skin integrity, suggesting their safety. Finally, the results of the scratch wound healing experiment using 3T3-L1 cells revealed significant cell migration and proliferation, with an improved efficacy for PCE-PLGA-PEG-NPs compared to the free extract, demonstrating the potential of this formulation in the treatment of wound healing.
Collapse
Affiliation(s)
- Tahsine Kosksi
- Laboratory of Natural Bioactive Substances and Biotechnology (LR24ES14), Faculty of Dental Medicine, University of Monastir, Av. Avicenne, Monastir 5019, Tunisia
| | - Paola Bustos-Salgado
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
| | - Marwa Rejeb
- Laboratory of Natural Bioactive Substances and Biotechnology (LR24ES14), Faculty of Dental Medicine, University of Monastir, Av. Avicenne, Monastir 5019, Tunisia
| | - Arem Selmi
- Laboratory of Natural Bioactive Substances and Biotechnology (LR24ES14), Faculty of Dental Medicine, University of Monastir, Av. Avicenne, Monastir 5019, Tunisia
| | - Nawres Debbabi
- Laboratory of Natural Bioactive Substances and Biotechnology (LR24ES14), Faculty of Dental Medicine, University of Monastir, Av. Avicenne, Monastir 5019, Tunisia
| | - Lupe Carolina Espinoza
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
- Institut de Nanociència i Nanotecnologia, Universitat de Barcelona (UB), Av. Diagonal 645, 08028 Barcelona, Spain
| | - Lilian Sosa
- Pharmaceutical Technology Research Group, Faculty of Chemical Sciences and Pharmacy, National Autonomous University of Honduras (UNAH), Tegucigalpa 11101, Honduras
- Instituto de Investigaciones Microbiológicas (IIM), Facultad de Ciencias, Universidad Nacional Autónoma de Honduras (UNAH), Tegucigalpa 11101, Honduras
| | - Marcelle Silva-Abreu
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - Ana Cristina Calpena
- Departament de Farmàcia i Tecnologia Farmacèutica, i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), Av. Joan XXIII, 27-31, 08028 Barcelona, Spain
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Técnica Particular de Loja, San Cayetano Alto, Loja 1101608, Ecuador
| | - Leila Chekir-Ghedira
- Laboratory of Natural Bioactive Substances and Biotechnology (LR24ES14), Faculty of Dental Medicine, University of Monastir, Av. Avicenne, Monastir 5019, Tunisia
| |
Collapse
|
2
|
Feng Y, Tu C, Li R, Wu D, Yang J, Xia Y, Peijnenburg WJ, Luo Y. A systematic review of the impacts of exposure to micro- and nano-plastics on human tissue accumulation and health. ECO-ENVIRONMENT & HEALTH 2023; 2:195-207. [PMID: 38435355 PMCID: PMC10902512 DOI: 10.1016/j.eehl.2023.08.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/22/2023] [Accepted: 08/10/2023] [Indexed: 03/05/2024]
Abstract
Micro- and nano-plastics (MNPs) pollution has become a pressing global environmental issue, with growing concerns regarding its impact on human health. However, evidence on the effects of MNPs on human health remains limited. This paper reviews the three routes of human exposure to MNPs, which include ingestion, inhalation, and dermal contact. It further discusses the potential routes of translocation of MNPs in human lungs, intestines, and skin, analyses the potential impact of MNPs on the homeostasis of human organ systems, and provides an outlook on future research priorities for MNPs in human health. There is growing evidence that MNPs are present in human tissues or fluids. Lab studies, including in vivo animal models and in vitro human-derived cell cultures, revealed that MNPs exposure could negatively affect human health. MNPs exposure could cause oxidative stress, cytotoxicity, disruption of internal barriers like the intestinal, the air-blood and the placental barrier, tissue damage, as well as immune homeostasis imbalance, endocrine disruption, and reproductive and developmental toxicity. Limitedly available epidemiological studies suggest that disorders like lung nodules, asthma, and blood thrombus might be caused or exacerbated by MNPs exposure. However, direct evidence for the effects of MNPs on human health is still scarce, and future research in this area is needed to provide quantitative support for assessing the risk of MNPs to human health.
