1
|
Santos G, Delgado E, Silva B, Braz BS, Gonçalves L. Topical Ocular Drug Delivery: The Impact of Permeation Enhancers. Pharmaceutics 2025; 17:447. [PMID: 40284442 PMCID: PMC12030643 DOI: 10.3390/pharmaceutics17040447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025] Open
Abstract
Topical ophthalmic drug delivery targeting the posterior segment of the eye has become a key area of interest due to its non-invasive nature, safety, ease of application, patient compliance, and cost-effectiveness. However, achievement of effective drug bioavailability in the posterior ocular segment is a significant challenge due to unique ocular barriers, including precorneal factors and anatomical barriers, like the cornea, the conjunctiva, and the sclera. Successful ocular drug delivery systems require increased precorneal residence time and improved corneal penetration to enhance intraocular bioavailability. A promising strategy to overcome these barriers is incorporating drug penetration enhancers (DPEs) into formulations. These compounds facilitate drug delivery by improving permeability across otherwise impermeable or poorly permeable membranes. At the ocular level, they act through three primary mechanisms: breaking tear film stability by interfering with the mucous layer; disrupting membrane components such as phospholipids and proteins; and loosening epithelial cellular junctions. DPEs offer significant potential to improve bioavailability and therapeutic outcomes, particularly for drugs targeting the posterior segment of the eye. This review is focused on analyzing the current literature regarding the use of penetration enhancers in topical ocular drug delivery, highlighting their mechanisms of action and potential to revolutionize ophthalmic treatments.
Collapse
Affiliation(s)
- Gonçalo Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Esmeralda Delgado
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Beatriz Silva
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Berta São Braz
- CIISA—Centro de Investigação Interdisciplinar em Saúde Animal, Faculty of Veterinary Medicine, Universidade de Lisboa, 1300-477 Lisboa, Portugal; (E.D.); (B.S.); (B.S.B.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Lídia Gonçalves
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003 Lisboa, Portugal;
| |
Collapse
|
2
|
Simeoli R, Cairoli S, Greco M, Bellomo F, Mancini A, Rossi C, Dionisi Vici C, Emma F, Goffredo BM. A New and Rapid LC-MS/MS Method for the Determination of Cysteamine Plasma Levels in Cystinosis Patients. Pharmaceuticals (Basel) 2024; 17:649. [PMID: 38794219 PMCID: PMC11124818 DOI: 10.3390/ph17050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/03/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
Cystinosis is a rare lysosomal storage disorder caused by autosomal recessive mutations in the CTNS gene that encodes for the cystine transporter cystinosin, which is expressed on the lysosomal membrane mediating the efflux of cystine. Cysteamine bitartrate is a cystine-depleting aminothiol agent approved for the treatment of cystinosis in children and adults. In this study, we developed and validated a liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for the determination of cysteamine levels in plasma samples. This LC-MS/MS method was validated according to the European Medicines Agency (EMA)'s guidelines for bioanalytical method validation. An ultra-performance liquid chromatograph (UPLC) coupled with a 6470 mass spectrometry system was used for cysteamine determination. Our validated method was applied to plasma samples from n = 8 cystinosis patients (median, interquartile range (IQR) = 20.5, 8.5-26.0 years). The samples were collected before cysteamine oral administration (pre-dose) and 1 h after (post-dose). Our bioanalytical method fulfilled the regulatory guidelines for method validation. The cysteamine plasma levels in pre-dose samples were 2.57 and 1.50-3.31 μM (median and IQR, respectively), whereas the post-dose samples reported a cysteamine median concentration of 28.00 μM (IQR: 17.60-36.61). Our method allows the rapid determination of cysteamine plasma levels. This method was successfully used in cystinosis patients and, therefore, could be a useful tool for the evaluation of therapy adherence and for future pharmacokinetic (PK) studies involving a higher number of subjects.
Collapse
Affiliation(s)
- Raffaele Simeoli
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (R.S.); (S.C.); (A.M.); (C.R.); (C.D.V.)
| | - Sara Cairoli
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (R.S.); (S.C.); (A.M.); (C.R.); (C.D.V.)
| | - Marcella Greco
- Division of Nephrology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.G.); (F.E.)
| | - Francesco Bellomo
- Laboratory of Nephrology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy;
| | - Alessandro Mancini
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (R.S.); (S.C.); (A.M.); (C.R.); (C.D.V.)
| | - Chiara Rossi
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (R.S.); (S.C.); (A.M.); (C.R.); (C.D.V.)
| | - Carlo Dionisi Vici
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (R.S.); (S.C.); (A.M.); (C.R.); (C.D.V.)
| | - Francesco Emma
- Division of Nephrology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (M.G.); (F.E.)
| | - Bianca Maria Goffredo
- Division of Metabolic Diseases and Hepatology, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy; (R.S.); (S.C.); (A.M.); (C.R.); (C.D.V.)
| |
Collapse
|
3
|
Miranda B, Dello Iacono S, Rea I, Borbone F, De Stefano L. Effect of the molecular weight on the sensing mechanism in polyethylene glycol diacrylate/gold nanocomposite optical transducers. Heliyon 2024; 10:e25593. [PMID: 38356564 PMCID: PMC10864976 DOI: 10.1016/j.heliyon.2024.e25593] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
The combination of plasmonic nanoparticles and hydrogels results in nanocomposite materials with unprecedented properties that give rise to powerful platforms for optical biosensing. Herein, we propose a physicochemical characterization of plasmonic hydrogel nanocomposites made of polyethylene glycol diacrylate (PEGDA) hydrogels with increasing molecular weights (700-10000 Da) and gold nanoparticles (AuNPs, ∼60 nm). The swelling capability, mechanical properties, and thermal responses of the nanocomposites are analyzed and the combination with the resulting optical properties is elucidated. The different optomechanical properties of the proposed nanocomposites result in different transduction mechanisms, which can be exploited for several biosensing applications. A correlation between the polymer molecular weight, the effective refractive index of the material, and the optical response is found by combining experimental data and numerical simulations. In particular, the localized surface plasmon resonance (LSPR) position of the AuNPs was found to follow a parabolic profile as a function of the monomer molecular weight (MW), while its absorbance intensity was found as inversely proportional to the monomer MW. Low MW PEGDA nanocomposites were found to be responsive to refractive index variations for small molecule sensing. Differently, high MW PEGDA nanocomposites exhibited absorbance intensity increase/decrease as a function of the hydrophobicity/hydrophilicity of the targeted small molecule. The proposed optomechanical model paves the way to the design of innovative platforms for real-life applications, such as wearable sensing, point-of-care testing, and food monitoring via smart packaging devices.
