1
|
Liu Z, Parveen N, Rehman U, Aziz A, Sheikh A, Abourehab MAS, Guo W, Huang J, Wang Z, Kesharwani P. Unravelling the enigma of siRNA and aptamer mediated therapies against pancreatic cancer. Mol Cancer 2023; 22:8. [PMID: 36635659 PMCID: PMC9835391 DOI: 10.1186/s12943-022-01696-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/06/2022] [Indexed: 01/13/2023] Open
Abstract
Pancreatic cancer (PC) is a fatal disease that has a poor 5-year survival rate. The poor prognosis can be attributed to both troublesome detections at the initial stage, which makes the majority of the treatment options largely unsuccessful and leads to extensive metastasis, as well as to its distinct pathophysiological characteristics, such as rich desmoplastic tumours bounded by dysplastic and hypo perfused vessels restricting the mobility of therapeutic agents. Continued attempts have been made to utilise innovative measures for battling PC to increase the therapeutic effectiveness of therapies and overcome their cytotoxicity. Combined cancer targeting and gene silencing approach has shown improved outcomes in patients' survival rates and quality of life, offering a potential solution to therapeutic complications. It particularly targets various barriers to alleviate delivery problems and diminish tumour recurrence and metastasis. While aptamers, a type of single-stranded nucleic acids with strong binding affinity and specificity to target molecules, have recently surfaced as a viable PC strategy, siRNA can interfere with the expression of certain genes. By concurrently suppressing genes and boosting targeted approach, the cocktail of siRNA/Aptamer and other therapeutic drugs can circumvent the multi-drug resistance phenomena. Additionally, combination therapy with additive or synergistic effects can considerably increase the therapeutic efficacy of anti-cancer medications. This study outlines the primary difficulties in treating PC, along with recent developments in siRNA/Aptamer mediated drug delivery to solve the major hiccup of oncology field.
Collapse
Affiliation(s)
- Zhe Liu
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Neha Parveen
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Urushi Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Aisha Aziz
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Wei Guo
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Junhao Huang
- Department of Pancreatic-Biliary Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155N. Nanjing Street, Shenyang, 110001, Liaoning, China.
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning, China.
- Institute of Health Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
- Center for Transdisciplinary Research, Department Of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Chennai, India.
| |
Collapse
|
2
|
Nikhat A, Hasan N, Iqbal Z, Kesharwani P, Talegaonkar S. Enhanced transdermal delivery of lutein via nanoethosomal gel: Formulation optimization, in-vitro evaluation, and in-vivo assessment. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
3
|
Dubey SK, Dey A, Singhvi G, Pandey MM, Singh V, Kesharwani P. Emerging trends of nanotechnology in advanced cosmetics. Colloids Surf B Biointerfaces 2022; 214:112440. [PMID: 35344873 DOI: 10.1016/j.colsurfb.2022.112440] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/07/2023]
Abstract
The cosmetic industry is dynamic and ever-evolving. Especially with the introduction and incorporation of nanotechnology-based approaches into cosmetics for evincing novel formulations that confers aesthetic as well as therapeutic benefits. Nanocosmetics acts via numerous delivery mechanisms which involves lipid nanocarrier systems, polymeric or metallic nanoparticles, nanocapsules, dendrimers, nanosponges,etc. Each of these, have particular characteristic properties, which facilitates increased drug loading, enhanced absorption, better cosmetic efficacy, and many more. This article discusses the different classes of nanotechnology-based cosmetics and the nanomaterials used for their formulation, followed by outlining the categories of nanocosmetics and the scope of their utility pertaining to skin, hair, nail, lip, and/or dental care and protection thereof. This review also highlights and discusses about the key drivers of the cosmetic industry and the impending need of corroborating a healthy regulatory framework, refocusing attention towards consumer needs and trends, inculcating sustainable techniques and tenets of green ecological principles, and lastly making strides in nano-technological advancements which will further propel the growth of the cosmetic industry.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India.
