1
|
Soto Garcia P, Sabino Leocádio Antunes B, Komatsu D, de Alencar Hausen M, Dicko C, de Rezende Duek EA. Mechanical and rheological properties of Pluronic F127 based-hydrogels loaded with chitosan grafted with hyaluronic acid and propolis, focused to atopic dermatitis treatment. Int J Biol Macromol 2025; 307:141942. [PMID: 40081723 DOI: 10.1016/j.ijbiomac.2025.141942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/10/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Hydrogels for biomedical applications have been widely studied once they are able to enhance the wound-healing process, as well as facilitate the controlled release and loading of drugs. In this context, Pluronic F127 (PF127) has a major role as it was shown to have exceptional versatility, once it holds unique gelation properties, as it is thermoreversible and is liquid in lower temperatures, and changes to gel in higher temperatures. Moreover, the gelation behavior of PF127 is influenced by its concentration and can be further modulated by incorporating different compounds, including drugs. In this study, the mechanical and rheological properties of Pluronic F127-based hydrogels were evaluated to be further used as a treatment for atopic dermatitis (AD). To this purpose, it was conducted Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), rheology, adhesivity, cohesion, and compression assays, allowed us to understand the effects of different concentrations of PF127 and how it behaves after incorporating compounds (chitosan grafted with hyaluronic acid (Ch/HA), and propolis), aiming to identify optimal combinations for the hydrogel formulation. To provide a reliable formulation, the study first selected the most suitable concentration of PF127, in the sequence it incorporated Ch/HA and lastly, propolis was added. The findings have provided valuable insights regarding the selection of the formulations, correlating the mechanical, rheological, and morphological data. It is expected that the formulation achieved is able to further be applied to the wounded skin, providing a low-cost and effective alternative to the treatment of AD.
Collapse
Affiliation(s)
- Pâmela Soto Garcia
- Biomaterials Laboratory, Medical and Health Sciences Faculty, Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP 18060-030, Brazil; Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund SE-221 00, Sweden.
| | - Bianca Sabino Leocádio Antunes
- Biomaterials Laboratory, Medical and Health Sciences Faculty, Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP 18060-030, Brazil; Post-graduation Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba 18052-780, SP, Brazil
| | - Daniel Komatsu
- Biomaterials Laboratory, Medical and Health Sciences Faculty, Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP 18060-030, Brazil
| | - Moema de Alencar Hausen
- Biomaterials Laboratory, Medical and Health Sciences Faculty, Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP 18060-030, Brazil; Post-graduation Program of Biomaterials and Regenerative Medicine (PPGBMR), Surgery Department, PUC-SP, Sorocaba, SP 18060-030, Brazil
| | - Cedric Dicko
- Pure and Applied Biochemistry, Department of Chemistry, Lund University, Lund SE-221 00, Sweden
| | - Eliana Aparecida de Rezende Duek
- Biomaterials Laboratory, Medical and Health Sciences Faculty, Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba, SP 18060-030, Brazil; Post-graduation Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba 18052-780, SP, Brazil; Post-graduation Program of Biomaterials and Regenerative Medicine (PPGBMR), Surgery Department, PUC-SP, Sorocaba, SP 18060-030, Brazil
| |
Collapse
|
2
|
Zöller K, To D, Bernkop-Schnürch A. Biomedical applications of functional hydrogels: Innovative developments, relevant clinical trials and advanced products. Biomaterials 2025; 312:122718. [PMID: 39084097 DOI: 10.1016/j.biomaterials.2024.122718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Functional hydrogels are used for numerous biomedical applications such as tissue engineering, wound dressings, lubricants, contact lenses and advanced drug delivery systems. Most of them are based on synthetic or natural polymers forming a three-dimensional network that contains aqueous media. Among synthetic polymers, poly(meth)acrylates, polyethyleneglycols, poly(vinylalcohols), poly(vinylpyrrolidones), PLGA and poly(urethanes) are of high relevance, whereas natural polymers are mainly polysaccharides such as hyaluronic acid, alginate or chitosan and proteins such as albumin, collagen or elastin. In contrast to most synthetic polymers, natural polymers are biodegradable. Both synthetic and natural polymers are often chemically modified in order to improve or induce favorable properties and functions like high mechanical strength, stiffness, elasticity, high porosity, adhesive properties, in situ gelling properties, high water binding capacity or drug release controlling properties. Within this review we provide an overview about the broad spectrum of biomedical applications of functional hydrogels, summarize innovative approaches, discuss the concept of relevant functional hydrogels that are in clinical trials and highlight advanced products as examples for successful developments.
Collapse
Affiliation(s)
- Katrin Zöller
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Dennis To
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, Institute of Pharmacy, University of Innsbruck, Innrain 80/82, Innsbruck, 6020, Austria.
| |
Collapse
|
3
|
Miar S, Gonzales G, Dion G, Ong JL, Malka R, Bizios R, Branski RC, Guda T. Electrospun composite-coated endotracheal tubes with controlled siRNA and drug delivery to lubricate and minimize upper airway injury. Biomaterials 2024; 309:122602. [PMID: 38768544 DOI: 10.1016/j.biomaterials.2024.122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Endotracheal Tubes (ETTs) maintain and secure a patent airway; however, prolonged intubation often results in unintended injury to the mucosal epithelium and inflammatory sequelae which complicate recovery. ETT design and materials used have yet to adapt to address intubation associated complications. In this study, a composite coating of electrospun polycaprolactone (PCL) fibers embedded in a four-arm polyethylene glycol acrylate matrix (4APEGA) is developed to transform the ETT from a mechanical device to a dual-purpose device capable of delivering multiple therapeutics while preserving coating integrity. Further, the composite coating system (PCL-4APEGA) is capable of sustained delivery of dexamethasone from the PCL phase and small interfering RNA (siRNA) containing polyplexes from the 4APEGA phase. The siRNA is released rapidly and targets smad3 for immediate reduction in pro-fibrotic transforming growth factor-beta 1 (TGFϐ1) signaling in the upper airway mucosa as well as suppressing long-term sequelae in inflammation from prolonged intubation. A bioreactor was used to study mucosal adhesion to the composite PCL-4APEGA coated ETTs and investigate continued mucus secretory function in ex vivo epithelial samples. The addition of the 4APEGA coating and siRNA delivery to the dexamethasone delivery was then evaluated in a swine model of intubation injury and observed to restore mechanical function of the vocal folds and maintain epithelial thickness when observed over 14 days of intubation. This study demonstrated that increase in surface lubrication paired with surface stiffness reduction significantly decreased fibrotic behavior while reducing epithelial adhesion and abrasion.
Collapse
Affiliation(s)
- Solaleh Miar
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA; Department of Civil, Environmental, and Biomedical Engineering, University of Hartford, West Hartford, CT, USA.
| | - Gabriela Gonzales
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA.
| | - Gregory Dion
- Department of Otolaryngology-Head and Neck Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Joo L Ong
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA.
| | - Ronit Malka
- Department of Otolaryngology - Head and Neck Surgery, Brooke Army Medical Center, JBSA, Fort Sam Houston, TX, 78234, USA.
| | - Rena Bizios
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA.
| | - Ryan C Branski
- Departments of Rehabilitation Medicine and Otolaryngology-Head and Neck Surgery, NYU Grossman School of Medicine, New York, NY, USA.