Collapse
Affiliation(s)
- Bruno Miranda
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples, 80131, Italy
| | - Stefania Dello Iacono
- Institute of Polymers, Composites and Biomaterials (IPCB), National Research Council, P.le Enrico Fermi 1, 80055, Portici, Italy
| | - Ilaria Rea
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples, 80131, Italy
| | - Fabio Borbone
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario di Monte Sant'Angelo, Via Cintia 21, Naples, 80126, Italy
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems (ISASI), National Research Council, Via P. Castellino 111, Naples, 80131, Italy
| |
Collapse
|
4
|
Csorba A, Katona G, Budai-Szűcs M, Balogh-Weiser D, Molnár P, Maka E, Kazsoki A, Vajna M, Zelkó R, Nagy ZZ, Balogh GT. A Comparative Pharmacokinetic Study for Cysteamine-Containing Eye Drops as an Orphan Topical Therapy in Cystinosis. Int J Mol Sci 2024; 25:1623. [PMID: 38338900 PMCID: PMC10855117 DOI: 10.3390/ijms25031623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Cystinosis is a low-prevalence lysosomal storage disease. The pathomechanism involves abnormal functioning of the cystinosine lysosomal cystine transporter (CTNS), causing intraliposomal accumulation of the amino acid cysteine disulfide, which crystallizes and deposits in several parts of the body. The most common ophthalmic complication of cystinosis is the deposition of "gold dust" cystine crystals on the cornea, which already occurs in infancy and leads to severe photosensitivity and dry eyes as it gradually progresses with age. In the specific treatment of cystinosis, preparations containing cysteamine (CYA) are used. The availability of commercialized eyedrops for the targeted treatment is scarce, and only Cystadrops® are commercially available with strong limitations. Thus, magistral CYA-containing compounded eyedrops (CYA-CED) could have a key role in patient care; however, a rationally designed comprehensive study on the commercialized and magistral products is still missing. This work aims to build up a comprehensive study about commercialized and magistral CYA eye drops, involving pharmacokinetic and physicochemical characterization (applying mucoadhesivity, rheology test, investigation of drug release, and parallel artificial membrane permeability assays), as well as ex vivo tests, well supported by statistical analysis.
Collapse
Affiliation(s)
- Anita Csorba
- Department of Ophthalmology, Semmelweis University, Mária Street 39, H-1085 Budapest, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös Street 6, H-6720 Szeged, Hungary
| | - Diána Balogh-Weiser
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary
| | - Péter Molnár
- Molteam Llc., Mélyfúró Street 4, H-1151 Budapest, Hungary
| | - Erika Maka
- Department of Ophthalmology, Semmelweis University, Mária Street 39, H-1085 Budapest, Hungary
| | - Adrienn Kazsoki
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, H-1092 Budapest, Hungary
| | - Márton Vajna
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, H-1092 Budapest, Hungary
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Street 7-9, H-1092 Budapest, Hungary
| | - Zoltán Zsolt Nagy
- Department of Ophthalmology, Semmelweis University, Mária Street 39, H-1085 Budapest, Hungary
| | - György T. Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Street 7-9, H-1092 Budapest, Hungary
| |
Collapse
|
5
|
Castro-Balado A, Cuartero-Martínez A, Pena-Verdeal H, Hermelo-Vidal G, Schmidt A, Montero B, Hernández-Blanco M, Zarra-Ferro I, González-Barcia M, Mondelo-García C, Giráldez MJ, Yebra-Pimentel E, Otero-Espinar FJ, Fernández-Ferreiro A. Cysteamine Eye Drops in Hyaluronic Acid Packaged in Innovative Single-Dose Systems, Part II: Long-Term Stability and Clinical Ocular Biopermanence. Pharmaceutics 2023; 15:2589. [PMID: 38004568 PMCID: PMC10675239 DOI: 10.3390/pharmaceutics15112589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND Cystinosis is a rare genetic disorder characterized by the accumulation of cystine crystals in several tissues and organs causing, among others, severe eye symptoms. The high instability of cysteamine eye drops makes it difficult to develop formulations with an acceptable shelf life to be prepared in hospital pharmacy departments. Previously, a new compounded formulation of cysteamine eye drops in hyaluronic acid (HA) packaged in innovative single-dose systems was developed. METHODS Long-term stability at -20 °C of this formulation was studied considering the content of cysteamine, pH, osmolality, viscosity, and microbiological analysis. The oxygen permeability of single-dose containers was also studied and an ocular biopermanence study was conducted in healthy volunteers measuring lacrimal stability and volume parameters. RESULTS Data confirm that cysteamine concentration remained above 90% for 120 days, all parameters remaining within the accepted range for ophthalmic formulations. The permeability of the containers was reduced over time, while ocular biopermanence was maintained despite the freezing process and storage time. CONCLUSIONS 0.55% cysteamine hydrochloride formulation in HA and packaged in single-dose containers preserved at -20 °C is stable for 120 days protected from light, presenting high potential for its translation into clinical practice when commercial presentations are not available.
Collapse
Affiliation(s)
- Ana Castro-Balado
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (I.Z.-F.); (M.G.-B.); (C.M.-G.)
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.-M.); (G.H.-V.)
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Andrea Cuartero-Martínez
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.-M.); (G.H.-V.)
| | - Hugo Pena-Verdeal
- Department of Applied Physics (Optometry), Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (H.P.-V.); (M.J.G.); (E.Y.-P.)
- Optometry Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Gonzalo Hermelo-Vidal
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.-M.); (G.H.-V.)
| | - Anja Schmidt
- Group of Polymers, Physics and Earth Sciences Department, Campus Industrial de Ferrol (CIF), CITENI, Escuela Politécnica de Ingeniería (EPEF), Universidade da Coruña, C/Mendizabal s/n, 15403 Ferrol, Spain; (A.S.); (B.M.)
| | - Belén Montero
- Group of Polymers, Physics and Earth Sciences Department, Campus Industrial de Ferrol (CIF), CITENI, Escuela Politécnica de Ingeniería (EPEF), Universidade da Coruña, C/Mendizabal s/n, 15403 Ferrol, Spain; (A.S.); (B.M.)
| | - Manuela Hernández-Blanco
- Microbiology Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain;
| | - Irene Zarra-Ferro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (I.Z.-F.); (M.G.-B.); (C.M.-G.)
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.-M.); (G.H.-V.)
| | - Miguel González-Barcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (I.Z.-F.); (M.G.-B.); (C.M.-G.)
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.-M.); (G.H.-V.)
| | - Cristina Mondelo-García
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (I.Z.-F.); (M.G.-B.); (C.M.-G.)
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.-M.); (G.H.-V.)
| | - María Jesús Giráldez
- Department of Applied Physics (Optometry), Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (H.P.-V.); (M.J.G.); (E.Y.-P.)
- Optometry Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Eva Yebra-Pimentel
- Department of Applied Physics (Optometry), Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (H.P.-V.); (M.J.G.); (E.Y.-P.)
- Optometry Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Francisco J. Otero-Espinar
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (I.Z.-F.); (M.G.-B.); (C.M.-G.)