| | - Anuradha Dey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Murali Manohar Pandey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani Campus, Pilani, Rajasthan 333031, India
| | - Vanshikha Singh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
4
|
A quality by design (QbD) approach in pharmaceutical development of lipid-based nanosystems: A systematic review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103207] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Zheng X, Fang Z, Huang W, Qi J, Dong X, Zhao W, Wu W, Lu Y. Ionic co-aggregates (ICAs) based oral drug delivery: Solubilization and permeability improvement. Acta Pharm Sin B 2022; 12:3972-3985. [PMID: 36213530 PMCID: PMC9532535 DOI: 10.1016/j.apsb.2022.04.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/26/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Due to the overwhelming percentage of poorly water-soluble drugs, pharmaceutical industry is in urgent need of efficient approaches for solubilization and permeability improvement. Salts consisting of lipophilic fatty acid anions and hydrophilic choline cations are found to be surface active and able to form ionic co-aggregates (ICAs) in water. Choline oleate-based ICAs significantly enhance oral absorption of paclitaxel (PTX) as compared with cremophor EL-based micelles (MCs). Aggregation-caused quenching probes enable tracking of intact ICAs in in vivo transport and cellular interaction. Prolonged intestinal retention of ICAs than MCs implies stronger solubilizing capability in vivo. Ex vivo imaging of major organs and intestinal tracts suggests transepithelial transport of intact ICAs. Cellular studies support the enhanced absorption of PTX and transmembrane transport of intact ICAs. In conclusion, ICAs, consisting of lipophilic ions and hydrophilic counter-ions, are of great potential in delivery of poorly water-soluble drugs by enhancing solubility and permeability.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Wu
- Corresponding author. Tel.: +86 21 51980084.
| | - Yi Lu
- Corresponding author. Tel.: +86 21 51980084.
| |
Collapse
|
6
|
Kesharwani P, Chadar R, Sheikh A, Rizg WY, Safhi AY. CD44-Targeted Nanocarrier for Cancer Therapy. Front Pharmacol 2022; 12:800481. [PMID: 35431911 PMCID: PMC9008230 DOI: 10.3389/fphar.2021.800481] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/20/2021] [Indexed: 01/08/2023] Open
Abstract
Cluster of differentiation 44 (CD44) is a cell surface glycoprotein overexpressed in varieties of solid tumors including pancreatic, breast, ovary, brain, and lung cancers. It is a multi-structural glycoprotein of the cell surface which is majorly involved in cell proliferation, cell-to-cell interaction, cellular migration, inflammation, and generation of immune responses. Numerous studies focus on the development of nanocarriers for active targeting of the CD44 receptor to improve efficacy of targeting chemotherapy and achieve precise chemotherapy by defining the release, uptake, and accumulation of therapeutic agents. The CD44 receptor has a selective binding affinity towards hyaluronic and chondroitin sulfate (CS). Taking this into consideration, this review focused on the role of CD44 in cancer and its therapy using several nanocarriers such as polymeric/non-polymeric nanoparticles, dendrimer, micelles, carbon nanotubes, nanogels, nanoemulsions etc., for targeted delivery of several chemotherapeutic molecules and nucleic acid. This review also illuminates the role of hyaluronic acid (HA) in cancer therapy, interaction of HA with CD44, and various approaches to target CD44-overexpressed neoplastic cells.