| | - Teja Guda
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
4
|
Kyser AJ, Mahmoud MY, Herold SE, Lewis WG, Lewis AL, Steinbach-Rankins JM, Frieboes HB. Formulation and characterization of pressure-assisted microsyringe 3D-printed scaffolds for controlled intravaginal antibiotic release. Int J Pharm 2023; 641:123054. [PMID: 37207856 PMCID: PMC10330500 DOI: 10.1016/j.ijpharm.2023.123054] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/24/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
Abstract
Bacterial vaginosis (BV) is a highly recurrent vaginal condition linked with many health complications. Topical antibiotic treatments for BV are challenged with drug solubility in vaginal fluid, lack of convenience and user adherence to daily treatment protocols, among other factors. 3D-printed scaffolds can provide sustained antibiotic delivery to the female reproductive tract (FRT). Silicone vehicles have been shown to provide structural stability, flexibility, and biocompatibility, with favorable drug release kinetics. This study formulates and characterizes novel metronidazole-containing 3D-printed silicone scaffolds for eventual application to the FRT. Scaffolds were evaluated for degradation, swelling, compression, and metronidazole release in simulated vaginal fluid (SVF). Scaffolds retained high structural integrity and sustained release. Minimal mass loss (<6%) and swelling (<2%) were observed after 14 days in SVF, relative to initial post-cure measurements. Scaffolds cured for 24 hr (50 °C) demonstrated elastic behavior under 20% compression and 4.0 N load. Scaffolds cured for 4 hr (50 °C), followed by 72 hr (4 °C), demonstrated the highest, sustained, metronidazole release (4.0 and 27.0 µg/mg) after 24 hr and 14 days, respectively. Based upon daily release profiles, it was observed that the 24 hr timepoint had the greatest metronidazole release of 4.08 μg/mg for scaffolds cured at 4 hr at 50 °C followed by 72 hr at 4 °C. For all curing conditions, release of metronidazole after 1 and 7 days showed > 4.0-log reduction in Gardnerella concentration. Negligible cytotoxicity was observed in treated keratinocytes comparable to untreated cells, This study shows that pressure-assisted microsyringe 3D-printed silicone scaffolds may provide a versatile vehicle for sustained metronidazole delivery to the FRT.
Collapse
Affiliation(s)
- Anthony J Kyser
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Mohamed Y Mahmoud
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Toxicology and Forensic Medicine, Faculty of Veterinary Medicine, Cairo University, Egypt.
| | - Sydney E Herold
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA.
| | - Warren G Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Amanda L Lewis
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Diego, La Jolla, CA 92093, USA; Glycobiology Research and Training Center, University of California San Diego, La Jolla, CA 92093, USA.
| | - Jill M Steinbach-Rankins
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202, USA.
| | - Hermann B Frieboes
- Department of Bioengineering, University of Louisville Speed School of Engineering, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA; Center for Predictive Medicine, University of Louisville, Louisville, KY 40202, USA; UofL Health - Brown Cancer Center, University of Louisville, KY 40202, USA.
| |
Collapse
|
5
|
Kumar M, Sharma A, Mahmood S, Thakur A, Mirza MA, Bhatia A. Franz diffusion cell and its implication in skin permeation studies. J DISPER SCI TECHNOL 2023. [DOI: 10.1080/01932691.2023.2188923] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
6
|
Mfoafo K, Omidi Y, Omidian H. Thermoresponsive mucoadhesive hybrid gels in advanced drug delivery systems. Int J Pharm 2023; 636:122799. [PMID: 36914019 DOI: 10.1016/j.ijpharm.2023.122799] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/13/2023]
Abstract
Thermoresponsive polymers have seen extensive use in the development of stimuli-responsive drug formulations for oral, buccal, nasal, ocular, topical, rectal, parenteral, and vaginal routes of administration. Despite their great potential, their use has been limited by various obstacles, such as undesirable high polymer concentration, wide gelation temperature, low gel strength, poor mucoadhesiveness, and short retention. Mucoadhesive polymers have been suggested to improve the mucoadhesive features of thermoresponsive gels, leading to increased drug bioavailability and efficacy. This article highlights the use of in-situ thermoresponsive mucoadhesive hydrogel blends or hybrids that have been developed and assessed in various routes of administration.
Collapse
Affiliation(s)
- Kwadwo Mfoafo
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Yadollah Omidi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Hossein Omidian
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL, USA.
| |
Collapse
|
7
|
Charles Kunene S, Lin KS, Weng MT, Janina Carrera Espinoza M, Lin YS, Lin YT. Design of biomimetic targeting nanoclusters for enhanced doxorubicin delivery to liver cancer. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
8
|
Mura P, Maestrelli F, Cirri M, Mennini N. Multiple Roles of Chitosan in Mucosal Drug Delivery: An Updated Review. Mar Drugs 2022; 20:335. [PMID: 35621986 PMCID: PMC9146108 DOI: 10.3390/md20050335] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022] Open
Abstract
Chitosan (CS) is a linear polysaccharide obtained by the deacetylation of chitin, which, after cellulose, is the second biopolymer most abundant in nature, being the primary component of the exoskeleton of crustaceans and insects. Since joining the pharmaceutical field, in the early 1990s, CS attracted great interest, which has constantly increased over the years, due to its several beneficial and favorable features, including large availability, biocompatibility, biodegradability, non-toxicity, simplicity of chemical modifications, mucoadhesion and permeation enhancer power, joined to its capability of forming films, hydrogels and micro- and nanoparticles. Moreover, its cationic character, which renders it unique among biodegradable polymers, is responsible for the ability of CS to strongly interact with different types of molecules and for its intrinsic antimicrobial, anti-inflammatory and hemostatic activities. However, its pH-dependent solubility and susceptibility to ions presence may represent serious drawbacks and require suitable strategies to be overcome. Presently, CS and its derivatives are widely investigated for a great variety of pharmaceutical applications, particularly in drug delivery. Among the alternative routes to overcome the problems related to the classic oral drug administration, the mucosal route is becoming the favorite non-invasive delivery pathway. This review aims to provide an updated overview of the applications of CS and its derivatives in novel formulations intended for different methods of mucosal drug delivery.
Collapse
Affiliation(s)
- Paola Mura
- Department of Chemistry, University of Florence, Via Schiff 6, Sesto Fiorentino, 50019 Florence, Italy; (F.M.); (M.C.); (N.M.)
| | | | | | | |
Collapse
|
9
|
Smart Injectable Chitosan Hydrogels Loaded with 5-Fluorouracil for the Treatment of Breast Cancer. Pharmaceutics 2022; 14:pharmaceutics14030661. [PMID: 35336035 PMCID: PMC8950008 DOI: 10.3390/pharmaceutics14030661] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 02/05/2023] Open
Abstract
The treatment of breast cancer requires long chemotherapy management, which is accompanied by severe side effects. Localized delivery of anticancer drugs helps to increase the drug concentration at the site of action and overcome such a problem. In the present study, chitosan hydrogel was prepared for local delivery of 5-Fluorouracil. The in vitro release behavior was investigated and the anticancer activity was evaluated against MCF-7 cells using MTT assay. The in vivo studies were investigated via intra-tumoral injection of a 5-FU loaded hydrogel into breast cancer of female rats. The results indicated that the modified hydrogel has excellent physicochemical properties with a sustained in vitro release profile matching a zero-order kinetic for one month. In addition, the hydrogel showed superior inhibition of cell viability compared with the untreated control group. Moreover, the in vivo studies resulted in antitumor activity with minor side effects. The tumor volume and level of tumor markers in blood were inhibited significantly by applying the hydrogel compared with the untreated control group. In conclusion, the designed injectable hydrogels are potential drug delivery systems for the treatment of breast cancer with a controlled drug release profile, which could be suitable for decreasing the side effects of chemotherapy agents.
Collapse
|
10
|
García-Couce J, Tomás M, Fuentes G, Que I, Almirall A, Cruz LJ. Chitosan/Pluronic F127 Thermosensitive Hydrogel as an Injectable Dexamethasone Delivery Carrier. Gels 2022; 8:44. [PMID: 35049579 PMCID: PMC8774693 DOI: 10.3390/gels8010044] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/17/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
Intra-articular administration of anti-inflammatory drugs is a strategy that allows localized action on damaged articular cartilage and reduces the side effects associated with systemic drug administration. The objective of this work is to prepare injectable thermosensitive hydrogels for the long-term application of dexamethasone. The hydrogels were prepared by mixing chitosan (CS) and Pluronic-F127 (PF) physically. In addition, tripolyphosphate (TPP) was used as a crosslinking agent. Chitosan added to the mix increased the gel time compared to the pluronic gel alone. The incorporation of TPP into the material modified the morphology of the hydrogels formed. Subsequently, MTS and Live/Dead® experiments were performed to investigate the toxicity of hydrogels against human chondrocytes. The in vitro releases of dexamethasone (DMT) from CS-PF and CS-PF-TPP gels had an initial burst and took more time than that from the PF hydrogel. In vivo studies showed that hydrogels retained the fluorescent compound longer in the joint than when administered in PBS alone. These results suggest that the CS-PF and CS-PF-TPP hydrogels loaded with DMT could be a promising drug delivery platform for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Jomarien García-Couce
- Biomaterials Center, University of Havana, Avenida Universidad entre G y Ronda, Vedado, Plaza, La Habana 10400, Cuba; (J.G.-C.); (A.A.)