Collapse
Affiliation(s)
- Yudong Feng
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruijie Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Di Wu
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jie Yang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Willie J.G.M. Peijnenburg
- National Institute of Public Health and the Environment, Center for Safety of Substances and Products, Bilthoven, the Netherlands
- Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Nanoparticles loaded with pharmacologically active plant-derived natural products: Biomedical applications and toxicity. Colloids Surf B Biointerfaces 2023; 225:113214. [PMID: 36893664 DOI: 10.1016/j.colsurfb.2023.113214] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/08/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023]
Abstract
Pharmacologically active natural products have played a significant role in the history of drug development. They have acted as sources of therapeutic drugs for various diseases such as cancer and infectious diseases. However, most natural products suffer from poor water solubility and low bioavailability, limiting their clinical applications. The rapid development of nanotechnology has opened up new directions for applying natural products and numerous studies have explored the biomedical applications of nanomaterials loaded with natural products. This review covers the recent research on applying plant-derived natural products (PDNPs) nanomaterials, including nanomedicines loaded with flavonoids, non-flavonoid polyphenols, alkaloids, and quinones, especially their use in treating various diseases. Furthermore, some drugs derived from natural products can be toxic to the body, so the toxicity of them is discussed. This comprehensive review includes fundamental discoveries and exploratory advances in natural product-loaded nanomaterials that may be helpful for future clinical development.
Collapse
|
4
|
Adouni K, Júlio A, Santos-Buelga C, González-Paramás AM, Filipe P, Rijo P, Costa Lima SA, Reis S, Fernandes Â, Ferreira IC, Fernández-Ruiz V, Morales P, Flamini G, Achour L, Fonte P. Roots and rhizomes of wild Asparagus: Nutritional composition, bioactivity and nanoencapsulation of the most potent extract. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
5
|
Breuckmann P, Meinke MC, Jaenicke T, Krutmann J, Rasulev U, Keck CM, Müller RH, Klein AL, Lademann J, Patzelt A. Influence of nanocrystal size on the in vivo absorption kinetics of caffeine after topical application. Eur J Pharm Biopharm 2021; 167:57-64. [PMID: 34273544 DOI: 10.1016/j.ejpb.2021.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 07/07/2021] [Accepted: 07/10/2021] [Indexed: 11/27/2022]
Abstract
The absorption of topically applied substances is challenging due to the effective skin barrier. Encapsulation of substances into nanoparticles was expected to be promising to increase the bioavailability of topically applied products. Since nanoparticles cannot traverse the intact skin barrier, but penetrate into the hair follicles, they could be used to deliver substances via hair follicles, where the active is released and can translocate independently transfollicularly into the viable epidermis. In the present in vivo study, this effect was investigated for caffeine. Caffeine nanocrystals of two sizes, 206 nm and 694 nm, with equal amounts of caffeine were used to study caffeine serum concentration kinetics after topical application on 5 human volunteers. The study demonstrated that at early time points, the smaller nanocrystals were more effective in increasing the bioavailability of caffeine, whereas after 20 min, the serum concentration of caffeine was higher when caffeine was applied by larger nanocrystals. Caffeine was still detectable after 5 days. The area under the curve could be increased by 82% when the 694 nm nanocrystals were applied. Especially larger sized nanocrystals seem to be a promising type of nanoparticulate preparation to increase the bioavailability of topically applied drugs via the transfollicular penetration pathway.
