1
|
Pacyga K, Pacyga P, Szuba E, Viscardi S, Topola E, Duda-Madej A. Nanotechnology Meets Phytotherapy: A Cutting-Edge Approach to Treat Bacterial Infections. Int J Mol Sci 2025; 26:1254. [PMID: 39941020 PMCID: PMC11818366 DOI: 10.3390/ijms26031254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/16/2025] Open
Abstract
The increasing prevalence of bacterial infections and the rise in antibiotic resistance have prompted the search for alternative therapeutic strategies. One promising approach involves combining plant-based bioactive substances with nanoparticles, which have demonstrated improved antimicrobial activity compared to their free forms, both in vitro, in vivo, and in clinical studies. This approach not only improves their stability but also enables targeted delivery to bacterial cells, reducing side effects and minimising the risk of resistance development, leading to more effective treatments. This narrative review explores the benefits of combining bioactive plant compounds (berberine, catechin, chelerythrine, cinnamaldehyde, ellagic acid, proanthocyanidin, and sanguinarine) with nanoparticles for the treatment of bacterial infections (caused by Staphylococcus aureus, Enterococcus spp., Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Serratia marcescens, and Pseudomonas aeruginosa), highlighting the potential of this approach to overcome the limitations of traditional antimicrobial therapies. Ultimately, this strategy offers a promising alternative in the fight against resistant bacterial strains, paving the way for the development of more effective and sustainable treatments.
Collapse
Affiliation(s)
- Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Emilia Szuba
- Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (E.T.)
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (S.V.); (E.T.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland;
| |
Collapse
|
2
|
Bhangi BK, Ray S. Adsorption and photocatalytic degradation of tetracycline from water by kappa‐carrageenan and iron oxide nanoparticle‐filled poly (
acrylonitrile‐co‐N
‐vinyl pyrrolidone) composite gel. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Bidyut Kumar Bhangi
- Department of Polymer Science and Technology University of Calcutta Kolkata India
| | - SamitKumar Ray
- Department of Polymer Science and Technology University of Calcutta Kolkata India
| |
Collapse
|
3
|
Lee JS, Oh H, Kim S, Lee JH, Shin YC, Choi WI. A Novel Chitosan Nanosponge as a Vehicle for Transepidermal Drug Delivery. Pharmaceutics 2021; 13:pharmaceutics13091329. [PMID: 34575405 PMCID: PMC8468160 DOI: 10.3390/pharmaceutics13091329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022] Open
Abstract
Transepidermal drug delivery achieves high drug concentrations at the action site and ensures continuous drug delivery and better patient compliance with fewer adverse effects. However, drug delivery through topical application is still limited in terms of drug penetration. Chitosan is a promising enhancer to overcome this constraint, as it can enhance drug diffusion by opening the tight junctions of the stratum corneum. Therefore, here, we developed a novel chitosan nanosponge (CNS) with an optimal ratio and molecular weight of chitosan to improve drug penetration through skin. To prepare the CNS, two types of chitosan (3 and 10 kDa) were each conjugated with poloxamer 407 using para-nitrophenyl chloroformate, and the products were mixed with poloxamer 407 at ratios of 5:5, 8:2, and 10:0. The resulting mixtures were molded to produce flexible soft nanosponges by simple nanoprecipitation. The CNSs were highly stable in biological buffer for four weeks and showed no toxicity in human dermal fibroblasts. The CNSs increased drug permeability through human cadaver skin in a Franz-type diffusion cell, with substantially higher permeability with 3 kDa chitosan at a ratio of 8:2. This suggests the applicability of the novel CNS as a promising carrier for efficient transepidermal drug delivery.
Collapse
Affiliation(s)
- Jin Sil Lee
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (J.S.L.); (H.O.); (S.K.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Cheomdan-gwagiro 123, Buk-gu, Gwangju 61005, Korea
| | - Hyeryeon Oh
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (J.S.L.); (H.O.); (S.K.)
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Cheomdan-gwagiro 123, Buk-gu, Gwangju 61005, Korea
| | - Sunghyun Kim
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (J.S.L.); (H.O.); (S.K.)
| | - Jeung-Hoon Lee
- SKINMED Co., Ltd., Daejeon 34028, Korea; (J.-H.L.); (Y.C.S.)
| | - Yong Chul Shin
- SKINMED Co., Ltd., Daejeon 34028, Korea; (J.-H.L.); (Y.C.S.)
- Amicogen Inc., 64 Dongburo 1259, Jinsung, Jinju 52621, Korea
| | - Won Il Choi
- Center for Convergence Bioceramic Materials, Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology, 202, Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju 28160, Korea; (J.S.L.); (H.O.); (S.K.)