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Miriela Tomás
- Unidad de I + D, Empresa Laboratorios AICA, La Habana 11300, Cuba;
| | - Gastón Fuentes
- Biomaterials Center, University of Havana, Avenida Universidad entre G y Ronda, Vedado, Plaza, La Habana 10400, Cuba; (J.G.-C.); (A.A.)
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Ivo Que
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Amisel Almirall
- Biomaterials Center, University of Havana, Avenida Universidad entre G y Ronda, Vedado, Plaza, La Habana 10400, Cuba; (J.G.-C.); (A.A.)
| | - Luis J. Cruz
- Translational Nanobiomaterials and Imaging Group, Department of Radiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
11
|
Zielińska A, Eder P, Rannier L, Cardoso JC, Severino P, Silva AM, Souto EB. Hydrogels for modified-release drug delivery systems. Curr Pharm Des 2021; 28:609-618. [PMID: 34967292 DOI: 10.2174/1381612828666211230114755] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
Hydrogels for the modified-release drug delivery systems is a continuously growing area of interest for the pharmaceutical industry. According to the global market, the use of polymers in this area is projected to reach $31.4 million by 2027. This review discusses the recent advances and perspectives of hydrogel in drug delivery systems for oral, parenteral, nasal, topical, and ophthalmic. The search strategy did in January 2021, and it conducted an extensive database to identify studies published from January 2010 to December 2020.We described the main characteristic of the polymers to obtain an ideal hydrogel for a specific route of administration and the formulations that was a highlight in the literature. It concluded that the hydrogels are a set useful to decrease the number of doses, side effects, promote adhesion of patient and enhances the bioavailability of the drugs improving the safety and efficacy of the treatment.
Collapse
Affiliation(s)
- Aleksandra Zielińska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland
| | - Piotr Eder
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznan University of Medical Sciences, Przybyszewskiego 49, 60-355 Poznań, Poland
| | - Lucas Rannier
- Institute of Technology and Research and University of Tiradentes, Aracaju, Sergipe, Brazil
| | - Juliana C Cardoso
- Institute of Technology and Research and University of Tiradentes, Aracaju, Sergipe, Brazil
| | - Patrícia Severino
- Institute of Technology and Research and University of Tiradentes, Aracaju, Sergipe, Brazil
- Tiradentes Institute, 150 Mt Vernon St, Dorchester, MA 02125, USA
| | - Amélia M Silva
- Department of Biology and Environment, School of Life Sciences and Environment, University of Trás-os-Montes and Alto Douro (UTAD); 5001-801 Vila Real, Portugal
- Centre for Research and Technology of Agro-Environmental and Biological Sciences (CITAB), UTAD, 5001-801 Vila Real, Portugal
| | - Eliana B Souto
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar 4710-057 Braga, Portugal
| |
Collapse
|
12
|
Pérez-González N, Bozal-de Febrer N, Calpena-Campmany AC, Nardi-Ricart A, Rodríguez-Lagunas MJ, Morales-Molina JA, Soriano-Ruiz JL, Fernández-Campos F, Clares-Naveros B. New Formulations Loading Caspofungin for Topical Therapy of Vulvovaginal Candidiasis. Gels 2021; 7:259. [PMID: 34940319 PMCID: PMC8701247 DOI: 10.3390/gels7040259] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022] Open
Abstract
Vulvovaginal candidiasis (VVC) poses a significant problem worldwide affecting women from all strata of society. It is manifested as changes in vaginal discharge, irritation, itching and stinging sensation. Although most patients respond to topical treatment, there is still a need for increase the therapeutic arsenal due to resistances to anti-infective agents. The present study was designed to develop and characterize three hydrogels of chitosan (CTS), Poloxamer 407 (P407) and a combination of both containing 2% caspofungin (CSP) for the vaginal treatment of VVC. CTS was used by its mucoadhesive properties and P407 was used to exploit potential advantages related to increasing drug concentration in order to provide a local effect. The formulations were physically, mechanically and morphologically characterized. Drug release profile and ex vivo vaginal permeation studies were performed. Antifungal efficacy against different strains of Candida spp. was also evaluated. In addition, tolerance of formulations was studied by histological analysis. Results confirmed that CSP hydrogels could be proposed as promising candidates for the treatment of VVC.
Collapse
Affiliation(s)
- Noelia Pérez-González
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (N.P.-G.); (A.N.-R.); (J.L.S.-R.); (B.C.-N.)
| | - Nuria Bozal-de Febrer
- Department of Biology, Healthcare and the Environment, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain;
| | - Ana C. Calpena-Campmany
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 27-31 Joan XXIII Ave., 08028 Barcelona, Spain;
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Anna Nardi-Ricart
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (N.P.-G.); (A.N.-R.); (J.L.S.-R.); (B.C.-N.)
| | - María J. Rodríguez-Lagunas
- Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain;
- Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - José A. Morales-Molina
- Department of Pharmacy, Torrecárdenas University Hospital, s/n Hermandad de Donantes de Sangre St., 04009 Almeria, Spain;
| | - José L. Soriano-Ruiz
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (N.P.-G.); (A.N.-R.); (J.L.S.-R.); (B.C.-N.)
| | | | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Campus of Cartuja, University of Granada, 18071 Granada, Spain; (N.P.-G.); (A.N.-R.); (J.L.S.-R.); (B.C.-N.)
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), 18012 Granada, Spain
| |
Collapse
|
13
|
Qi Y, Qian K, Chen J, E Y, Shi Y, Li H, Zhao L. A thermoreversible antibacterial zeolite-based nanoparticles loaded hydrogel promotes diabetic wound healing via detrimental factor neutralization and ROS scavenging. J Nanobiotechnology 2021; 19:414. [PMID: 34895257 PMCID: PMC8665638 DOI: 10.1186/s12951-021-01151-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND As recovery time of diabetic wound injury is prolonged by the production of detrimental factors, including reactive oxygen species (ROS) and inflammatory cytokines, attenuating the oxidative stress and inflammatory reactions in the microenvironment of the diabetic wound site would be significant. EXPERIMENTAL DESIGN In our study, we prepared thermoreversible, antibacterial zeolite-based nanoparticles loaded hydrogel to promote diabetic wound healing via the neutralization of detrimental factors such as inflammatory cytokines and ROS. RESULTS The cerium (Ce)-doped biotype Linde type A (LTA) zeolite nanoparticles synergistically eliminated mitochondrial ROS and neutralized free inflammatory factors, thus remodeling the anti-inflammatory microenvironment of the wound and enhancing angiogenesis. Moreover, the thermoreversible hydrogel composed of Pluronic F127 and chitosan demonstrated strong haemostatic and bactericidal behavior. CONCLUSIONS In conclusion, the obtained thermoreversible, antibacterial, zeolite-based nanoparticles loaded hydrogels represent a multi-targeted combination therapy for diabetic wound healing.