Collapse
Affiliation(s)
- Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
- *Correspondence: Prashant Kesharwani,
| | - Rahul Chadar
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Waleed Y. Rizg
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Awaji Y Safhi
- Department of Pharmaceutics, Faculty of Pharmacy, Jazan University, Jazan, Saudi Arabia
| |
Collapse
|
7
|
Kaur R, Dennison SR, Rudramurthy SM, Katare OP, Sharma T, Singh B, Singh KK. Aerosolizable Lipid-Nanovesicles Encapsulating Voriconazole Effectively Permeate Pulmonary Barriers and Target Lung Cells. Front Pharmacol 2022; 12:734913. [PMID: 35391905 PMCID: PMC8982086 DOI: 10.3389/fphar.2021.734913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
The entire world has recently been witnessing an unprecedented upsurge in microbial lung infections. The major challenge encountered in treating the same is to ensure the optimum drug availability at the infected site. Aerosolization of antimicrobials, in this regard, has shown immense potential owing to their localized and targeted effect. Efforts, therefore, have been undertaken to systematically develop lung-phosphatidylcholine-based lipid nanovesicles of voriconazole for potential management of the superinfections like aspergillosis. LNVs, prepared by thin-film hydration method, exhibited a globule size of 145.4 ± 19.5 nm, polydispersity index of 0.154 ± 0.104 and entrapment efficiency of 71.4 ± 2.2% with improved in vitro antifungal activity. Aerodynamic studies revealed a microdroplet size of ≤5 μm, thereby unraveling its promise to target the physical barrier of lungs effectively. The surface-active potential of LNVs, demonstrated through Langmuir-Blodgett troughs, indicated their ability to overcome the biochemical pulmonary surfactant monolayer barrier, while the safety and uptake studies on airway-epithelial cells signified their immense potential to permeate the cellular barrier of lungs. The pharmacokinetic studies showed marked improvement in the retention profile of voriconazole in lungs following LNVs nebulization compared to pristine voriconazole. Overall, LNVs proved to be safe and effective delivery systems, delineating their distinct potential to efficiently target the respiratory fungal infections.
Collapse
Affiliation(s)
- Ranjot Kaur
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
- University of Central Lancashire, Preston, United Kingdom
| | | | | | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
| | - Teenu Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, India
- UGC Center for Excellence in Nano-Biomedical Applications, Panjab University, Chandigarh, India
- *Correspondence: Kamalinder K Singh, ; Bhupinder Singh,
| | - Kamalinder K Singh
- University of Central Lancashire, Preston, United Kingdom
- UCLan Research Centre for Smart Materials, University of Central Lancashire, Preston, United Kingdom
- UCLan Research Centre for Translational Biosciences and Behaviour, University of Central Lancashire, Preston, United Kingdom
- *Correspondence: Kamalinder K Singh, ; Bhupinder Singh,
| |
Collapse
|
8
|
Chaudhuri A, Shrivastava N, Kumar S, Singh AK, Ali J, Baboota S. Designing and development of omega-3 fatty acid based self-nanoemulsifying drug delivery system (SNEDDS) of docetaxel with enhanced biopharmaceutical attributes for management of breast cancer. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Gyanewali S, Kesharwani P, Sheikh A, Ahmad FJ, Trivedi R, Talegaonkar S. Formulation development and in vitro-in vivo assessment of protransfersomal gel of anti-resorptive drug in osteoporosis treatment. Int J Pharm 2021; 608:121060. [PMID: 34500057 DOI: 10.1016/j.ijpharm.2021.121060] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 12/23/2022]
Abstract
Osteoporosis is a major cause of morbidity, mortality, and economic burden worldwide. Despite being an effective in combating the bone-deteriorating disorders, bisphosphonates have several shortcomings including poor and variable bioavailability, low permeability, high toxicity, etc. In this study, we developed and optimized protransfersome formulation for the drug risedronate sodium (RIS-Na) with the goal of enhancing its bioavailability and hence patient compliance. Phase separation coacervation technique was utilized for development of optimized formulation. Optimization was achieved by using three-factor, three-level Box-Behnken design combined with Response Surface Methodology (RSM). This enabled us to decipher the effect of 3 independent variables (Phospholipid, Tween-80 and Sodium Deoxycholate) on three dependent parameters (entrapment efficiency, vesicle size and transdermal flux). Optimized formulation was further evaluated for pharmacokinetic and pharmacodynamic parameters. Smooth, spherical protransfersomes with a size of 260 ± 18 nm, having entrapment efficiency and flux of 80.4 ± 4.90% and 8.41 ± 0.148 μg/cm2/h, respectively were prepared. Ex vivo studies revealed a shorter lag time of 1.21 ± 0.18 h and higher flux associated with transdermal formulation. CLSM analysis further revealed better drug penetration (220 μm) through the skin in case of protransfersomes as compared to drug solution (72 μm). Additionally, biomechanical, biochemical, and histo-pathological studies further validated the results. Thus, it was concluded that protransfersome formulation has a great potential in providing better therapeutic efficacy of risedronate than its conventional counterpart.