- Correspondence: ; Tel.: +82-43-913-1513
| |
Collapse
|
4
|
Effect of Poly(L-lysine) and Heparin Coatings on the Surface of Polyester-Based Particles on Prednisolone Release and Biocompatibility. Pharmaceutics 2021; 13:pharmaceutics13060801. [PMID: 34072016 PMCID: PMC8229182 DOI: 10.3390/pharmaceutics13060801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 01/08/2023] Open
Abstract
A plethora of micro- and nanoparticle types are currently investigated for advanced ocular treatment due to improved drug retention times, higher bioavailability and better biocompatibility. Yet, comparative studies of both physicochemical and toxicological performance of these novel drug delivery systems are still rare. Herein, poly(L-lactic acid)- and poly(ε-caprolactone)-based micro- and nanoparticles were loaded with prednisolone as a model drug. The physicochemical properties of the particles were varied with respect to their hydrophilicity and size as well as their charge and the effect on prednisolone release was evaluated. The particle biocompatibility was assessed by a two-tier testing strategy, combining the EpiOcularTM eye irritation test and bovine corneal opacity and permeability assay. The biodegradable polyelectrolyte corona on the particles’ surface determined the surface charge and the release rate, enabling prednisolone release for at least 30 days. Thereby, the prednisolone release process was mainly governed by molecular diffusion. Finally, the developed particle formulations were found to be nontoxic in the tested range of concentrations.
Collapse
|
5
|
Friess F, Roch T, Seifert B, Lendlein A, Wischke C. Phagocytosis of spherical and ellipsoidal micronetwork colloids from crosslinked poly(ε-caprolactone). Int J Pharm 2019; 567:118461. [PMID: 31247276 DOI: 10.1016/j.ijpharm.2019.118461] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/14/2019] [Accepted: 06/23/2019] [Indexed: 12/31/2022]
Abstract
The effect of non-spherical particle shapes on cellular uptake has been reported as a general design parameter to control cellular recognition of particulate drug carriers. Beside shape, also size and cell-particle ratio should mutually effect phagocytosis. Here, the capability to control cellular uptake of poly(ɛ-caprolactone) (PCL) based polymer micronetwork colloids (MNC), a carrier system that can be transferred to various shapes, is explored in vitro at test conditions allowing multiple cell-particle contacts. PCL-based MNC were synthesized as spheres with a diameter of ∼6, ∼10, and 13 µm, loaded with a fluorescent dye by a specific technique of swelling, re-dispersion and drying, and transferred into different ellipsoidal shapes by a phantom stretching method. The boundaries of MNC deformability to prolate ellipsoid target shapes were systematically analyzed and found to be at an aspect ratio AR of ∼4 as obtained by a phantom elongation εph of ∼150%. Uptake studies with a murine macrophages cell line showed shape dependency of phagocytosis for selected conditions when varying particle sizes (∼6 and 10 μm),and shapes (εph: 0, 75 or 150%), cell-particle ratios (1:1, 1:2, 1:10, 1:50), and time points (1-24 h). For larger-sized MNC, there was no significant shape effect on phagocytosis as these particles may associate with more than one cell, thus increasing the possibility of phagocytosis by any of these cells. Accordingly, controlling shape effects on phagocytosis for carriers made from degradable polymers relevant for medical applications requires considering further parameters besides shape, such as kinetic aspects of the exposure and uptake by cells.
Collapse
Affiliation(s)
- Fabian Friess
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14153 Teltow, Germany; Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Toralf Roch
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14153 Teltow, Germany
| | - Barbara Seifert
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14153 Teltow, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14153 Teltow, Germany; Institute of Chemistry, University of Potsdam, 14476 Potsdam, Germany
| | - Christian Wischke
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, 14153 Teltow, Germany.