Collapse
Affiliation(s)
- P Breuckmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - M C Meinke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - Th Jaenicke
- IUF - Leibniz Institut für Umweltmedizinische Forschung, Düsseldorf, Germany
| | - J Krutmann
- IUF - Leibniz Institut für Umweltmedizinische Forschung, Düsseldorf, Germany
| | - U Rasulev
- Arifov Institute of Electronics of the Uzbek Academy of Sciences, Tashkent, Uzbekistan
| | - C M Keck
- PharmaSol GmbH, Berlin, Germany; Department of Pharmaceutics and Biopharmaceutics, Philipps-Universität Marburg, Marburg, Germany
| | - R H Müller
- Department of Pharmaceutics, Biopharmaceutics and Nutricosmetics, Freie Universität Berlin, Germany
| | - A L Klein
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany.
| | - J Lademann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| | - A Patzelt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Germany
| |
Collapse
|
6
|
Bumrung J, Chanchao C, Intasanta V, Palaga T, Wanichwecharungruang S. Water-dispersible unadulterated α-mangostin particles for biomedical applications. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200543. [PMID: 33391780 PMCID: PMC7735336 DOI: 10.1098/rsos.200543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/02/2020] [Indexed: 06/12/2023]
Abstract
α-Mangostin, the extract from pericarp of Garcinia mangostana L . or mangosteen fruit, has been applied in various biomedical products because of its minimal skin irritation, and prominent anti-inflammatory, antimicrobial and immune-modulating activities. Owing to its low water solubility, the particle formulations are necessary for the applications of α-mangostin in aqueous media. The particle formulations are usually prepared using surfactants and/or polymers, usually at a larger amount of these auxiliaries than the amount of α-mangostin itself. Here, we show the self-assembly of α-mangostin molecules into water-dispersible particles without a need of any polymers/surfactants. Investigations on chemical structure, crystallinity and thermal properties of the obtained α-mangostin particles, in comparison to the conventional α-mangostin crystalline solid, confirm no formation of the new compound during the particle formation and suggest changes in intermolecular interactions among α-mangostin molecules and significantly more hydroxyl functionality positioned at the particles' surface. The ability of the water suspension of the α-mangostin to inhibit the growth of Propionibacterium acnes, the acne-causing bacteria, is similar to that of the solution of the conventional α-mangostin in 5% dimethyl sulfoxide. Moreover, at 12.7 ppm in an aqueous environment of RAW 264.7 cell culture, α-mangostin suspension exhibits five times higher anti-inflammatory activity than the conventional α-mangostin solution, with the same acceptable cytotoxicity of less than 20% cell death.
Collapse
Affiliation(s)
- Jutamad Bumrung
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Bangkok, Thailand
| | - Chanpen Chanchao
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Varol Intasanta
- National Nanotechnology Center, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Tanapat Palaga
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Advanced Materials and Biointerfaces, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
7
|
Lueangarun S, Sriviriyakul K, Tempark T, Managit C, Sithisarn P. Clinical efficacy of 0.5% topical mangosteen extract in nanoparticle loaded gel in treatment of mild-to-moderate acne vulgaris: A 12-week, split-face, double-blinded, randomized, controlled trial. J Cosmet Dermatol 2019; 18:1395-1403. [PMID: 30688020 DOI: 10.1111/jocd.12856] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 11/16/2018] [Accepted: 12/18/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Acne vulgaris is the most common inflammatory sebaceous gland disorder in young adults. The resistant strains of Propionibacterium acnes (P. acnes) are of increasing concern in the treatment of acne. OBJECTIVES To evaluate the efficacy of 0.5% topical mangosteen extract in nanoparticle loaded gel (containing alpha-mangostin) compared with 1% clindamycin gel for treatment of mild-to-moderate acne vulgaris. METHODS Patients aged 18-40 years were enrolled in this double-blinded, split-face, randomized, control study. The 2.5% benzoyl peroxide cream was applied to both sides of the faces once daily for 5 minutes and washed off. Each patient was randomly treated with the mangosteen fruit rind extract on one side and 1% clindamycin on another side of the face twice daily for 12 weeks. Treatment efficacies and side effects were evaluated on every follow-up. RESULTS Twenty-eight patients, 24 female (85.7%), mean ± SD age of 25.14 ± 5.8, with Global Acne Grading system (GAGs) score of 15.43 ± 5.96 were included. Mangosteen fruit rind extract significantly showed significant 66.86% and 67.05% reduction of comedone and inflammatory lesions (P < 0.001) after 12-week treatment. The improvement on both treated sides significantly showed since 2 weeks after treatment, without statistical difference between two groups. Nonetheless, the mangosteen fruit rind extract revealed significantly better improvement of clinical severity, with no severe side effects. CONCLUSIONS The mangosteen fruit rind extract formation could be a phytopharmaceutical medication for effective treatment of mild and moderate acne vulgaris treatment comparable to 1% clindamycin gel, with no severe side effects.