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain; (A.C.-M.); (G.H.-V.)
| |
Collapse
|
6
|
Honisch C, Rodella U, Gatto C, Ruzza P, Tóthová JD. Oxidative Stress and Antioxidant-Based Interventional Medicine in Ophthalmology. Pharmaceuticals (Basel) 2023; 16:1146. [PMID: 37631061 PMCID: PMC10458870 DOI: 10.3390/ph16081146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The different anatomical compartments of the eye are highly subjected to reactive oxygen species (ROS) generation due to internal factors, such as metabolic high oxygen consumption, as well as environmental factors, including UV light. An antioxidant defense system is endowed in the eye tissues to regulate ROS quantity and activity. When this homeostatic system is overwhelmed, oxidative stress occurs, causing cellular damage, chronic inflammation, and tissue degeneration. It also plays a significant role in the development and progression of various ocular diseases. Understanding the mechanisms underlying oxidative stress in ocular conditions is thus crucial for the development of effective prevention and treatment strategies. To track marketed products based on antioxidant substances as active ingredients, the databases of the European Medicines Agency and the U.S. Food and Drug Administration were consulted. Only a limited number of items were identified, which were either used as therapeutic treatment or during ocular surgery, including antioxidants, synthetical derivatives, or pro-drugs designed to enhance tissue permeation and activity. This review aims to provide an overview of the primary ocular pathologies associated with oxidative stress and of the available pharmacological interventions centered around antioxidant molecules. Such insights are essential for advancing the development of effective prevention and novel treatment approaches.
Collapse
Affiliation(s)
- Claudia Honisch
- Institute of Biomolecular Chemistry of CNR (ICB-CNR), Via F. Marzolo, 1, 35131 Padova, Italy;
| | - Umberto Rodella
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria, 14, 35020 Ponte San Nicolờ, Italy; (U.R.); (C.G.)
- Fondazione Banca degli Occhi del Veneto (FBOV), Via Paccagnella, 11, 30174 Zelarino, Italy
| | - Claudio Gatto
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria, 14, 35020 Ponte San Nicolờ, Italy; (U.R.); (C.G.)
| | - Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR (ICB-CNR), Via F. Marzolo, 1, 35131 Padova, Italy;
| | - Jana D’Amato Tóthová
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria, 14, 35020 Ponte San Nicolờ, Italy; (U.R.); (C.G.)
| |
Collapse
|
7
|
Ghezzi M, Ferraboschi I, Fantini A, Pescina S, Padula C, Santi P, Sissa C, Nicoli S. Hyaluronic acid - PVA films for the simultaneous delivery of dexamethasone and levofloxacin to ocular tissues. Int J Pharm 2023; 638:122911. [PMID: 37028574 DOI: 10.1016/j.ijpharm.2023.122911] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023]
Abstract
Ocular drug delivery is challenging due to the poor drug penetration across ocular barriers and short retention time of the formulation at the application site. Films, applied as inserts or implants, can be used to increase residence time while controlling drug release. In this work, hydrophilic films made of hyaluronic acid and two kinds of PVA were loaded with dexamethasone (included as hydroxypropylcyclodextrin complex) and levofloxacin. This association represents one of the main treatments for the post cataract surgery management, and it is also promising for eye infections whith pain and inflammation. Films were characterized in terms of swelling and drug release and were then applied to porcine eye bulbs and isolated ocular tissues. Film swelling leads to the formation of either a gel (3D swelling) or a larger film (2D swelling) depending on the type of PVA used. Films, prepared in an easy and scalable method, demonstrated high loading capacity, controlled drug release and the capability to deliver dexamethasone and levofloxacin to the cornea and across the sclera, to potentially target also the posterior eye segment. Overall, this device can be considered a multipurpose delivery platform intended for the concomitant release of lipophilic and hydrophilic drugs.
Collapse
|
8
|
Castro-Balado A, Bandín-Vilar E, Cuartero-Martínez A, García-Quintanilla L, Hermelo-Vidal G, García-Otero X, Rodríguez-Martínez L, Mateos J, Hernández-Blanco M, Aguiar P, Zarra-Ferro I, González-Barcia M, Mondelo-García C, Otero-Espinar FJ, Fernández-Ferreiro A. Cysteamine Eye Drops in Hyaluronic Acid Packaged in Innovative Single-Dose Systems: Stability and Ocular Biopermanence. Pharmaceutics 2022; 14:pharmaceutics14102194. [PMID: 36297629 PMCID: PMC9607622 DOI: 10.3390/pharmaceutics14102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
Cystinosis is a rare genetic disorder characterized by the accumulation of cystine crystals in different tissues and organs causing, among other symptoms, severe ocular manifestations. Cysteamine eye drops are prepared in hospital pharmacy departments to facilitate access to treatment, for which vehicles that provide adequate biopermanence, as well as adaptable containers that maintain its stability, are required. Difficulties related to cysteamine preparation, as well as its tendency to oxidize to cystamine, show the importance of conducting rigorous galenic characterization studies. This work aims to develop and characterize an ophthalmic compounded formulation of cysteamine prepared with hyaluronic acid and packaged in innovative single-dose systems. For this task, the effect of different storage temperatures and the presence/absence of nitrogen on the physicochemical stability of the formulation and its packaging was studied in a scaled manner, until reaching the optimal storage conditions. The results showed that 0.55% cysteamine, prepared with hyaluronic acid and packaged in single-dose containers, is stable for 30 days when stored at −20 °C. In addition, opening vials every 4 h at room temperature after 30 days of freezing maintains the stability of the cysteamine formulation for up to 16 h. Moreover, ocular biopermanence studies were conducted using molecular imaging, concluding that the biopermanence offered by the vehicle is not affected by the freezing process, where a half-life of 31.11 min for a hyaluronic acid formulation stored for 30 days at −20 °C was obtained, compared with 14.63 min for 0.9% sodium chloride eye drops.
Collapse
Affiliation(s)
- Ana Castro-Balado
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Enrique Bandín-Vilar
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Andrea Cuartero-Martínez
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Laura García-Quintanilla
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
| | - Gonzalo Hermelo-Vidal
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Xurxo García-Otero
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Lorena Rodríguez-Martínez
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Jesús Mateos
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Manuela Hernández-Blanco
- Microbiology Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
| | - Pablo Aguiar
- Molecular Imaging Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Irene Zarra-Ferro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Miguel González-Barcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Cristina Mondelo-García
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Correspondence: (C.M.-G.); (F.J.O.-E.); (A.F.-F.)
| | - Francisco J. Otero-Espinar
- Pharmacology, Pharmacy and Pharmaceutical Technology Department, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain
- Correspondence: (C.M.-G.); (F.J.O.-E.); (A.F.-F.)
