1
|
Koch N, Bourcy Q, Jennotte O, Chiap P, Lechanteur A, Cardot JM, Evrard B. Selection of In Vivo Relevant Dissolution Test Parameters for the Development of Cannabidiol Formulations with Enhanced Oral Bioavailability. Pharmaceutics 2025; 17:79. [PMID: 39861727 PMCID: PMC11769287 DOI: 10.3390/pharmaceutics17010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/02/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Cannabidiol (CBD) shows interesting therapeutic properties but has yet to demonstrate its full potential in clinical trials partly due to its low solubility in physiologic media. Two different formulations of CBD (amorphous and lipid-based) have been optimized and enable an increase in bioavailability in piglets. In vivo studies are time-consuming, costly and life-threatening. Therefore, we need to develop in vitro tests that can predict what will happen in vivo. Methods: Comparisons in terms of dissolution were made especially by using different media (FaSSGF, FaSSIF, FeSSIF, HCl 0.1N with or without SLS, phosphate buffer pH 6.8 with or without SLS) and different conditions (sink or non-sink conditions). These in vitro results were confronted with in vivo results to select the most appropriate dissolution test conditions. Results: The importance of the presence of surfactants to enable solubilization of CBD was demonstrated. Neutral media enabled a relatively good prediction of the extent of absorption observed in vivo, whereas the rate of absorption was more complicated to predict. Conclusions: FeSSIF media, and FaSSIF sink media to a lesser extent, were the only compositions enabling predictions of both extent and rate, indicating that emulsification is possibly a major contributor to the in vivo availability of the drug.
Collapse
Affiliation(s)
- Nathan Koch
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - Quentin Bourcy
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - Olivier Jennotte
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | - Patrice Chiap
- Department of Toxicology, Center for Interdisciplinary Research on Medicines (CIRM), Academic Hospital of Liège, 4000 Liège, Belgium
| | - Anna Lechanteur
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| | | | - Brigitte Evrard
- Laboratory of Pharmaceutical Technology and Biopharmacy, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, 4000 Liège, Belgium
| |
Collapse
|
2
|
McKinnon Z, Khadra I, Halbert GW, Batchelor HK. Characterisation of colloidal structures and their solubilising potential for BCS class II drugs in fasted state simulated intestinal fluid. Int J Pharm 2024; 665:124733. [PMID: 39317247 DOI: 10.1016/j.ijpharm.2024.124733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
A suite of fasted state simulated intestinal fluid (SIF), based on variability observed in a range of fasted state human intestinal fluid (HIF) samples was used to study the solubility of eight poorly soluble drugs (three acidic drugs (naproxen, indomethacin and phenytoin), two basic drugs (carvedilol and tadalafil) and three neutral drugs (felodipine, fenofibrate, griseofulvin)). Particle size of the colloidal structures formed in these SIF in the presence and absence of drugs was measured using dynamic light scattering and nanoparticle tracking analysis. Results indicate that drug solubility tends to increase with increasing total amphiphile concentration (TAC) in SIF with acidic drugs proving to be more soluble than basic or neutral drug in the media evaluated. Dynamic light scattering showed that as the amphiphile concentration increased, the hydrodynamic diameters of the structures decreased. The scattering distribution confirmed the polydispersity of the simulated intestinal fluids compared to the monodisperse distribution observed for FaSSIF v1). There was a large difference in the size of the structures found based on the composition of the SIF, for example, the diameter of the structures measured in felodipine in the minimum TAC media was measured to be 170 ± 5 nm which decreased to 5.1 ± 0.2 nm in the maximum TAC media point. The size measured of the colloidal structures of felodipine in the FaSSIF v1 was 86 ± 1 nm. However, there was no simple correlation between solubility and colloidal size. Nanoparticle tracking analysis was used for the first time to characterise colloidal structures within SIF and the results were compared to those obtained by dynamic light scattering. The particle size measured by dynamic light scattering was generally greater in media with a lower concentration of amphiphiles and smaller in media of a higher concentration of amphiphiles, compared to that of the data yielded by nanoparticle tracking analysis. This work shows that the colloidal structures formed vary depending on the composition of SIF which affects the solubility. Work is ongoing to determine the relationship between colloidal structure and solubility.