Collapse
Affiliation(s)
- Yao Qi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| | - Kun Qian
- Department of Chemistry, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| | - Jin Chen
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| | - Yifeng E
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| | - Yijie Shi
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| | - Hongdan Li
- Life Science Institute, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| | - Liang Zhao
- School of Pharmacy, Jinzhou Medical University, Jinzhou, 121000 People’s Republic of China
| |
Collapse
|
14
|
Hemmingsen LM, Škalko-Basnet N, Jøraholmen MW. The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Mar Drugs 2021; 19:697. [PMID: 34940696 PMCID: PMC8704789 DOI: 10.3390/md19120697] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Chitosan is one of the most studied natural origin polymers for biomedical applications. This review focuses on the potential of chitosan in localized antimicrobial therapy to address the challenges of current rising antimicrobial resistance. Due to its mucoadhesiveness, chitosan offers the opportunity to prolong the formulation residence time at mucosal sites; its wound healing properties open possibilities to utilize chitosan as wound dressings with multitargeted activities and more. We provide an unbiased overview of the state-of-the-art chitosan-based delivery systems categorized by the administration site, addressing the site-related challenges and evaluating the representative formulations. Specifically, we offer an in-depth analysis of the current challenges of the chitosan-based novel delivery systems for skin and vaginal infections, including its formulations optimizations and limitations. A brief overview of chitosan's potential in treating ocular, buccal and dental, and nasal infections is included. We close the review with remarks on toxicity issues and remaining challenges and perspectives.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| | | | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| |
Collapse
|
15
|
Kesharwani P, Bisht A, Alexander A, Dave V, Sharma S. Biomedical applications of hydrogels in drug delivery system: An update. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102914] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Antimicrobial Polymer-Based Hydrogels for the Intravaginal Therapies-Engineering Considerations. Pharmaceutics 2021; 13:pharmaceutics13091393. [PMID: 34575468 PMCID: PMC8469626 DOI: 10.3390/pharmaceutics13091393] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023] Open
Abstract
The review is focused on the hydrogel systems dedicated to the intravaginal delivery of antibacterial, antifungal and anti-Trichomonas vaginalis activity drugs for the treatment of gynaecological infections. The strategies for the enhancement of the hydrophobic drug solubility in the hydrogel matrix based on the formation of bigel systems and the introduction of nano- and microparticles as a drug reservoir are presented. Hydrogel carriers of natural and synthetic pharmacological substances, drug-free systems displaying antimicrobial activity thanks to the hydrogel building elements and systems combining the antimicrobial activity of both drug and polymer building components are distinguished. The design of hydrogels facilitating their administration and proper distribution in the vaginal mucosa and the vagina based on thermoresponsive systems capable of gelling at vaginal conditions and already-cross-linked injectable systems after reaching the yield stress are discussed. In addition, the mechanisms of hydrogel bioadhesion that regulate the retention time in the vagina are indicated. Finally, the prospects for the further development of hydrogel-based drug carriers in gynaecological therapies are highlighted.
Collapse
|
17
|
Torres-Figueroa AV, Pérez-Martínez CJ, Encinas JC, Burruel-Ibarra S, Silvas-García MI, García Alegría AM, del Castillo-Castro T. Thermosensitive Bioadhesive Hydrogels Based on Poly( N-isopropylacrilamide) and Poly(methyl vinyl ether- alt-maleic anhydride) for the Controlled Release of Metronidazole in the Vaginal Environment. Pharmaceutics 2021; 13:pharmaceutics13081284. [PMID: 34452245 PMCID: PMC8402040 DOI: 10.3390/pharmaceutics13081284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 12/27/2022] Open
Abstract
The development of thermosensitive bioadhesive hydrogels as multifunctional platforms for the controlled delivery of microbicides is a valuable contribution for the in situ treatment of vagina infections. In this work, novel semi-interpenetrating network (s-IPN) hydrogels were prepared by the entrapment of linear poly(methyl vinyl ether-alt-maleic anhydride) (PVME-MA) chains within crosslinked 3D structures of poly(N-isopropylacrylamide) (PNIPAAm). The multifunctional platforms were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, thermal techniques, rheological analysis, swelling kinetic measurements, and bioadhesion tests on porcine skin. The hydrogels exhibited an interconnected porous structure with defined boundaries. An elastic, solid-like behavior was predominant in all formulations. The swelling kinetics were strongly dependent on temperature (25 °C and 37 °C) and pH (7.4 and 4.5) conditions. The s-IPN with the highest content of PVME-MA displayed a significantly higher detachment force (0.413 ± 0.014 N) than the rest of the systems. The metronidazole loading in the s-IPN improved its bioadhesiveness. In vitro experiments showed a sustained release of the antibiotic molecules from the s-IPN up to 48 h (94%) in a medium simulating vaginal fluid, at 37 °C. The thermosensitive and bioadhesive PNIPAAm/PVME-MA systems showed a promising performance for the controlled release of metronidazole in the vaginal environment.
Collapse
Affiliation(s)
- Ana V. Torres-Figueroa
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico; (A.V.T.-F.); (J.C.E.); (S.B.-I.)
| | - Cinthia J. Pérez-Martínez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo 83000, Mexico; (C.J.P.-M.); (A.M.G.A.)
| | - J. Carmelo Encinas
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico; (A.V.T.-F.); (J.C.E.); (S.B.-I.)
| | - Silvia Burruel-Ibarra
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico; (A.V.T.-F.); (J.C.E.); (S.B.-I.)
| | - María I. Silvas-García
- Departamento de Investigación y Posgrado en Alimentos, Universidad de Sonora, Hermosillo 83000, Mexico;
| | - Alejandro M. García Alegría
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Hermosillo 83000, Mexico; (C.J.P.-M.); (A.M.G.A.)
| | - Teresa del Castillo-Castro
- Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo 83000, Mexico; (A.V.T.-F.); (J.C.E.); (S.B.-I.)
- Correspondence:
| |
Collapse
|
18
|
Okur NÜ, Yağcılar AP, Siafaka PI. Promising Polymeric Drug Carriers for Local Delivery: The Case of in situ Gels. Curr Drug Deliv 2021; 17:675-693. [PMID: 32510291 DOI: 10.2174/1567201817666200608145748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 03/28/2020] [Accepted: 04/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND At present, the controlled local drug delivery is a very promising approach compared to systemic administration, since it mostly targets the affected tissue. In fact, various drug carriers for local delivery have been prepared with improved therapeutic efficacy. OBJECTIVE in situ polymer gels are drug delivery systems that not only present liquid characteristics before their administration in body, but once they are administered, form gels due to gelation. Their gelation mechanism is due to factors such as pH alteration, temperature change, ion activation or ultraviolet irradiation. in situ gels offer various advantages compared to conventional formulations due to their ability to release drugs in a sustainable and controllable manner. Most importantly, in situ gels can be used in local drug delivery applications for various diseases. METHODS This review includes the basic knowledge and theory of in situ gels as well as their various applications according to their administration route. RESULTS Various natural, semisynthetic, and synthetic polymers can produce in situ polymeric gels. For example, natural polysaccharides such as alginic acid, chitosan, gellan gum, carrageenan etc. have been utilized as in situ gels for topical delivery. Besides the polysaccharides, poloxamers, poly(Nisopropylacrylamide), poly(ethyleneoxide)/ (lactic-co-glycolic acid), and thermosensitive liposome systems can be applied as in situ gels. In most cases, in situ polymeric gels could be applied via various administration routes such as oral, vaginal, ocular, intranasal and injectable. CONCLUSION To conclude, it can be revealed that in situ gels could be a promising alternative carrier for both chronic and immediate diseases.
Collapse
Affiliation(s)
- Neslihan Üstündağ Okur
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Ayşe Pınar Yağcılar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Health Sciences, Istanbul, Turkey
| | - Panoraia I Siafaka
- Faculty of Sciences, School of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
19
|
Carvalho GC, Araujo VHS, Fonseca-Santos B, de Araújo JTC, de Souza MPC, Duarte JL, Chorilli M. Highlights in poloxamer-based drug delivery systems as strategy at local application for vaginal infections. Int J Pharm 2021; 602:120635. [PMID: 33895295 DOI: 10.1016/j.ijpharm.2021.120635] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 01/02/2023]
Abstract
Infectious diseases related to the vagina include diseases caused by the imbalance of the vaginal flora and by sexually transmitted infections. Some of these present themselves as a public health problem due to the lack of efficient treatment that leads to their complete cure, and others due to the growing resistance to drugs used in therapy. In this sense, new treatment strategies are desirable, with vaginal administration rout being a great choice since can bypass first-pass metabolism and decrease drug interactions and adverse effects. However, it is worth highlighting limitations related to patient's discomfort at application time. Thereby, the use of poloxamer-based drug delivery systems is desirable due its stimuli-sensitive characteristic. Therefore, the present review reports a brief overview of poloxamer properties, biological behavior and advances in poloxamer applications in controlled drug release systems for infectious diseases related to the vagina treatment and prevention.