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain
- Clinical Pharmacology Group, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
- Correspondence: (C.M.-G.); (F.J.O.-E.); (A.F.-F.)
| |
Collapse
|
9
|
Zhong C, Wanasathop A, Shi Z, Ananthapadmanabhan K, Li SK. Evaluation of in vitro cornea models for quantifying destructive effects of chemicals. Toxicol In Vitro 2022; 85:105462. [PMID: 36031007 DOI: 10.1016/j.tiv.2022.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 08/02/2022] [Accepted: 08/21/2022] [Indexed: 10/15/2022]
Abstract
In vitro models are available as alternatives for the Draize eye irritation test. However, most of the alternative models are not quantitative nor designed to evaluate the effects of chemicals on the corneal barrier such as those encountered in pharmaceutical and cosmetic products. The objective of the present study was to investigate tissue electrical resistance to provide sensitive in vitro testing of tissue alteration caused by chemicals in pharmaceutical and cosmetic formulations as a potential eye irritation testing approach. The experimental protocols for effective tissue resistance measurements were examined using two in vitro eye models: porcine cornea and EpiCorneal. In these models, a test chemical was applied to the cornea or EpiCorneal tissue for 1 min, and tissue resistances/conductances were measured at 1-60 min after the application. The changes in conductance of the tissues after exposure to the chemicals were shown to provide quantitative evaluations to the influence of the chemicals. A correlation was found between the two in vitro models. The results suggest that these models can provide quantitative in vitro assessments of chemical formulations such as those prepared by eye-irritating chemicals.
Collapse
Affiliation(s)
- Cheng Zhong
- Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, United States of America
| | - Apipa Wanasathop
- Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, United States of America
| | - Zhanquan Shi
- Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, United States of America
| | - Kavssery Ananthapadmanabhan
- Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, United States of America
| | - S Kevin Li
- Division of Pharmaceutical Sciences, James L Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, United States of America.
| |
Collapse
|
10
|
Atallah C, Viennet C, Robin S, Ibazizen S, Greige-Gerges H, Charcosset C. Effect of cysteamine hydrochloride-loaded liposomes on skin depigmenting and penetration. Eur J Pharm Sci 2022; 168:106082. [PMID: 34822973 DOI: 10.1016/j.ejps.2021.106082] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/29/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022]
Abstract
Skin hyperpigmentation is caused by an excessive production of melanin. Cysteamine, an aminothiol compound physiologically synthetized in human body cells, is known as depigmenting agent. The aim of this study was to evaluate the depigmenting activity and skin penetration of liposome formulations encapsulating cysteamine hydrochloride. First, cysteamine hydrochloride-loaded liposomes were prepared and characterized for their size, polydispersity index, zeta potential and the encapsulation efficiency of the active molecule. The stability of cysteamine hydrochloride in the prepared liposome formulations in suspension and freeze-dried forms was then assessed. The in vitro cytotoxicity of cysteamine and cysteamine-loaded liposome suspensions (either original or freeze-dried) was evaluated in B16 murine melanoma cells. The measurement of melanin and tyrosinase activities was assessed after cells treatment with free and encapsulated cysteamine. The antioxidant activity of the free and encapsulated cysteamine was evaluated by the measurement of ROS formation in treated cells. The ex vivo human skin penetration study was also performed using Franz diffusion cell. The stability of cysteamine hydrochloride was improved after encapsulation in liposomal suspension. In addition, for the liposome re-suspended after freeze-drying, a significant increase of vesicle stability was observed. The free and the encapsulated cysteamine in suspension (either original or freeze-dried) did not show any cytotoxic effect, inhibited the melanin synthesis as well as the tyrosinase activity. An antioxidant activity was observed for the free and the encapsulated cysteamine hydrochloride. The encapsulation enhanced the skin penetration of cysteamine hydrochloride. The penetration of this molecule was better for the re-suspended freeze-dried form than the original liposomal suspension where the drug was found retained in the epidermis layer of the skin.
Collapse
Affiliation(s)
- Carla Atallah
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Lebanese University, Lebanon; Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutiques (LAGEPP), Université Claude Bernard Lyon 1, France
| | - Celine Viennet
- UMR 1098 RIGHT INSERM EFS BFC, DImaCell Imaging Ressource Center, University of Bourgogne Franche-Comté, Besançon, 25000, France
| | - Sophie Robin
- Bioexigence SAS, Espace Lafayette, Besançon, France
| | | | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Lebanese University, Lebanon
| | - Catherine Charcosset
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutiques (LAGEPP), Université Claude Bernard Lyon 1, France.
| |
Collapse
|
11
|
How liposomes pave the way for ocular drug delivery after topical administration. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2021.103045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
12
|
Martín-Sabroso C, Alonso-González M, Fernández-Carballido A, Aparicio-Blanco J, Córdoba-Díaz D, Navarro-García F, Córdoba-Díaz M, Torres-Suárez AI. Limitations and Challenges in the Stability of Cysteamine Eye Drop Compounded Formulations. Pharmaceuticals (Basel) 2021; 15:ph15010002. [PMID: 35056058 PMCID: PMC8779799 DOI: 10.3390/ph15010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/16/2022] Open
Abstract
Accumulation of cystine crystals in the cornea of patients suffering from cystinosis is considered pathognomonic and can lead to severe ocular complications. Cysteamine eye drop compounded formulations, commonly prepared by hospital pharmacy services, are meant to diminish the build-up of corneal cystine crystals. The objective of this work was to analyze whether the shelf life proposed for six formulations prepared following different protocols used in hospital pharmacies is adequate to guarantee the quality and efficacy of cysteamine eye drops. The long-term and in-use stabilities of these preparations were studied using different parameters: content of cysteamine and its main degradation product cystamine; appearance, color and odor; pH and viscosity; and microbiological analysis. The results obtained show that degradation of cysteamine was between 20% and 50% after one month of storage in the long-term stability study and between 35% and 60% in the in-use study. These data confirm that cysteamine is a very unstable molecule in aqueous solution, the presence of oxygen being the main degradation factor. Saturation with nitrogen gas of the solutions offers a means of reducing cysteamine degradation. Overall, all the formulae studied presented high instability at the end of their shelf life, suggesting that their clinical efficacy might be dramatically compromised.