Collapse
Affiliation(s)
- Zoe McKinnon
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Ibrahim Khadra
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Gavin W Halbert
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Hannah K Batchelor
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom.
| |
Collapse
|
3
|
Tunçer E, Bayramoğlu B. Molecular dynamics simulations of duodenal self assembly in the presence of different fatty acids. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Zenda N, Tagami T, Ozeki T. Development of a Novel Gastric Process Simulation Model: The Successful Assessment of Bioequivalence and Bioinequivalence of a Biopharmaceutics Classification System Class II Weak Acid Drug. Biol Pharm Bull 2022; 45:364-373. [PMID: 35228402 DOI: 10.1248/bpb.b21-01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bioequivalence has been assessed using in vitro dissolution testing, such as in vivo predictive dissolution methodology. However, the assessment of bioequivalence should be performed carefully, considering the effect of the in vivo environment and according to the properties of the drug. The gastric emptying process is a key factor for the assessment of biopharmaceutics classification system class II (BCS class IIa) drugs with acidic properties since they cannot dissolve in the acidic stomach, but do dissolve in the small intestine (SI). The disintegration of a tablet in the stomach affects the distribution/dissolution in the SI due to the difference in the gastric emptying step, which in turn is a result of the varying formulation of the drugs. In this study, we used the reported dynamic pH change method and a novel gastric process simulation (GPS) model, which can compare the gastric emptying of particular-sized drug particles. The in vitro results were compared to clinical data using bioequivalent and bioinequivalent products of candesartan cilexetil. It was revealed that the dynamic pH change method was inappropriate, whereas the amount of filtered drug in GPS studies with 20 and 50 µm pore size filters could reflect the clinical results of all products. The evaluation of the gastric emptying process of drug particles less than 50 µm enabled us to assess the bioequivalence because they probably caused the difference in the distribution in the SI. This study demonstrated the utility of the GPS model for the assessment of bioequivalence of BCS class IIa drugs.
Collapse
Affiliation(s)
- Naoki Zenda
- Pharmacokinetics group, Sawai Pharmaceutical Co., Ltd
| | - Tatsuaki Tagami
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| | - Tetsuya Ozeki
- Drug Delivery and Nano Pharmaceutics, Graduate School of Pharmaceutical Sciences, Nagoya City University
| |
Collapse
|
5
|
Fagerberg JH, Zarmpi P, Jabbar H, Fotaki N. Affinity of Lipophilic Drugs to Mixed Lipid Aggregates in Simulated Gastrointestinal Fluids. J Pharm Sci 2020; 110:186-197. [PMID: 33065126 DOI: 10.1016/j.xphs.2020.09.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/21/2022]
Abstract
Mixed lipid aggregates, comprising of bile salts and phospholipids, present in the small intestine assist in drug solubilization and subsequent drug dissolution and absorption through the intestinal epithelium. The increased variability in their levels, observed physiologically, may create challenges not only for in vivo bioavailability and bioequivalence studies, but also for in vitro bio-predictive studies as correlations between in vitro and in vivo data are not always successful. The current study investigated the impact of biorelevant dissolution media, with physiologically relevant sodium taurocholate and lecithin levels, on the apparent solubility and affinity of lipophilic compounds with a wide range of physicochemical properties (drug ionization, drug lipophilicity, molecular weight) to mixed lipid aggregates. Apparent solubility data in biorelevant dissolution media for the studied neutral drugs, weak bases and weak acids were compared against a phosphate buffer pH 6.5 in the absence of these lipidic components. Presence of mixed lipid aggregates enhanced the apparent solubility of the majority of compounds and the use of multivariate data analysis identified the significant parameters affecting drug affinity to mixed lipid aggregates based on the chemical class of the drug. For neutral drugs, increasing bile salt concentrations and/or drug lipophilicity resulted in greater enhancement in apparent solubility at 24-hr. For weak bases and weak acids, the effect of increasing bile salt levels on apparent solubility depended mostly on an interplay between drug lipophilicity and drug ionization.
Collapse
Affiliation(s)
| | - Panagiota Zarmpi
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - Hasnaa Jabbar
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK
| | - Nikoletta Fotaki
- Department of Pharmacy and Pharmacology, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
6
|
Synergistic and antagonistic effects of non-ionic surfactants with bile salt + phospholipid mixed micelles on the solubility of poorly water-soluble drugs. Int J Pharm 2020; 588:119762. [DOI: 10.1016/j.ijpharm.2020.119762] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/31/2020] [Accepted: 08/09/2020] [Indexed: 01/08/2023]
|
7
|
Gastrointestinal diseases and their impact on drug solubility: Celiac disease. Eur J Pharm Sci 2020; 152:105460. [DOI: 10.1016/j.ejps.2020.105460] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/12/2020] [Accepted: 07/05/2020] [Indexed: 11/22/2022]
|
8
|
Gastrointestinal diseases and their impact on drug solubility: Crohn's disease. Eur J Pharm Sci 2020; 152:105459. [PMID: 32649984 DOI: 10.1016/j.ejps.2020.105459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/12/2020] [Accepted: 07/05/2020] [Indexed: 12/12/2022]
Abstract
In order to investigate differences in drug solubilisation and dissolution in luminal fluids of Crohn's disease (CD) patients and healthy subjects, biorelevant media representative of CD patients were developed using information from literature and a Design of Experiment (DoE) approach. The CD media were characterised in terms of surface tension, osmolality, dynamic viscosity and buffer capacity and compared to healthy biorelevant media. To identify which drug characteristics are likely to present a high risk of altered drug solubility in CD, the solubility of six drugs was assessed in CD media and solubility differences were related to drug properties. Identified differences in CD patients compared to healthy subjects were a reduced concentration of bile salts, a higher gastric pH and a higher colonic osmolality. Differences in the properties of CD compared to healthy biorelevant media were mainly observed for surface tension and osmolality. Drug solubility of ionisable compounds was altered in gastric CD media compared to healthy biorelevant media. For drugs with moderate to high lipophilicity, a high risk of altered drug solubilisation in CD is expected, since a significant negative effect of log P and a positive effect of bile salts on drug solubility in colonic and fasted state intestinal CD media was observed. Simulating the conditions in CD patients in vitro offers the possibility to identify relevant differences in drug solubilisation without conducting expensive clinical trials.