Collapse
Affiliation(s)
- Suparuj Lueangarun
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Karuna Sriviriyakul
- Division of Dermatology, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Therdpong Tempark
- Department of Pediatrics, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Chulalongkorn University, Pathumwan, Thailand
| | - Chittima Managit
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Srinakharinwirot University, Nakhonnayok, Thailand
| | - Pongtip Sithisarn
- Department of Pharmacognosy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| |
Collapse
|
8
|
Mushroom ethanolic extracts as cosmeceuticals ingredients: Safety and ex vivo skin permeation studies. Food Chem Toxicol 2019; 127:228-236. [DOI: 10.1016/j.fct.2019.03.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/14/2019] [Accepted: 03/23/2019] [Indexed: 11/20/2022]
|
9
|
|
10
|
Marchiori MCL, Rigon C, Camponogara C, Oliveira SM, Cruz L. Hydrogel containing silibinin-loaded pomegranate oil based nanocapsules exhibits anti-inflammatory effects on skin damage UVB radiation-induced in mice. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 170:25-32. [DOI: 10.1016/j.jphotobiol.2017.03.015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/21/2017] [Accepted: 03/21/2017] [Indexed: 12/18/2022]
|
11
|
Hemachandran H, Anantharaman A, Mohan S, Mohan G, Kumar DT, Dey D, Kumar D, Dey P, Choudhury A, George Priya Doss C, Ramamoorthy S. Unraveling the inhibition mechanism of cyanidin-3-sophoroside on polyphenol oxidase and its effect on enzymatic browning of apples. Food Chem 2017; 227:102-110. [PMID: 28274409 DOI: 10.1016/j.foodchem.2017.01.041] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 11/26/2016] [Accepted: 01/10/2017] [Indexed: 01/12/2023]
Abstract
The hunt for anti-browning agents in the food and agricultural industries aims to minimize nutritional loss and prolong post harvest storage. In the present study, the effect of cyanidin-3-sophoroside (CS) from Garcinia mangostana rind, on polyphenol oxidase (PPO) activity was investigated. The non-competitive inhibition mode of CS was determined by Lineweaver Burk plot. CS forms a ground-state complex by quenching the intrinsic fluorescence of PPO. The static quenching was temperature-dependent with an activation energy of 4.654±0.1091kJmol-1 to withstand the disruption of amino acid residues of the enzyme binding site. The enzyme conformational change was validated by 3D fluorescence and CD spectrum. Docking (binding energy -8.124kcal/mol) and simulation studies confirmed the binding pattern and stability. CS decreased PPO activity and browning index of fresh cut apples and prolonged the shelf life. Thus, CS appears to be a promising anti-browning agent to control enzymatic browning.