Collapse
Affiliation(s)
- Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Mario Alonso-González
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
| | - Ana Fernández-Carballido
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Damián Córdoba-Díaz
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Federico Navarro-García
- Microbiology and Parasitology Department, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Manuel Córdoba-Díaz
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana I. Torres-Suárez
- Department of Pharmaceutics and Food Technology, Complutense University of Madrid, 28040 Madrid, Spain; (C.M.-S.); (M.A.-G.); (A.F.-C.); (J.A.-B.); (D.C.-D.); (M.C.-D.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913941735; Fax: +34-913941736
| |
Collapse
|
13
|
Kaur S, Sarma P, Kaur H, Prajapat M, Shekhar N, Bhattacharyya J, Kaur H, Kumar S, Medhi B, Ram J, Das D, Avti P, Prakash A, Singh R, Bhattacharyya A. Efficacy and Safety of Topical Cysteamine in Corneal Cystinosis: A Systematic Review and Meta-Analysis. Am J Ophthalmol 2021; 223:275-285. [PMID: 32888903 DOI: 10.1016/j.ajo.2020.07.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate safety and efficacy of topical cysteamine ophthalmic solution for corneal cystinosis. METHODS Seven databases were searched (PubMed, OVID, EMBASE, Web of Science, Cochrane Central, Google Scholar, and ClinicalTrials.gov) for relevant studies, using appropriate keywords. Comparative observational studies and randomized controlled trials comparing cysteamine with control or other formulations for treatment of corneal or ophthalmic cystinosis were included. Outcome measurements were improvement or response to therapy, change in corneal cystine crystal score (CCCS), in vivo confocal microscopy score (IVCM), cystine crystal depth, contrast sensitivity (CS), photophobia score, and safety. DESIGN Systematic review and meta-analysis. RESULTS Seven studies were included. Compared to placebo and control, the cysteamine arm was better in terms of improvements and responses to therapy (2 studies showed a risk ratio [RR] of 16; 95% confidence interval [CI]: 2.30-111.37) and crystal density score (1 study showed a mean difference [MD] of -0.80; 95% CI: -1.56 to -0.04). No significant differences were observed in terms of improvement in CS (1 study showed an RR of 7.00; 95% CI: 0.47-103.27). Compared to cystamine, cysteamine showed benefits in terms of crystal density score (MD -0.94; 95% CI: -1.64 to -0.24). Compared to a newer formulation, the standard formulation (cysteamine [Cystaran]; 0.55% cysteamine hydrochloride + benzalkonium chloride 0.01%) performed better in terms of decreasing CCCS. Another newer, viscous formulation, Cystadrops, performed better than the standard formulation in terms of change in CCCS, IVCM score, corneal crystal depth, and photophobia score; however, local adverse effects and blurring were higher in the group receiving Cystadrops. CONCLUSIONS Conventional cysteamine (0.1% to 0.3%) performed better than placebo (control) in terms of response to therapy. In terms of decreasing corneal cystine density, cysteamine (0.55%) was better than cystamine (0.55%), and the viscous Cystadrops (0.55%) was better than the standard formulation (0.1%).
Collapse
Affiliation(s)
| | - Phulen Sarma
- Department of Pharmacology, PGIMER Chandigarh, India
| | - Hardeep Kaur
- Department of Pharmacology, PGIMER Chandigarh, India
| | | | | | | | | | - Subodh Kumar
- Department of Pharmacology, PGIMER Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, PGIMER Chandigarh, India
| | - Jagat Ram
- Department of Ophthalmology, PGIMER, Chandigarh, India
| | - Dipankar Das
- Department of Ophthalmology, Sri Sankaradeva Nethralaya, Guwahati, Assam, India
| | - Pramod Avti
- Department of Biophysics, PGIMER Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, PGIMER Chandigarh, India
| | - Rahul Singh
- Department of Pharmacology, PGIMER Chandigarh, India
| | - Anusuya Bhattacharyya
- Department of Ophthalmology, Government Medical College and Hospital, Chandigarh, Madras, Chennai, India.
| |
Collapse
|
14
|
Jimenez J, Washington MA, Resnick JL, Nischal KK, Fedorchak MV. A sustained release cysteamine microsphere/thermoresponsive gel eyedrop for corneal cystinosis improves drug stability. Drug Deliv Transl Res 2021; 11:2224-2238. [PMID: 33543397 DOI: 10.1007/s13346-020-00890-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
Cystinosis is a rare, metabolic, recessive genetic disease in which the intralysosomal accumulation of cystine leads to system wide organ and tissue damage. In the eye, cystine accumulates in the cornea as corneal cystine crystals and severely impacts vision. Corneal cystine crystals are treated with cysteamine eyedrops when administrated 6 to 12 times day and used within 1 week. The strict dosing regimen and poor stability are inconvenient and add to the burden of therapy. To reduce the dosing frequency and improve the stability, we present reformulation of cysteamine into a novel controlled release eyedrop. In this work, we characterize and evaluate a topical drug delivery system comprised of encapsulated cysteamine in polymer microspheres with a thermoresponsive gel carrier. Spray-dried encapsulation of cysteamine was performed. In vitro cysteamine release, stability, and ocular irritation and corneal permeation were evaluated. The data suggest that encapsulated cysteamine improves the stability to 7 weeks when compared with 1-week aqueous cysteamine eyedrops. Release studies from one drop of our system show that cysteamine release was present for 24 h and above the minimum cysteamine eyedrop amount (6 drops). Cysteamine from our system also resulted in negligible irritation and enhanced permeation when compared with traditional cysteamine eyedrops. In vivo studies were implemented to support ease of administration, tolerability, and retention for 24 h. These studies suggest that our controlled release delivery system may provide stable cysteamine from a safe, once daily gel eyedrop.
Collapse
Affiliation(s)
- Jorge Jimenez
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Michael A Washington
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Jayde L Resnick
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Ken K Nischal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.,UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, 15224, USA
| | - Morgan V Fedorchak
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA. .,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA. .,Department of Chemical Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA. .,Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, 15213, USA. .,McGowan Institute for Regenerative Medicine, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
15
|
Atallah C, Charcosset C, Greige-Gerges H. Challenges for cysteamine stabilization, quantification, and biological effects improvement. J Pharm Anal 2020; 10:499-516. [PMID: 33425447 PMCID: PMC7775854 DOI: 10.1016/j.jpha.2020.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
The aminothiol cysteamine, derived from coenzyme A degradation in mammalian cells, presents several biological applications. However, the bitter taste and sickening odor, chemical instability, hygroscopicity, and poor pharmacokinetic profile of cysteamine limit its efficacy. The use of encapsulation systems is a good methodology to overcome these undesirable properties and improve the pharmacokinetic behavior of cysteamine. Besides, the conjugation of cysteamine to the surface of nanoparticles is generally proposed to improve the intra-oral delivery of cyclodextrin-drug inclusion complexes, as well as to enhance the colorimetric detection of compounds by a gold nanoparticle aggregation method. On the other hand, the detection and quantification of cysteamine is a challenging mission due to the lack of a chromophore in its structure and its susceptibility to oxidation before or during the analysis. Derivatization agents are therefore applied for the quantification of this molecule. To our knowledge, the derivatization techniques and the encapsulation systems used for cysteamine delivery were not reviewed previously. Thus, this review aims to compile all the data on these methods as well as to provide an overview of the various biological applications of cysteamine focusing on its skin application.