| |
Collapse
|
6
|
Guadarrama-Acevedo MC, Mendoza-Flores RA, Del Prado-Audelo ML, Urbán-Morlán Z, Giraldo-Gomez DM, Magaña JJ, González-Torres M, Reyes-Hernández OD, Figueroa-González G, Caballero-Florán IH, Florán-Hernández CD, Florán B, Cortés H, Leyva-Gómez G. Development and Evaluation of Alginate Membranes with Curcumin-Loaded Nanoparticles for Potential Wound-Healing Applications. Pharmaceutics 2019; 11:E389. [PMID: 31382553 PMCID: PMC6723603 DOI: 10.3390/pharmaceutics11080389] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 01/21/2023] Open
Abstract
Non-biodegradable materials with a low swelling capacity and which are opaque and occlusive are the main problems associated with the clinical performance of some commercially available wound dressings. In this work, a novel biodegradable wound dressing was developed by means of alginate membrane and polycaprolactone nanoparticles loaded with curcumin for potential use in wound healing. Curcumin was employed as a model drug due to its important properties in wound healing, including antimicrobial, antifungal, and anti-inflammatory effects. To determine the potential use of wound dressing, in vitro, ex vivo, and in vivo studies were carried out. The novel membrane exhibited the diverse functional characteristics required to perform as a substitute for synthetic skin, such as a high capacity for swelling and adherence to the skin, evidence of pores to regulate the loss of transepidermal water, transparency for monitoring the wound, and drug-controlled release by the incorporation of nanoparticles. The incorporation of the nanocarriers aids the drug in permeating into different skin layers, solving the solubility problems of curcumin. The clinical application of this system would cover extensive areas of mixed first- and second-degree wounds, without the need for removal, thus decreasing the patient's discomfort and the risk of altering the formation of the new epithelium.
Collapse
Affiliation(s)
- Mónica C Guadarrama-Acevedo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S/N, Del. Coyoacán, Ciudad de México 04510, México
| | - Raisa A Mendoza-Flores
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S/N, Del. Coyoacán, Ciudad de México 04510, México
| | - María L Del Prado-Audelo
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S/N, Del. Coyoacán, Ciudad de México 04510, México
- Laboratorio de Posgrado en Tecnología Farmacéutica, FES-Cuautitlán, Universidad Nacional Autónoma de México, Cuautitlán Izcalli 54740, México
| | - Zaida Urbán-Morlán
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S/N, Del. Coyoacán, Ciudad de México 04510, México
| | - David M Giraldo-Gomez
- Departamento de Biología Celular y Tisular, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), Edificio "A" 3er piso, Circuito Interior, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, México
| | - Jonathan J Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, México
| | - Maykel González-Torres
- CONACyT-Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, México
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Campus Ciudad de México 14380, México
| | - Octavio D Reyes-Hernández
- Laboratorio de Biología Molecular del Cáncer, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Ciudad de México 09230, México
| | - Gabriela Figueroa-González
- CONACyT-Laboratorio de Genómica, Dirección de Investigación, Instituto Nacional de Cancerología. Av. San Fernando 22, Tlalpan, Sección XVI, Ciudad de México 14080, México
| | - Isaac H Caballero-Florán
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S/N, Del. Coyoacán, Ciudad de México 04510, México
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, México
| | - Carla D Florán-Hernández
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, México
| | - Benjamín Florán
- Departamento de Fisiología, Biofísica & Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, México
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, México
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior S/N, Del. Coyoacán, Ciudad de México 04510, México.
| |
Collapse
|
7
|
Synthesis of Poly(AN-co-VP)/Zeolite Composite and Its Application for the Removal of Brilliant Green by Adsorption Process: Kinetics, Isotherms, and Experimental Design. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/8482975] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In this study, a poly(acrylonitrile-co-N-vinyl pyrrolidone)/zeolite (poly(AN-co-VP)/zeolite) composite was synthesized by in situ free radical polymerization (FRP). The structural properties of the composite were analyzed by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). The characterization results indicated that the composite had a homogeneous and 3-dimensional (3D) structure. The decomposition temperature and glass transition temperature (Tg) were found as 410°C and 152°C, respectively. A poly(AN-co-VP)/zeolite composite was used to investigate the adsorption of brilliant green (BG) which is a water-soluble cationic dye. The kinetics, isotherms, and thermodynamics of adsorption were examined, and results showed that equilibrium data fitted the Langmuir isotherm model, and the adsorption kinetics of BG followed pseudo-second-order model. According to the thermodynamic properties, the adsorption process was endothermic and spontaneous. Response surface methodology (RSM), which was improved by the application of the quadratic model associated with the central composite design, was employed for the optimization of the study conditions such as adsorbent mass, time, and initial dye concentration. The RSM indicated that maximum BG removal (99.91%) was achieved at the adsorbent mass of 0.20 g/50 mL, an initial BG concentration of 40.20 mg/L, and a contact time of 121.60 minutes.
Collapse
|
8
|
Naolou T, Rühl E, Lendlein A. Nanocarriers: Architecture, transport, and topical application of drugs for therapeutic use. Eur J Pharm Biopharm 2017; 116:1-3. [DOI: 10.1016/j.ejpb.2017.03.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Time-resolved fluorescence microscopy (FLIM) as an analytical tool in skin nanomedicine. Eur J Pharm Biopharm 2017; 116:111-124. [DOI: 10.1016/j.ejpb.2017.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 12/22/2022]
|