Collapse
Affiliation(s)
- Gabriela Corrêa Carvalho
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Victor Hugo Sousa Araujo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Bruno Fonseca-Santos
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), 13083-871 Campinas, Brazil
| | | | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, Brazil.
| |
Collapse
|
20
|
Araujo VHS, de Souza MPC, Carvalho GC, Duarte JL, Chorilli M. Chitosan-based systems aimed at local application for vaginal infections. Carbohydr Polym 2021; 261:117919. [PMID: 33766328 DOI: 10.1016/j.carbpol.2021.117919] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/31/2022]
Abstract
Vaginal administration is a promising route for the local treatment of infectious vaginal diseases since it can bypass the first-pass metabolism, drug interactions, and adverse effects. However, the commercial products currently available for topical vulvovaginal treatment have low acceptability and do not adequately explore this route. Mucoadhesive systems can optimize the efficacy of drugs administered by this route to increase the retention time of the drug in the vaginal environment. Several polymers are used to develop mucoadhesive systems, among them chitosan, a natural polymer that is highly biocompatible and technologically versatile. Thus, the present review aimed to analyze the studies that used chitosan to develop mucoadhesive systems for the treatment of local vaginal infections. These studies demonstrated that chitosan as a component of mucoadhesive drug delivery systems (DDS) is a promising device for the treatment of vaginal infectious diseases, due to the intrinsic antimicrobial activity of this biopolymer and because it does not interfere with the effectiveness of the drugs used for the treatment.
Collapse
Affiliation(s)
| | | | | | - Jonatas Lobato Duarte
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, Brazil.
| |
Collapse
|
21
|
Witika BA, Stander JC, Smith VJ, Walker RB. Nano Co-Crystal Embedded Stimuli-Responsive Hydrogels: A Potential Approach to Treat HIV/AIDS. Pharmaceutics 2021; 13:127. [PMID: 33498151 PMCID: PMC7908984 DOI: 10.3390/pharmaceutics13020127] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/20/2020] [Accepted: 01/08/2021] [Indexed: 01/02/2023] Open
Abstract
Currently, the human immunodeficiency virus (HIV) that causes acquired immunodeficiency syndrome (AIDS) can only be treated successfully, using combination antiretroviral (ARV) therapy. Lamivudine (3TC) and zidovudine (AZT), two compounds used for the treatment of HIV and prevention of disease progression to AIDS are used in such combinations. Successful therapy with 3TC and AZT requires frequent dosing that may lead to reduced adherence, resistance and consequently treatment failure. Improved toxicity profiles of 3TC and AZT were observed when combined as a nano co-crystal (NCC). The use of stimuli-responsive delivery systems provides an opportunity to overcome the challenge of frequent dosing, by controlling and/or sustaining delivery of drugs. Preliminary studies undertaken to identify a suitable composition for a stimulus-responsive in situ forming hydrogel carrier for 3TC-AZT NCC were conducted, and the gelation and erosion time were determined. A 25% w/w Pluronic® F-127 thermoresponsive hydrogel was identified as a suitable carrier as it exhibited a gelation time of 5 min and an erosion time of 7 days. NCC-loaded hydrogels were evaluated using in vitro dissolution and cytotoxicity assays. In vitro dissolution undertaken using membrane-less diffusion over 168 h revealed that 3TC and AZT release from NCC-loaded hydrogels was complete and followed zero-order kinetic processes, whereas those loaded with the micro co-crystal and physical mixture were incomplete and best described using the Korsmeyer-Peppas kinetic model. The release of AZT and 3TC from the physical mixture and MCC-loaded gel exhibited a value for n of 0.595 for AZT release from the physical mixture and 0.540 for the MCC technology, whereas the release exponent for 3TC was 0.513 for the physical mixture and 0.557 for the MCC technology indicating that diffusion and erosion controlled 3TC and AZT release. In vitro cytotoxicity assay data revealed that the addition of NCC to the thermoresponsive hydrogel resulted in an improved cell viability of 88.0% ± 5.0% when compared to the cell viability of the NCC of 76.9% ± 5.0%. The results suggest that the use of a thermoresponsive nanosuspension may have the potential to be delivered as an intramuscular injection that can subsequently increase bioavailability and permit dose reduction and/or permit use of a longer dosing frequency.
Collapse
Affiliation(s)
- Bwalya A. Witika
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa;
| | - Jessé-Clint Stander
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, South Africa; (J.-C.S.); (V.J.S.)
| | - Vincent J. Smith
- Department of Chemistry, Faculty of Science, Rhodes University, Makhanda 6140, South Africa; (J.-C.S.); (V.J.S.)
| | - Roderick B. Walker
- Division of Pharmaceutics, Faculty of Pharmacy, Rhodes University, Makhanda 6140, South Africa;
| |
Collapse
|
22
|
Argenta DF, Bernardo BDC, Chamorro AF, Matos PR, Caon T. Thermosensitive hydrogels for vaginal delivery of secnidazole as an approach to overcome the systemic side-effects of oral preparations. Eur J Pharm Sci 2021; 159:105722. [PMID: 33482314 DOI: 10.1016/j.ejps.2021.105722] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 01/10/2023]
Abstract
Secnidazole (SEC) has been suggested as an alternative agent against Trichomonas vaginalis to overcome the adverse effects, antimicrobial resistance problems and poor adherence to the currently available therapy. Once no topical formulation may be found in the market until now, SEC was incorporated in thermosensitive bioadhesive systems to extend the contact time in the mucosa and to avoid a systemic drug disposition. Formulations containing 20% poloxamer 407, 1% poloxamer 188 and 1 or 2.5% chitosan showed suitable sol-gel transition temperature (> 30 °C), presenting a fast gelation time (100-115 s). Rheological, dynamic light scattering and infrared spectroscopy analysis suggested molecular interactions among polymers. Chitosan increased the mucoadhesion strength of the formulations. In addition, hydrogels showed a tendency to decrease the drug transport rate through mucosa when compared to the control. Mucin was also added onto mucosa for a more realistic simulation of permeability/retention. In the presence of this agent, hydrogels containing chitosan reduced the permeability/retention of the drug in approximately 2.0-fold when compared to the control. Therefore, the hydrogels presented suitable characteristics to remain in the vaginal environment, which would result in effective local treatment of trichomoniasis.
Collapse
Affiliation(s)
- Débora Fretes Argenta
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n - Trindade, Florianópolis - SC, 88040-900, Brazil
| | - Bianca da Costa Bernardo
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n - Trindade, Florianópolis - SC, 88040-900, Brazil
| | - Andrés Felipe Chamorro
- Department of Chemistry, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n - Trindade, Florianópolis - SC, 88040-900, Brazil
| | - Paulo Ricardo Matos
- Department of Civil Engineering, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n - Trindade, Florianópolis - SC, 88040-900, Brazil
| | - Thiago Caon
- Department of Pharmaceutical Sciences, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima, s/n - Trindade, Florianópolis - SC, 88040-900, Brazil.
| |
Collapse
|
23
|
Pandey M, Choudhury H, Abdul-Aziz A, Bhattamisra SK, Gorain B, Carine T, Wee Toong T, Yi NJ, Win Yi L. Promising Drug Delivery Approaches to Treat Microbial Infections in the Vagina: A Recent Update. Polymers (Basel) 2020; 13:E26. [PMID: 33374756 PMCID: PMC7795176 DOI: 10.3390/polym13010026] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
An optimal host-microbiota interaction in the human vagina governs the reproductive health status of a woman. The marked depletion in the beneficial Lactobacillus sp. increases the risk of infection with sexually transmitted pathogens, resulting in gynaecological issues. Vaginal infections that are becoming increasingly prevalent, especially among women of reproductive age, require an effective concentration of antimicrobial drugs at the infectious sites for complete disease eradication. Thus, topical treatment is recommended as it allows direct therapeutic action, reduced drug doses and side effects, and self-insertion. However, the alterations in the physiological conditions of the vagina affect the effectiveness of vaginal drug delivery considerably. Conventional vaginal dosage forms are often linked to low retention time in the vagina and discomfort which significantly reduces patient compliance. The lack of optimal prevention and treatment approaches have contributed to the unacceptably high rate of recurrence for vaginal diseases. To combat these limitations, several novel approaches including nano-systems, mucoadhesive polymeric systems, and stimuli-responsive systems have been developed in recent years. This review discusses and summarises the recent research progress of these novel approaches for vaginal drug delivery against various vaginal diseases. An overview of the concept and challenges of vaginal infections, anatomy and physiology of the vagina, and barriers to vaginal drug delivery are also addressed.