Collapse
|
9
|
Wu Z, Zhao C, Li R, Ye F, Zhou Y, Zhao G. Insights into Micellization of Octenylsuccinated Oat β-Glucan and Uptake and Controlled Release of β-Carotene by the Resultant Micelles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7416-7427. [PMID: 31180666 DOI: 10.1021/acs.jafc.8b06645] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The core-shell structured micelles from octenylsuccinated oat β-glucan (OSβG) are able to solubilize β-carotene (βC). This study reveals molecular interactions governing the formation, stabilization, and βC uptake of OSβG micelles (OSβG-Ms) by means such as water contact angle, 1H nuclear magnetic resonance, dynamic light scattering, and confocal laser scanning microscopy. The results indicated that the micellization of OSβG molecules is triggered by hydrophobic interactions between octenylsuccinate (OSA) moieties, while OSβG-Ms are stabilized via both hydrophobic interactions and hydrogen bonds. For their uptake of βC, βC molecules are first adsorbed onto OSβG-Ms by interacting with OSA moieties scattered on micelle surface. By further interacting with OSA moieties located in micelle shell, βC molecules travel across the shell and finally are trapped in the hydrophobic core. In simulated gastrointestinal fluids, βC is controlled released from OSβG-Ms as an integrated consequence of its diffusion as well as the swelling and erosion of OSβG-Ms. As a result, this study first uncovered the mechanism underlying the uptake of βC by OSβG-Ms, which will certainly facilitate the effective loading of hydrophobic ingredients by OSβG-Ms.
Collapse
Affiliation(s)
- Zhen Wu
- College of Food Science , Southwest University , Chongqing 400715 , PR China
- Chongqing Key Laboratory of Chinese Medicine & Health Science , Chongqing Academy of Chinese Materia Medica , Chongqing 400065 , PR China
| | - Chenyang Zhao
- College of Food Science , Southwest University , Chongqing 400715 , PR China
| | - Ruohua Li
- College of Food Science , Southwest University , Chongqing 400715 , PR China
| | - Fayin Ye
- College of Food Science , Southwest University , Chongqing 400715 , PR China
| | - Yun Zhou
- College of Food Science , Southwest University , Chongqing 400715 , PR China
| | - Guohua Zhao
- College of Food Science , Southwest University , Chongqing 400715 , PR China
- Chongqing Engineering Research Center of Regional Foods , Chongqing 400715 PR China
| |
Collapse
|
10
|
Tuncer E, Bayramoglu B. Characterization of the self-assembly and size dependent structural properties of dietary mixed micelles by molecular dynamics simulations. Biophys Chem 2019; 248:16-27. [PMID: 30850307 DOI: 10.1016/j.bpc.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/27/2019] [Accepted: 02/01/2019] [Indexed: 01/05/2023]
Abstract
The bile salts and phospholipids are secreted by the gallbladder to form dietary mixed micelles in which the solvation of poorly absorbed lipophilic drugs and nutraceuticals take place. A comprehensive understanding of the micellization and structure of the mixed micelles are crucial to design effective delivery systems for such substances. In this study, the evolution of the dietary mixed micelle formation under physiologically relevant concentrations and the dependence of structural properties on micelle size were investigated through coarse-grained molecular dynamics simulations. The MARTINI force field was used to model cholate and POPC as the representative bile salt and phospholipid, respectively. The micellization behavior was similar under both fasted and fed state concentrations. Total lipids concentration and the micelle size did not affect the internal structure of the micelles. All the micelles were slightly ellipsoidal in shape independent of their size. The extent of deviation from spherical geometry was found to depend on the micellar POPC/cholate ratio. We also found that the surface and core packing density of the micelles increased with micelle size. The former resulted in more perpendicular alignments of cholates with respect to the surface, while the latter resulted in an improved alignment of POPC tails with the radial direction and more uniform core density.