Collapse
Affiliation(s)
- Carla Atallah
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Lebanon
- Laboratory of Automatic Control, Chemical and Pharmaceutical Engineering, Claude Bernard Lyon 1 University, France
| | - Catherine Charcosset
- Laboratory of Automatic Control, Chemical and Pharmaceutical Engineering, Claude Bernard Lyon 1 University, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Doctoral School of Sciences and Technologies, Faculty of Sciences, Lebanese University, Lebanon
| |
Collapse
|
16
|
Lan Hu, Fang J, Zhang X, Li M, Li S. Synthesis, Crystal Structure of Zinc(II)–Cysteamine Complex and Improvement of Cysteamine Stability. RUSS J INORG CHEM+ 2020. [DOI: 10.1134/s0036023620110054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Atallah C, Greige-Gerges H, Charcosset C. Development of cysteamine loaded liposomes in liquid and dried forms for improvement of cysteamine stability. Int J Pharm 2020; 589:119721. [PMID: 32758591 DOI: 10.1016/j.ijpharm.2020.119721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/17/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022]
Abstract
Despite the high aqueous solubility of cysteamine, its unpleasant organoleptic properties, hygroscopicity, instability in solutions, and poor pharmacokinetic profile are the main drawbacks that limit its use for medical and cosmetic purposes. In this study, cysteamine-loaded liposomes were prepared using the ethanol injection method. Liposomes were characterized for their size, homogeneity, surface charge, and morphology. The incorporation ratios of cholesterol and phospholipids, the encapsulation efficiency and the loading ratio of cysteamine in liposomes were determined. Moreover, the stability of free and encapsulated cysteamine was assessed at different temperatures (4, 25, and 37 °C) in the presence and absence of light. Cysteamine-loaded liposomes were freeze-dried and reconstituted liposomes were characterized. Finally, the storage stability of the freeze-dried cysteamine-loaded liposomes was studied. Liposomes were nanometric, oligolamellar, and spherical. The encapsulation efficiency and the loading ratio of cysteamine varied between 12 and 40% in the different formulations. The encapsulation improved the stability of cysteamine in the various storage conditions. The dried form of cysteamine-loaded liposomes conserved the size of the vesicles and retained 33% of cysteamine present in the liposomal suspension before lyophilization. The freeze-dried liposomes formulations were stable after four months of storage at 4 °C.
Collapse
Affiliation(s)
- Carla Atallah
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Lebanese University, Lebanon; Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), Université Claude Bernard Lyon 1, France
| | - Hélène Greige-Gerges
- Bioactive Molecules Research Laboratory, Faculty of Sciences, Lebanese University, Lebanon
| | - Catherine Charcosset
- Laboratoire d'Automatique, de Génie des Procédés et de Génie Pharmaceutique (LAGEPP), Université Claude Bernard Lyon 1, France.
| |
Collapse
|
18
|
The prominence of the dosage form design to treat ocular diseases. Int J Pharm 2020; 586:119577. [PMID: 32622806 DOI: 10.1016/j.ijpharm.2020.119577] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/16/2020] [Accepted: 06/21/2020] [Indexed: 12/13/2022]
Abstract
The eye is susceptible to various diseases commonly difficult to treat. To overcome the barriers imposed by this organ for required drugs penetration, technological strategies have been implemented to ocular formulations. Among them are the use of temperature or electric stimuli and the development of nanoparticles. The objective of this review is to present the main barriers to ocular drug delivery and to discuss strategies used in the development of ocular dosage forms, primarily for topical delivery, to increase the local bioavailability of drugs, target their delivery and increase patient compliance. Results obtained in the last years related to the topical administration of liposomes, dendrimers, iontophoresis, among other nanoparticulate systems focused on ophthalmic delivery, will be addressed. Finally, some clinical trials and marketed formulations that use nanotechnology to topically treat eye diseases will be presented.
Collapse
|
19
|
Examination of corneal deposits in nephropathic cystinosis using in vivo confocal microscopy and anterior segment optical coherence tomography: an age-dependent cross sectional study. BMC Ophthalmol 2020; 20:73. [PMID: 32102651 PMCID: PMC7045449 DOI: 10.1186/s12886-020-01336-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/06/2020] [Indexed: 11/23/2022] Open
Abstract
Background Presence of corneal cystine crystals is the main ocular manifestation of cystinosis, although controversial findings concerning the corneal layer with the highest density have been reported. The aim of this study was the analysis of the characteristics of crystal arrangement in different corneal layers and the assessment of corneal morphological changes with age. Methods A cross sectional study was carried out in three children and three adults who had nephropathic cystinosis and corneal cystine depositions. All patients underwent a comprehensive ophthalmological examination including best corrected distance visual acuity, slit-lamp examination, in vivo confocal microscopy and anterior segment optical coherence tomography. An evaluation of the depth of crystal deposits and crystal density in different corneal layers was also performed. Due to the low number of subjects no statistical comparison was performed. Results Anterior segment optical coherence tomography images revealed deposition of hyperreflective crystals from limbus to limbus in each patient. Crystals appeared as randomly oriented hyperreflective, elongated structures on in vivo confocal microscopy images in all corneal layers except the endothelium. In children the deposits occurred predominantly in the anterior stroma, while in adults, the crystals were mostly localized in the posterior corneal stroma with the depth of crystal deposition showing an increasing tendency with age (mean depth of crystal density was 353.17 ± 49.23 μm in children and it was 555.75 ± 25.27 μm in adults). Mean crystal density of the epithelium was 1.47 ± 1.17 (median: 1.5; interquartile range: 0.3–2.4). Mean crystal density of the anterior and posterior stroma of children and adults was 3.37 ± 0.34 (median: 3.4; interquartile range: 3.25–3.55) vs. 1.23 ± 0.23 (median: 1.2; interquartile range: 1.05–1.35) and 0.76 ± 0.49 (median: 0.7; interquartile range: 0.4–1.15) vs. 3.63 ± 0.29 (median: 3.7; interquartile range: 3.45–3.8), respectively. Endothelium had intact structure in all cases. Some hexagonal crystals were observed in two subjects. Conclusions In vivo confocal microscopy and anterior segment optical coherence tomography confirmed an age-related pattern of crystal deposition. In children, crystals tend to locate anteriorly, while in adults, deposits are found posteriorly in corneal stroma.