Collapse
Affiliation(s)
- Manisha Pandey
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
- Centre for Bioactive Molecules and Drug Delivery, Institute for Research, Development and Innovation, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Azila Abdul-Aziz
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, Kuala Lumpur 54100, Malaysia; or
| | - Subrat Kumar Bhattamisra
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia;
| | - Bapi Gorain
- Faculty of Health and Medical Sciences, School of Pharmacy, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia;
- Center for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Selangor 47500, Malaysia
| | - Teng Carine
- Undergraduate School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (T.C.); (T.W.T.); (N.J.Y.); (L.W.Y.)
| | - Tan Wee Toong
- Undergraduate School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (T.C.); (T.W.T.); (N.J.Y.); (L.W.Y.)
| | - Ngiam Jing Yi
- Undergraduate School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (T.C.); (T.W.T.); (N.J.Y.); (L.W.Y.)
| | - Lim Win Yi
- Undergraduate School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia; (T.C.); (T.W.T.); (N.J.Y.); (L.W.Y.)
| |
Collapse
|
24
|
Torabi H, Mehdikhani M, Varshosaz J, Shafiee F. An innovative approach to fabricate a thermosensitive melatonin‐loaded conductive pluronic/chitosan hydrogel for myocardial tissue engineering. J Appl Polym Sci 2020. [DOI: 10.1002/app.50327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hadis Torabi
- Department of Biomedical Engineering, Faculty of Engineering University of Isfahan Isfahan Iran
| | - Mehdi Mehdikhani
- Department of Biomedical Engineering, Faculty of Engineering University of Isfahan Isfahan Iran
| | - Jaleh Varshosaz
- Novel Drug Delivery Systems Research Center Isfahan University of Medical Sciences Isfahan Iran
- Department of Pharmaceutics School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan Iran
| | - Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan Iran
| |
Collapse
|
25
|
Recent advances in hydrogels as strategy for drug delivery intended to vaginal infections. Int J Pharm 2020; 590:119867. [PMID: 32919001 DOI: 10.1016/j.ijpharm.2020.119867] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/01/2020] [Accepted: 09/04/2020] [Indexed: 12/17/2022]
Abstract
Vaginal infections represent a clear women health problem due to the several issues as high recurrence rate, drug resistence and emergence of persistent strains. However, achieving improvements in therapeutic efficacy by using conventional formulations intended to vaginal drug delivery remains as a challenge due to anatomy and physiology of the vagina, since the secretion and renewal of vaginal fluids contribute to the removal of the dosage form. Hydrogels have been widely exploited aiming to achieve drug delivery directly into vaginal mucosa for local therapy due to their attractive features as increased residence time of the drug at the action site and control of drug release rates. Some polymers can aggregate specific properties to hydrogels as mucoadhesive, stimuli-responsive and antimicrobial, improving their interaction with the biological interface and therapeutic response. In this review, we highlight the advances, advantages and challenges of the hydrogels as drug and/or nanocarrier vehicles intended to the treatment of vaginal infections, emphasizing also the polymers and their properties more explored on the design these systems to improve the therapeutic effect on the vaginal tissue. In addition, this review can contribute for better exploitation these systems in search of new local treatments for bacterial vaginosis, candidiasis and trichomoniasis.
Collapse
|
26
|
Tuğcu-Demiröz F, Saar S, Tort S, Acartürk F. Electrospun metronidazole-loaded nanofibers for vaginal drug delivery. Drug Dev Ind Pharm 2020; 46:1015-1025. [DOI: 10.1080/03639045.2020.1767125] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Fatmanur Tuğcu-Demiröz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Sinem Saar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Serdar Tort
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| | - Füsun Acartürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Gazi University, Ankara, Turkey
| |
Collapse
|
27
|
Malli S, Loiseau PM, Bouchemal K. Trichomonas vaginalis Motility Is Blocked by Drug-Free Thermosensitive Hydrogel. ACS Infect Dis 2020; 6:114-123. [PMID: 31713413 DOI: 10.1021/acsinfecdis.9b00243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Trichomonas vaginalis motility in biological fluids plays a prominent, but understudied, role in parasite infectivity. In this study, the ability of a thermosensitive hydrogel (pluronic F127) to physically immobilize T. vaginalis was investigated. Blocking parasite motility could prevent its attachment to the mucosa, thus reducing the acquisition of the infection. The trajectory of individual parasites was monitored by multiple particle tracking. Mean square displacement, diffusivity, and velocity were calculated from x, y coordinates during time. Major results are that T. vaginalis exhibited different types of trajectories in a diluted solution composed of lactate buffer similar to "run-and-tumble" motion reported for flagellated bacteria. The fastest T. vaginalis specimen moves with a velocity of 19 μm/s. Observation of T. vaginalis movements showed that the cell body remains rigid during swimming and that the propulsive forces necessary to generate the movement are the result of flagellar beating. Parasite motility was partially slowed down using hydroxyethylcellulose hydrogel, used as a reference for the development of vaginal microbicides, while 100% of T. vaginalis were immobile in F127 hydrogel. Once completed by biological investigations on mice, this report suggests using drug-free formulation composed of F127 as a new strategy to prevent T. vaginalis attachment to the mucosa. The concept will be extended to other flagellated organisms where the motility is driven by cilia and flagella.
Collapse
Affiliation(s)
- Sophia Malli
- Institut Galien Paris Sud, UMR CNRS 8612, Université Paris-Sud, Faculté de Pharmacie, Université Paris-Saclay, 5, rue J-B. Clément, 92296, Châtenay-Malabry, France
- Institut Galien Paris Sud, Junior member of the Institut Universitaire de France, UMR CNRS 8612, Université Paris-Sud, Faculté de Pharmacie, Université Paris-Saclay, 5, rue J-B. Clément, 92296 Châtenay-Malabry, France
| | - Philippe M. Loiseau
- Antiparasite Chemotherapy PARACHEM, Université Paris-Sud, CNRS, 5, rue J-B. Clément, 92290 Châtenay-Malabry, France
| | - Kawthar Bouchemal
- Institut Galien Paris Sud, Junior member of the Institut Universitaire de France, UMR CNRS 8612, Université Paris-Sud, Faculté de Pharmacie, Université Paris-Saclay, 5, rue J-B. Clément, 92296 Châtenay-Malabry, France
| |
Collapse
|
28
|
Zhang Y, Miyamoto Y, Ihara S, Yang JZ, Zuill DE, Angsantikul P, Zhang Q, Gao W, Zhang L, Eckmann L. Composite thermoresponsive hydrogel with auranofin-loaded nanoparticles for topical treatment of vaginal trichomonad infection. ADVANCED THERAPEUTICS 2019; 2:1900157. [PMID: 32377561 PMCID: PMC7202563 DOI: 10.1002/adtp.201900157] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Indexed: 12/17/2022]
Abstract
Trichomonas vaginalis is responsible for the most common non-viral sexually-transmitted disease worldwide. Standard treatment is with oral nitro-heterocyclic compounds, metronidazole or tinidazole, but resistance to these drugs is emerging and adverse effects can be problematic. Topical treatment offers potential benefits for increasing local drug concentrations and efficacy, while reducing systemic drug exposure, but no topical strategies are currently approved for trichomoniasis. The anti-rheumatic drug, auranofin (AF), was recently discovered to have significant trichomonacidal activity, but has a long plasma half-life and significant adverse effects. Here, we used this drug as a model to develop a novel topical formulation composed of AF-loaded nanoparticles (NP) embedded in a thermoresponsive hydrogel for intravaginal administration. The AF-NP composite gel showed sustained drug release for at least 12 h, and underwent sol-gel transition with increased viscoelasticity within a minute. Intravaginal administration in mice showed excellent NP retention for >6 h and markedly increased local AF levels, but reduced plasma and liver levels compared to oral treatment with a much higher dose. Furthermore, intravaginal AF-NP gel greatly outperformed oral AF in eliminating vaginal trichomonad infection in mice, while causing no systemic or local toxicity. These results show the potential of the AF-NP hydrogel formulation for effective topical therapy of vaginal infections.