Collapse
Affiliation(s)
- Hridya Hemachandran
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Amrita Anantharaman
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Sankari Mohan
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | | | - D Thirumal Kumar
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Diksha Dey
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Drishty Kumar
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Priyanka Dey
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Amrita Choudhury
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - C George Priya Doss
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India
| | - Siva Ramamoorthy
- School of Bio Sciences and Technology, VIT University, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
12
|
Armendáriz-Barragán B, Zafar N, Badri W, Galindo-Rodríguez SA, Kabbaj D, Fessi H, Elaissari A. Plant extracts: from encapsulation to application. Expert Opin Drug Deliv 2016; 13:1165-75. [PMID: 27139509 DOI: 10.1080/17425247.2016.1182487] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Plants are a natural source of various products with diverse biological activities offering treatment for several diseases. Plant extract is a complex mixture of compounds, which can have antioxidant, antibiotic, antiviral, anticancer, antiparasitic, antifungal, hypoglycemic, anti-hypertensive and insecticide properties. The extraction of these extracts requires the use of organic solvents, which not only complicates the formulations but also makes it difficult to directly use the extracts for humans. To overcome these problems, recent research has been focused on developing new ways to formulate the plant extracts and delivering them safely with enhanced therapeutic efficacy. AREAS COVERED This review focuses on the research done in the development and use of polymeric nanoparticles for the encapsulation and administration of plant extracts. It describes in detail, the different encapsulation techniques, main physicochemical characteristics of the nanoparticles, toxicity tests and results obtained from in vivo or in vitro assays. EXPERT OPINION Major obstacles associated with the use of plant extracts for clinical applications include their complex composition, toxicity risks and extract instability. It is observed that encapsulation can be successfully used to decrease plant extracts toxicity, to provide targeted drug delivery and to solve stability related problems.
Collapse
Affiliation(s)
- Brenda Armendáriz-Barragán
- a Departamento de Química Analítica, Facultad de Ciencias Biológicas , Universidad Autónoma de Nuevo León , San Nicolás de los Garza , México.,b Laboratoire d'Automatique et des Génie des Procédés (ESCPE, CNRS UMR 5007) , Université Claude Bernard Lyon I , Villeurbanne , France
| | - Nadiah Zafar
- b Laboratoire d'Automatique et des Génie des Procédés (ESCPE, CNRS UMR 5007) , Université Claude Bernard Lyon I , Villeurbanne , France
| | - Waisudin Badri
- b Laboratoire d'Automatique et des Génie des Procédés (ESCPE, CNRS UMR 5007) , Université Claude Bernard Lyon I , Villeurbanne , France
| | - Sergio Arturo Galindo-Rodríguez
- a Departamento de Química Analítica, Facultad de Ciencias Biológicas , Universidad Autónoma de Nuevo León , San Nicolás de los Garza , México
| | - Dounia Kabbaj
- c Department of Agronomy and Life Science, Universiapolis , International University of Agadir , Agadir , Morocco
| | - Hatem Fessi
- b Laboratoire d'Automatique et des Génie des Procédés (ESCPE, CNRS UMR 5007) , Université Claude Bernard Lyon I , Villeurbanne , France
| | - Abdelhamid Elaissari
- b Laboratoire d'Automatique et des Génie des Procédés (ESCPE, CNRS UMR 5007) , Université Claude Bernard Lyon I , Villeurbanne , France
| |
Collapse
|
13
|
Depositing α-mangostin nanoparticles to sebaceous gland area for acne treatment. J Pharmacol Sci 2015; 129:226-32. [PMID: 26701606 DOI: 10.1016/j.jphs.2015.11.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/03/2015] [Accepted: 11/11/2015] [Indexed: 02/05/2023] Open
Abstract
Although entrapment of nanoparticles of appropriate sizes at hair follicles has been clarified, there is no report on specific clinical application of this finding. Since sebaceous gland is associated with hair follicle, we hypothesize that effective acne vulgaris treatment/prevention can be achieved by depositing anti-acne agent in nanoparticle form at the hair follicles. Challenge of this strategy, however, lies at the finding of effective anti-acne particles with minimal skin irritation. Here using cellulose-based nanoparticles as nano-reservoir and α-mangostin (an active component isolated from the edible Garcinia mangostana Linn. fruit) as anti-acne agent, we prepare nanoparticles highly loaded with α-mangostin. Ability of the obtained particles to sustained release α-mangostin into synthetic sebum is demonstrated. The obtained mangostin particles are verified for their insignificant skin irritation through the two-week, twice-daily open application test in 20 healthy human volunteers. Excellent entrapment and sustainment of the mangostin nanoparticles at the hair follicles are elucidated in six human volunteers by detecting the presence of α-mangostin at the roots of hairs pulled from the treated skin area. The 4-week-randomized, double-blind, placebo-controlled, split-face study in 10 acne patients indicates significant improvement in acne vulgaris condition on the side twice daily applied with mangostin nanoparticles.