Collapse
|
20
|
Belfort R, Paula JS, Lopes Silva MJ, Della Paolera M, Kim T, Chen MY, Goodkin ML. Fixed-combination Bimatoprost/Brimonidine/Timolol in Glaucoma: A Randomized, Masked, Controlled, Phase III Study Conducted in Brazil ☆. Clin Ther 2020; 42:263-275. [PMID: 32089329 DOI: 10.1016/j.clinthera.2019.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 01/14/2023]
Abstract
PURPOSE Many patients with open-angle glaucoma eventually require >2 medications to lower their intraocular pressure (IOP). Fixed-combination ophthalmic solutions can be advantageous in patients who require multiple medications, but the number of fixed combinations combining 3 complementary IOP-lowering agents remains limited. This study assessed the efficacy and safety of a triple fixed combination (TFC) of bimatoprost 0.01%/brimonidine 0.15%/timolol 0.5% ophthalmic solution in patients with primary open-angle glaucoma (POAG) or ocular hypertension (OHT), compared with a dual fixed combination (DFC) of brimonidine 0.2%/timolol 0.5%. METHODS Patients with a baseline IOP of 23-34 mm Hg in both eyes and no history of IOP-lowering procedures were eligible for participation in this multicenter, double-masked, randomized, Phase III study. After washout of previous treatment (if applicable), patients were randomized to receive TFC or DFC twice daily in each eye for 3 months. The primary efficacy variable was the change from baseline in mean IOP in the worse eye at week 12 in the modified intent-to-treat (mITT) population. TFC was superior to DFC if the treatment difference (TFC - DFC) favored TFC at week 12 (P ≤ 0.05; 2-sample t test). Secondary and sensitivity analyses were also performed. Safety, including adverse events, was assessed at all visits. FINDINGS The mITT/safety population included 185 patients (TFC, n = 90; DFC, n = 95). TFC superiority was demonstrated at all postbaseline visits (all, P < 0.001) through week 12 (week 12 treatment difference: ─2.17 mm Hg; 95% CI, ─3.12 to ─1.22). While treatment-related conjunctival hyperemia was more frequent with TFC than with DFC (47.8% vs 23.2%; P < 0.001), consistent with the additional presence of bimatoprost in TFC, most cases were mild and the numbers of patient discontinuations at week 12 were similar between the TFC and DFC groups (11 [12.2%] vs 7 [7.4%] patients; P = 0.266). No unexpected adverse events were reported. IMPLICATIONS Compared with DFC, TFC provided superior IOP lowering throughout the primary efficacy period. An acceptable tolerability profile was observed through 12 months of use of TFC, offering an effective therapeutic option in patients with POAG or OHT who require multiple medications to control their IOP. Additional studies are required for the assessment of the long-term effects of TFC. ClinicalTrials.gov identifier: NCT01217606.
Collapse
Affiliation(s)
- Rubens Belfort
- Hospital São Paulo, Federal University of São Paulo, São Paulo, Brazil.
| | - Jayter Silva Paula
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marcelo Jordão Lopes Silva
- Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto Medical School, Universidade de São Paulo, Ribeirão Preto, Brazil
| | | | | | | | | |
Collapse
|
21
|
Moiseev RV, Morrison PWJ, Steele F, Khutoryanskiy VV. Penetration Enhancers in Ocular Drug Delivery. Pharmaceutics 2019; 11:E321. [PMID: 31324063 PMCID: PMC6681039 DOI: 10.3390/pharmaceutics11070321] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
There are more than 100 recognized disorders of the eye. This makes the development of advanced ocular formulations an important topic in pharmaceutical science. One of the ways to improve drug delivery to the eye is the use of penetration enhancers. These are defined as compounds capable of enhancing drug permeability across ocular membranes. This review paper provides an overview of anatomical and physiological features of the eye and discusses some common ophthalmological conditions and permeability of ocular membranes. The review also presents the analysis of literature on the use of penetration-enhancing compounds (cyclodextrins, chelating agents, crown ethers, bile acids and bile salts, cell-penetrating peptides, and other amphiphilic compounds) in ocular drug delivery, describing their properties and modes of action.
Collapse
Affiliation(s)
- Roman V Moiseev
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK
| | - Peter W J Morrison
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK
| | - Fraser Steele
- MC2 Therapeutics, James House, Emlyn Lane, Leatherhead KT22 7EP, UK
| | - Vitaliy V Khutoryanskiy
- Reading School of Pharmacy, University of Reading, Whiteknights, P.O. Box 224, Reading RG66AD, UK.
| |
Collapse
|
22
|
Cyclodextrin⁻Amphiphilic Copolymer Supramolecular Assemblies for the Ocular Delivery of Natamycin. NANOMATERIALS 2019; 9:nano9050745. [PMID: 31096569 PMCID: PMC6566826 DOI: 10.3390/nano9050745] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/25/2022]
Abstract
Natamycin is the only drug approved for fungal keratitis treatment, but its low water solubility and low ocular penetration limit its efficacy. The purpose of this study was to overcome these limitations by encapsulating the drug in single or mixed micelles and poly(pseudo)rotaxanes. Soluplus and Pluronic P103 dispersions were prepared in 0.9% NaCl and pH 6.4 buffer, with or without α-cyclodextrin (αCD; 10% w/v), and characterized through particle size, zeta potential, solubilization efficiency, rheological properties, ocular tolerance, in vitro drug diffusion, and ex vivo permeation studies. Soluplus micelles (90–103 nm) and mixed micelles (150–110 nm) were larger than Pluronic P103 ones (16–20 nm), but all showed zeta potentials close to zero. Soluplus, Pluronic P103, and their mixed micelles increased natamycin solubility up to 6.00-fold, 3.27-fold, and 2.77-fold, respectively. Soluplus dispersions and poly(pseudo)rotaxanes exhibited in situ gelling capability, and they transformed into weak gels above 30 °C. All the formulations were non-irritant according to Hen’s Egg Test on the Chorioallantoic Membrane (HET-CAM) assay. Poly(pseudo)rotaxanes facilitated drug accumulation into the cornea and sclera, but led to lower natamycin permeability through the sclera than the corresponding micelles. Poly(pseudo)rotaxanes made from mixed micelles showed intermediate natamycin diffusion coefficients and permeability values between those of Pluronic P103-based and Soluplus-based poly(pseudo)rotaxanes. Therefore, the preparation of mixed micelles may be a useful tool to regulate drug release and enhance ocular permeability.
Collapse
|
23
|
Topical drug delivery to the posterior segment of the eye: The effect of benzalkonium chloride on topical dexamethasone penetration into the eye in vivo. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Dixon P, Powell K, Chauhan A. Novel approaches for improving stability of cysteamine formulations. Int J Pharm 2018; 549:466-475. [PMID: 30099213 DOI: 10.1016/j.ijpharm.2018.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 07/26/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
Abstract
Cystinosis is a genetic disorder that leads to the formation of cystine crystals in many organs in the body including cornea. Ocular manifestation of this disease is treated by eye drops of cysteamine which can easily oxidize into its disulfide cystamine. The rapid oxidation limits the shelf life as well the duration during which the drug can be used after opening the eye drop bottle. We evaluate two approaches of preventing the oxidation of cysteamine with the goal of increasing the time of use after opening the bottle to one month. The first approach integrates antioxidants such as catalase enzyme and vitamins C and E into the aqueous solution. Results show that catalase is the most effective additive as it decreases the oxidation rate by 58%, which on its own is not sufficient to reach targeted one month stability. The second approach focuses on incorporating diffusion barriers to prevent oxygen from reaching the cysteamine solution. This was accomplished by two methods: formulation of a hydrophobic layer which floats on the surface of the aqueous solution and integration of OMAC® oxygen-resistant material into the eye drop bottle. Both methods delay the onset of cysteamine degradation and decrease the rate of degradation. In particular, an eye drop bottle with three layers of OMAC® has less than 10% degradation after one month of opening the bottle and withdrawing a drop each day. By integrating all three methods, we designed a system where >90% of cysteamine remains in the active form for 70 days after opening the bottle. In addition, we examine the use of OMAC® as heat-sealed pouches for storage of cysteamine eye drop bottles during packaging to eliminate the need for the current approach of freezing the formulation during shipping. The results show that such heat-sealed pouches would keep cysteamine stable for over one year at ambient conditions.