Collapse
Affiliation(s)
- Yue Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Yukiko Miyamoto
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Sozaburo Ihara
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Justin Z Yang
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Douglas E Zuill
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Pavimol Angsantikul
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Qiangzhe Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Liangfang Zhang
- Department of NanoEngineering and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | - Lars Eckmann
- Department of Medicine, University of California San Diego, La Jolla, California 92093, USA
| |
Collapse
|
29
|
Malli S, Pomel S, Ayadi Y, Deloménie C, Da Costa A, Loiseau PM, Bouchemal K. Topically Applied Chitosan-Coated Poly(isobutylcyanoacrylate) Nanoparticles Are Active Against Cutaneous Leishmaniasis by Accelerating Lesion Healing and Reducing the Parasitic Load. ACS APPLIED BIO MATERIALS 2019; 2:2573-2586. [DOI: 10.1021/acsabm.9b00263] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Sophia Malli
- Institut Galien Paris Sud, UMR CNRS 8612, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5, rue J.B. Clément, 92296 Cedex Châtenay-Malabry, France
- BioCIS Biomolécules: Conception, Isolement, Synthèse, Chimiothérapie Antiparasitaire, UMR CNRS 8076, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5, rue J.B. Clément, 92296 Cedex Châtenay-Malabry, France
| | - Sebastien Pomel
- BioCIS Biomolécules: Conception, Isolement, Synthèse, Chimiothérapie Antiparasitaire, UMR CNRS 8076, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5, rue J.B. Clément, 92296 Cedex Châtenay-Malabry, France
| | - Yasmine Ayadi
- Institut Galien Paris Sud, UMR CNRS 8612, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5, rue J.B. Clément, 92296 Cedex Châtenay-Malabry, France
- BioCIS Biomolécules: Conception, Isolement, Synthèse, Chimiothérapie Antiparasitaire, UMR CNRS 8076, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5, rue J.B. Clément, 92296 Cedex Châtenay-Malabry, France
| | - Claudine Deloménie
- Faculté de Pharmacie, Institut Paris Saclay d’Innovation Thérapeutique, UMS Inserm CNRS UPSud, Université Paris-Saclay, 92296 Cedex Châtenay-Malabry, France
| | - Antonio Da Costa
- Université d’Artois, CNRS, Centrale Lille, ENSCL, Université Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), Faculté Jean-Perrin, Rue Jean Souvras − SP 18, 62307 Lens, France
| | - Philippe M. Loiseau
- BioCIS Biomolécules: Conception, Isolement, Synthèse, Chimiothérapie Antiparasitaire, UMR CNRS 8076, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5, rue J.B. Clément, 92296 Cedex Châtenay-Malabry, France
| | - Kawthar Bouchemal
- Institut Galien Paris Sud, Junior Member of the Institut Universitaire de France, UMR CNRS 8612, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5, rue J.B. Clément, 92296 Cedex Châtenay-Malabry, France
| |
Collapse
|
30
|
Tomić I, Juretić M, Jug M, Pepić I, Cetina Čižmek B, Filipović-Grčić J. Preparation of in situ hydrogels loaded with azelaic acid nanocrystals and their dermal application performance study. Int J Pharm 2019; 563:249-258. [DOI: 10.1016/j.ijpharm.2019.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 03/31/2019] [Accepted: 04/06/2019] [Indexed: 12/23/2022]
|
31
|
|
32
|
|
33
|
Evaluation of the promoting effect of soluble cyclodextrins in drug nail penetration. Eur J Pharm Sci 2018; 117:270-278. [DOI: 10.1016/j.ejps.2018.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/22/2018] [Accepted: 02/26/2018] [Indexed: 12/17/2022]
|
34
|
Malli S, Bories C, Ponchel G, Loiseau PM, Bouchemal K. Phase solubility studies and anti-Trichomonas vaginalis activity evaluations of metronidazole and methylated β-cyclodextrin complexes: Comparison of CRYSMEB and RAMEB. Exp Parasitol 2018; 189:72-75. [PMID: 29730454 DOI: 10.1016/j.exppara.2018.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/08/2018] [Accepted: 04/26/2018] [Indexed: 11/28/2022]
Abstract
Metronidazole (MTZ) is a 5-nitroimidazole drug used for the treatment of Trichomonas vaginalis parasitic infection. Aqueous formulations containing MTZ are restricted because apparent solubility in water of this drug is low. In this context, two methylated-β-cyclodextrins (CRYSMEB and RAMEB) were used as a tool to increase apparent solubility of MTZ in water. CRYSMEB was limited by its own solubility in water (15% w/w, 12.59 mM), while RAMEB at a concentration of 40% w/w (300.44 mM) allowed a maximal increase of apparent solubility of MTZ (3.426% w/w, 200.19 mM). From our knowledge, this corresponds to the highest enhancement of MTZ apparent aqueous solubility ever reported in the literature using methylated cyclodextrins. In vitro evaluations showed that anti-T. vaginalis activity of MTZ formulated with CRYSMEB and RAMEB was preserved.
Collapse
Affiliation(s)
- Sophia Malli
- Institut Galien Paris Sud, UMR CNRS 8612, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5, Rue J-B. Clément, 92296, Châtenay-Malabry, France
| | - Christian Bories
- BioCIS « Biomolécules: Conception, Isolement, Synthèse » - « Chimiothérapie Antiparasitaire », UMR CNRS 8076, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5, Rue J.B. Clément, 92296, Châtenay-Malabry Cedex, France
| | - Gilles Ponchel
- Institut Galien Paris Sud, UMR CNRS 8612, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5, Rue J-B. Clément, 92296, Châtenay-Malabry, France
| | - Philippe M Loiseau
- BioCIS « Biomolécules: Conception, Isolement, Synthèse » - « Chimiothérapie Antiparasitaire », UMR CNRS 8076, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5, Rue J.B. Clément, 92296, Châtenay-Malabry Cedex, France
| | - Kawthar Bouchemal
- Institut Galien Paris Sud, Junior Member of the Institut Universitaire de France, UMR CNRS 8612, Univ. Paris-Sud, Université Paris-Saclay, Faculté de Pharmacie, 5, Rue J-B. Clément, 92296, Châtenay-Malabry, France.
| |
Collapse
|
35
|
Pelegrino MT, De Araujo Lima B, Do Nascimento MHM, Lombello CB, Brocchi M, Seabra AB. Biocompatible and Antibacterial Nitric Oxide-Releasing Pluronic F-127/Chitosan Hydrogel for Topical Applications. Polymers (Basel) 2018; 10:E452. [PMID: 30966487 PMCID: PMC6415216 DOI: 10.3390/polym10040452] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/08/2018] [Accepted: 04/16/2018] [Indexed: 01/08/2023] Open
Abstract
Nitric oxide (NO) is involved in physiological processes, including vasodilatation, wound healing and antibacterial activities. As NO is a free radical, designing drugs to generate therapeutic amounts of NO in controlled spatial and time manners is still a challenge. In this study, the NO donor S-nitrosoglutathione (GSNO) was incorporated into the thermoresponsive Pluronic F-127 (PL)-chitosan (CS) hydrogel, with an easy and economically feasible methodology. CS is a polysaccharide with known antimicrobial properties. Scanning electron microscopy, rheology and differential scanning calorimetry techniques were used for hydrogel characterization. The results demonstrated that the hydrogel has a smooth surface, thermoresponsive behavior and good mechanical stability. The kinetics of NO release and GSNO diffusion from GSNO-containing PL/CS hydrogel demonstrated a sustained NO/GSNO release, in concentrations suitable for biomedical applications. The GSNO-PL/CS hydrogel demonstrated a concentration-dependent toxicity to Vero cells, and antimicrobial activity to Pseudomonas aeruginosa (minimum inhibitory concentration and minimum bactericidal concentration values of 0.5 µg·mL-1 of hydrogel, which corresponds to 1 mmol·L-1 of GSNO). Interestingly, the concentration range in which the NO-releasing hydrogel demonstrated an antibacterial effect was not found to be toxic to the Vero mammalian cell. Thus, the GSNO-PL/CS hydrogel is a suitable biomaterial for topical NO delivery applications.