Collapse
|
14
|
|
15
|
Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route. Eur J Pharm Biopharm 2015; 97:152-63. [PMID: 26144664 DOI: 10.1016/j.ejpb.2015.06.020] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/10/2015] [Accepted: 06/08/2015] [Indexed: 01/22/2023]
Abstract
Lipid nanoparticles (LN) such as solid lipid nanoparticles (SLN) and nanolipid carriers (NLC) feature several claimed benefits for topical drug therapy including biocompatible ingredients, drug release modification, adhesion to the skin, and film formation with subsequent hydration of the superficial skin layers. However, penetration and permeation into and across deeper skin layers are restricted due to the barrier function of the stratum corneum (SC). As different kinds of nanoparticles provide the potential for penetration into hair follicles (HF) LN are applicable drug delivery systems (DDS) for this route in order to enhance the dermal and transdermal bioavailability of active pharmaceutical ingredients (API). Therefore, this review addresses the HF as application site, published formulations of LN which showed follicular penetration (FP), and characterization methods in order to identify and quantify the accumulation of API delivered by the LN in the HF. Since LN are based on lipids that appear in human sebum which is the predominant medium in HF an increased localization of the colloidal carriers as well as a promoted drug release may be assumed. Therefore, sebum-like lipid material and a size of less or equal 640 nm are appropriate specifications for FP of particulate formulations.
Collapse
|
16
|
Sinha P, Srivastava S, Mishra N, Yadav NP. New perspectives on antiacne plant drugs: contribution to modern therapeutics. BIOMED RESEARCH INTERNATIONAL 2014; 2014:301304. [PMID: 25147793 PMCID: PMC4132408 DOI: 10.1155/2014/301304] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/01/2014] [Accepted: 07/08/2014] [Indexed: 11/21/2022]
Abstract
Acne is a common but serious skin disease, which affects approximately 80% adolescents and young adults in 11-30 age group. 42.5% of men and 50.9% of women continue to suffer from this disease into their twenties. Bacterial resistance is now at the alarming stage due to the irrational use of antibiotics. Hence, search for new lead molecule/bioactive and rational delivery of the existing drug (for better therapeutic effect) to the site of action is the need of the hour. Plants and plant-derived products have been an integral part of health care system since time immemorial. Therefore, plants that are currently used for the treatment of acne and those with a high potential are summarized in the present review. Most active plant extracts, namely, P. granatum, M. alba, A. anomala, and M. aquifolium exhibit minimum inhibitory concentration (MIC) in the range of 4-50 µg/mL against P. acnes, while aromatic oils of C. obovoides, C. natsudaidai, C. japonica, and C. nardus possess MICs 0.005-0.6 μL/mL and phytomolecules such as rhodomyrtone, pulsaquinone, hydropulsaquinone, honokiol, magnolol, xanthohumol lupulones, chebulagic acid and rhinacanthin-C show MIC in the range of 0.5-12.5 μg/mL. Novel drug delivery strategies of important plant leads in the treatment of acne have also been discussed.
Collapse
Affiliation(s)
- Priyam Sinha
- Herbal Medicinal Products Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India
| | - Shruti Srivastava
- Herbal Medicinal Products Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India
| | - Nidhi Mishra
- Herbal Medicinal Products Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India
| | - Narayan Prasad Yadav
- Herbal Medicinal Products Department, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), P.O. CIMAP, Lucknow 226015, India
| |
Collapse
|