Collapse
Affiliation(s)
- Esra Tuncer
- İzmir Institute of Technology, Food Engineering Department, Gulbahce Campus,Urla, Izmir 35430, Turkey.
| | - Beste Bayramoglu
- İzmir Institute of Technology, Food Engineering Department, Gulbahce Campus,Urla, Izmir 35430, Turkey.
| |
Collapse
|
11
|
Albertini B, Bertoni S, Perissutti B, Passerini N. An investigation into the release behavior of solid lipid microparticles in different simulated gastrointestinal fluids. Colloids Surf B Biointerfaces 2019; 173:276-285. [DOI: 10.1016/j.colsurfb.2018.09.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/10/2018] [Accepted: 09/22/2018] [Indexed: 12/23/2022]
|
12
|
Study and Understanding Behavior of Alginate-Inulin Synbiotics Beads for Protection and Delivery of Antimicrobial-Producing Probiotics in Colonic Simulated Conditions. Probiotics Antimicrob Proteins 2017; 10:157-167. [DOI: 10.1007/s12602-017-9355-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Emami Riedmaier A, Lindley DJ, Hall JA, Castleberry S, Slade RT, Stuart P, Carr RA, Borchardt TB, Bow DAJ, Nijsen M. Mechanistic Physiologically Based Pharmacokinetic Modeling of the Dissolution and Food Effect of a Biopharmaceutics Classification System IV Compound-The Venetoclax Story. J Pharm Sci 2017; 107:495-502. [PMID: 28993217 DOI: 10.1016/j.xphs.2017.09.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 09/08/2017] [Accepted: 09/18/2017] [Indexed: 10/18/2022]
Abstract
Venetoclax, a selective B-cell lymphoma-2 inhibitor, is a biopharmaceutics classification system class IV compound. The aim of this study was to develop a physiologically based pharmacokinetic (PBPK) model to mechanistically describe absorption and disposition of an amorphous solid dispersion formulation of venetoclax in humans. A mechanistic PBPK model was developed incorporating measured amorphous solubility, dissolution, metabolism, and plasma protein binding. A middle-out approach was used to define permeability. Model predictions of oral venetoclax pharmacokinetics were verified against clinical studies of fed and fasted healthy volunteers, and clinical drug interaction studies with strong CYP3A inhibitor (ketoconazole) and inducer (rifampicin). Model verification demonstrated accurate prediction of the observed food effect following a low-fat diet. Ratios of predicted versus observed Cmax and area under the curve of venetoclax were within 0.8- to 1.25-fold of observed ratios for strong CYP3A inhibitor and inducer interactions, indicating that the venetoclax elimination pathway was correctly specified. The verified venetoclax PBPK model is one of the first examples mechanistically capturing absorption, food effect, and exposure of an amorphous solid dispersion formulated compound. This model allows evaluation of untested drug-drug interactions, especially those primarily occurring in the intestine, and paves the way for future modeling of biopharmaceutics classification system IV compounds.
Collapse
Affiliation(s)
| | - David J Lindley
- Drug Product Development, AbbVie Inc., North Chicago, Illinois 60064
| | - Jeffrey A Hall
- Drug Product Development, AbbVie Inc., North Chicago, Illinois 60064
| | | | - Russell T Slade
- Drug Product Development, AbbVie Inc., North Chicago, Illinois 60064
| | - Patricia Stuart
- DMPK and Translational Modeling, AbbVie Inc., North Chicago, Illinois 60064
| | - Robert A Carr
- DMPK and Translational Modeling, AbbVie Inc., North Chicago, Illinois 60064
| | | | - Daniel A J Bow
- DMPK and Translational Modeling, AbbVie Inc., North Chicago, Illinois 60064
| | - Marjoleen Nijsen
- DMPK and Translational Modeling, AbbVie Inc., North Chicago, Illinois 60064
| |
Collapse
|
14
|
Hamed R, AlJanabi R, Sunoqrot S, Abbas A. The effect of pH, buffer capacity and ionic strength on quetiapine fumarate release from matrix tablets prepared using two different polymeric blends. Drug Dev Ind Pharm 2017; 43:1330-1342. [DOI: 10.1080/03639045.2017.1318897] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rania Hamed
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Reem AlJanabi
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | - Suhair Sunoqrot
- Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan
| | | |
Collapse
|
15
|
Metwally AA, Hathout RM. Replacing microemulsion formulations experimental solubility studies with in-silico methods comprising molecular dynamics and docking experiments. Chem Eng Res Des 2015. [DOI: 10.1016/j.cherd.2015.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|