Collapse
Affiliation(s)
- Milena T Pelegrino
- Center for Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil.
- Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP 09210-580, Brazil.
| | - Bruna De Araujo Lima
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil.
| | - Mônica H M Do Nascimento
- Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP 09210-580, Brazil.
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil.
| | - Christiane B Lombello
- Center for Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil.
- Center for Engineering, Modeling and Applied Social Science, Universidade Federal do ABC, Alameda da Universidade sem numero, São Bernardo do Campo, SP, CEP 09606-045, Brazil.
| | - Marcelo Brocchi
- Tropical Disease Laboratory, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil.
| | - Amedea B Seabra
- Center for Natural and Human Sciences, Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP, CEP 09210-580, Brazil.
- Nanomedicine Research Unit (NANOMED), Universidade Federal do ABC, Av. dos Estados 5001, Santo André, SP 09210-580, Brazil.
| |
Collapse
|
36
|
Novel in-situ gel for intravesical administration of ketorolac. Saudi Pharm J 2018; 26:845-851. [PMID: 30202226 PMCID: PMC6128712 DOI: 10.1016/j.jsps.2018.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/25/2018] [Indexed: 11/22/2022] Open
Abstract
The urinary bladder stores urine until the time of urination. Systemic administration of drugs to treat bladder diseases faces several limitations. Therefore, intravesical drug delivery is a promising alternative route of administration. An in-situ gel is used to form a gel inside the bladder cavity and ensure continuous release of the drug even after urination. The objective of the present study was to optimize an in-situ gel formulation of poloxamer and chitosan for intravesical delivery of ketorolac tromethamine. The gelling temperature of the prepared combinations ranged from 20.67 to 25.8 °C. In-vitro release of KT was sustained for up to 7 h using a poloxamer concentration ranging from 17% to 19% and a chitosan concentration ranging from 1% to 2%. Design-Expert® 10 was used to select the optimized formulation (poloxamer/chitosan 17/1.589% w/w) which significantly (p < 0.05) extended the drug release more than each polymer alone. An ex-vivo study showed the ability of the optimized formulation to sustain drug release after emptying two times to mimic urination. Furthermore, the formed gel adhered to the bladder tissue throughout the time period of the experiment. Intravesical administration of the optimized formulation to rabbits via catheter showed no obstruction of urine flow and continuous release of the drug for 12 h.
Collapse
|
37
|
Perinelli DR, Campana R, Skouras A, Bonacucina G, Cespi M, Mastrotto F, Baffone W, Casettari L. Chitosan Loaded into a Hydrogel Delivery System as a Strategy to Treat Vaginal Co-Infection. Pharmaceutics 2018; 10:pharmaceutics10010023. [PMID: 29401648 PMCID: PMC5874836 DOI: 10.3390/pharmaceutics10010023] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/27/2018] [Accepted: 02/01/2018] [Indexed: 12/31/2022] Open
Abstract
Polymeric hydrogels are common dosage forms designed for the topical administration of antimicrobial drugs to treat vaginal infections. One of the major advantages of using chitosan in these formulations is related to the intrinsic and broad antimicrobial activity exerted on bacteria and fungi by this natural polymer. Most vaginal yeast infections are caused by the pathogenic fungus Candida albicans. However, despite the anti-Candida activity towards and strains susceptibility to low molecular weight chitosan being documented, no information is available regarding the antimicrobial efficacy of mixed hydrogels in which chitosan is dispersed in a polymeric matrix. Therefore, the aim of the study is to evaluate the anti-Candida activity against eight different albicans and non-albicans strains of a mixed hydroxypropyl methylcellulose (HPMC)/chitosan hydrogel. Importantly, chitosan was dispersed in HPMC matrix either assembled in nanoparticles or in a monomolecular state to eventually correlate any variation in terms of rheological and mucoadhesive properties, as well as anti-Candida activity, with the chitosan form. Hydrogels containing 1% w/w chitosan, either as free polymer chain or assembled in nanoparticles, showed an improved mucoadhesiveness and an anti-Candida effect against all tested albicans and non-albicans strains. Overall, the results demonstrate the feasibility of preparing HPMC/CS mixed hydrogels intended for the prevention and treatment of Candida infections after vaginal administration.
Collapse
Affiliation(s)
- Diego R Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino (MC), Italy.
| | - Raffaella Campana
- Department of Biomolecular Sciences, University of Urbino, Piazza del Rinascimento n° 6, 61029 Urbino (PU), Italy.
| | - Athanasios Skouras
- Department of Biomolecular Sciences, University of Urbino, Piazza del Rinascimento n° 6, 61029 Urbino (PU), Italy.
| | - Giulia Bonacucina
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino (MC), Italy.
| | - Marco Cespi
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino (MC), Italy.
| | - Francesca Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo n° 5, 35131 Padova (PD), Italy.
| | - Wally Baffone
- Department of Biomolecular Sciences, University of Urbino, Piazza del Rinascimento n° 6, 61029 Urbino (PU), Italy.
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino, Piazza del Rinascimento n° 6, 61029 Urbino (PU), Italy.
| |
Collapse
|
38
|
Abstract
The last estimated annual incidence of Trichomonas vaginalis worldwide exceeds that of chlamydia and gonorrhea combined. This critical review updates the state of the art on advances in T. vaginalis diagnostics and strategies for treatment and prevention of trichomoniasis. In particular, new data on treatment outcomes for topical administration of formulations are reviewed and discussed.
Collapse
|
39
|
Polymeric Hydrogels as Technology Platform for Drug Delivery Applications. Gels 2017; 3:gels3030025. [PMID: 30920522 PMCID: PMC6318675 DOI: 10.3390/gels3030025] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/27/2022] Open
Abstract
Hydrogels have become key players in the field of drug delivery owing to their great versatility in terms of composition and adjustability to various administration routes, from parenteral (e.g., intravenous) to non-parenteral (e.g., oral, topical) ones. In addition, based on the envisioned application, the design of bioadhesive or mucoadhesive hydrogels with prolonged residence time in the administration site may be beneficial. For example, hydrogels are used as wound dressings and patches for local and systemic therapy. In a similar way, they can be applied in the vaginal tract for local treatment or in the nasal cavity for a similar goal or, conversely, to target the central nervous system by the nose-to-brain pathway. Overall, hydrogels have demonstrated outstanding capabilities to ensure patient compliance, while achieving long-term therapeutic effects. The present work overviews the most relevant and recent applications of hydrogels in drug delivery with special emphasis on mucosal routes.
Collapse
|
40
|
Grisin T, Bories C, Loiseau PM, Bouchemal K. Cyclodextrin-mediated self-associating chitosan micro-platelets act as a drug booster against Candida glabrata mucosal infection in immunocompetent mice. Int J Pharm 2017; 519:381-389. [DOI: 10.1016/j.ijpharm.2017.01.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 10/20/2022]
|