Collapse
Affiliation(s)
- Phillip Dixon
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, United States.
| | - Kristin Powell
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, United States.
| | - Anuj Chauhan
- Department of Chemical Engineering, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
25
|
Bertens CJ, Gijs M, van den Biggelaar FJ, Nuijts RM. Topical drug delivery devices: A review. Exp Eye Res 2018; 168:149-160. [DOI: 10.1016/j.exer.2018.01.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 12/08/2017] [Accepted: 01/11/2018] [Indexed: 12/22/2022]
|
26
|
Makuloluwa AK, Shams F. Cysteamine hydrochloride eye drop solution for the treatment of corneal cystine crystal deposits in patients with cystinosis: an evidence-based review. Clin Ophthalmol 2018; 12:227-236. [PMID: 29416314 PMCID: PMC5789046 DOI: 10.2147/opth.s133516] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Cystinosis is a rare, autosomal recessive disorder leading to defective transport of cystine out of lysosomes. Subsequent cystine crystal accumulation can occur in various tissues, including the ocular surface. This review explores the efficacy of cysteamine hydrochloride eye drops in the treatment of corneal cystine crystal accumulation and its safety profile.
Collapse
Affiliation(s)
| | - Fatemeh Shams
- Tennent Institute of Ophthalmology, Gartnavel General Hospital, Glasgow, UK
| |
Collapse
|
27
|
Luaces-Rodríguez A, Díaz-Tomé V, González-Barcia M, Silva-Rodríguez J, Herranz M, Gil-Martínez M, Rodríguez-Ares MT, García-Mazás C, Blanco-Mendez J, Lamas MJ, Otero-Espinar FJ, Fernández-Ferreiro A. Cysteamine polysaccharide hydrogels: Study of extended ocular delivery and biopermanence time by PET imaging. Int J Pharm 2017. [DOI: 10.1016/j.ijpharm.2017.06.060] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Rodríguez I, Vázquez JA, Pastrana L, Khutoryanskiy VV. Enhancement and inhibition effects on the corneal permeability of timolol maleate: Polymers, cyclodextrins and chelating agents. Int J Pharm 2017; 529:168-177. [PMID: 28652172 DOI: 10.1016/j.ijpharm.2017.06.075] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 01/10/2023]
Abstract
This study investigates how both bioadhesive polymers (chitosan, hyaluronic acid and alginate) and permeability enhancers (ethylene glycol- bis(2-aminoethylether)- N, N, N', N'- tetraacetic acid (EGTA) and hydroxypropyl-ß-cyclodextrin) influence the permeability of the anti-glaucoma drug timolol maleate through ex vivo bovine corneas. Our results showed that only the permeability enhancers alone were able to increase drug permeability, whereas the polymers significantly reduced drug permeation, and however, they increased the pre-corneal residence of timolol. Ternary systems (polymer-enhancer-drug) showed a reduced drug permeability compared to the polymers alone. Fluorescence microscopy analysis of the epithelium surface confirmed there was no evidence of epithelial disruption caused by these formulations, suggesting that polymer-enhancer interactions reduce drug solubilization and counteract the disruptive effect of the permeability enhancers on the surface of the cornea. Further mucoadhesive tests, revealed a stable interaction of chitosan and hyaluronic acid with the epithelium, while alginate showed poor mucoadhesive properties. The differences in mucoadhesion correlated with the permeability of timolol maleate observed, i.e. formulations containing mucoadhesive polymers showed lower drug permeabilities. The results of the present study indicate polymers acting as an additional barrier towards drug permeability which is even more evident in the presence of permeability enhancers like EGTA and hydroxypropyl-ß-cyclodextrin. Then, this study highlights the need to adequately select additives intended for ocular applications since interactions between them can have opposite results to what expected in terms of drug permeability.
Collapse
Affiliation(s)
- Isabel Rodríguez
- University of Reading, School of Pharmacy, Whiteknights, PO box 224, Reading, RG66AD, United Kingdom; University of Vigo, Analytical and Food Chemistry Department, Ourense, Spain
| | - José Antonio Vázquez
- Marine Research Institute (IIM-CSIC), Group of Recycling and Valorization of Waste Materials (REVAL), Vigo, Spain
| | - Lorenzo Pastrana
- International Iberian Nanotechnology Laboratory (INL), Braga, Portugal
| | - Vitaliy V Khutoryanskiy
- University of Reading, School of Pharmacy, Whiteknights, PO box 224, Reading, RG66AD, United Kingdom.
| |
Collapse
|
29
|
Loftsson T, Stefánsson E. Cyclodextrins and topical drug delivery to the anterior and posterior segments of the eye. Int J Pharm 2017; 531:413-423. [PMID: 28391041 DOI: 10.1016/j.ijpharm.2017.04.010] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 12/31/2022]
Abstract
It is generally believed that it is virtually impossible to obtain therapeutic drug concentrations in the posterior segment of the eye after topical application of aqueous, low viscosity eye drops. Thus, intravitreal drug injections and drug implants are currently used to treat diseases in the posterior segment such as macular edema. Here it is described how, through proper analysis of the drug permeation barriers and application of well-known pharmaceutical excipients, aqueous eye drops are designed that can deliver lipophilic drugs to the posterior segment as well as how such eye drops can maintain high drug concentrations in the anterior segment. Through stepwise optimization, eye drops containing solid drug/cyclodextrin complex microparticles with a mean diameter of 2-4μm, dissolved drug/cyclodextrin complex nanoparticles and dissolved drug molecules in an aqueous eye drop media of low viscosity were designed. After administration of the eye drops the microparticles slowly dissolved and maintained close to saturated drug concentrations in the aqueous tear fluid for several hours. Studies in rabbits and clinical evaluations in humans, using dorzolamide and dexamethasone as sample drugs, show that the eye drops deliver significant amounts of drugs to both the posterior segment and anterior segment of the eye. Clinical studies indicate that the eye drops can replace intravitreal injections and implants that are currently used to treat ophthalmic diseases and decrease frequency of drug administration, both of which can improve patient compliance.
Collapse
Affiliation(s)
- Thorsteinn Loftsson
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.
| | - Einar Stefánsson
- Department of Ophthalmology, Faculty of Medicine, National University Hospital, Eiríksgata 37, IS-101 Reykjavík, Iceland
| |
Collapse
|