Collapse
Affiliation(s)
- Suman Gyanewali
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India.
| | - Afsana Sheikh
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Farhan Jalees Ahmad
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | - Ritu Trivedi
- Department of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Sushama Talegaonkar
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India.
| |
Collapse
|
10
|
Recent Applications of Mixture Designs in Beverages, Foods, and Pharmaceutical Health: A Systematic Review and Meta-Analysis. Foods 2021; 10:foods10081941. [PMID: 34441717 PMCID: PMC8391317 DOI: 10.3390/foods10081941] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 01/10/2023] Open
Abstract
Design of Experiments (DoE) is a statistical tool used to plan and optimize experiments and is seen as a quality technology to achieve products excellence. Among the experimental designs (EDs), the mixture designs (MDs) stand out, being widely applied to improve conditions for processing, developing, or formulating novel products. This review aims to provide useful updated information on the capacity and diversity of MDs applications for the industry and scientific community in the areas of food, beverage, and pharmaceutical health. Recent works were selected following the Preferred Reporting Items for Systematic Review and Meta-Analyses statement (PRISMA) flow diagram. Data analysis was performed by self-organizing map (SOM) to check and understand which fields of application/countries/continents are using MDs. Overall, the SOM indicated that Brazil presented the largest number of works using MDs. Among the continents, America and Asia showed a predominance in applications with the same amount of work. Comparing the MDs application areas, the analysis indicated that works are prevalent in food and beverage science in the American continent, while in Asia, health science prevails. MDs were more used to develop functional/nutraceutical products and the formulation of drugs for several diseases. However, we briefly describe some promising research fields in that MDs can still be employed.
Collapse
|
11
|
Sharma T, Jain A, Kaur R, Saini S, Katare OP, Singh B. Supersaturated LFCS type III self-emulsifying delivery systems of sorafenib tosylate with improved biopharmaceutical performance: QbD-enabled development and evaluation. Drug Deliv Transl Res 2021; 10:839-861. [PMID: 32415654 DOI: 10.1007/s13346-020-00772-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The current studies investigate the application of quality by design-enabled type III self-emulsifying delivery system (Type III-SEDDS) of sorafenib tosylate (SFN) in improving its biopharmaceutical attributes. Initially, lipidic and emulsifying excipients were selected by carrying out solubility and phase titration experiments. After screening studies using Taguchi OA design, Type III-SEDDS were further optimised using D-optimal mixture design. The prepared formulations were assessed for globule size, zeta potential and percent of drug release. Following graphical optimisation, the optimum formulation was earmarked and further supersaturated to form saturated Type III-SEDDS (Sat-Type III-SEDDS) using a combination of HPMC and PVP to improve the stability of the formulation for a prolonged period. In vitro drug release of Type III-SEDDS study indicated approximately 8-fold improvement in dissolution rate over the pure powder drug. Cell uptake studies demonstrated higher uptake of dye-loaded Type III-SEDDS formulations in Caco-2 cells vis-à-vis plain dye. Cytotoxicity assay on Hep G2 cells revealed significant reduction in cell growth with Type III- and Sat-Type III-SEDDS vis-à-vis the pure drug. Furthermore, in situ permeation studies carried out using Wistar rats exhibited nearly 8.3- to 10.2-fold augmentation in permeation and absorption parameters of the drug from the Type III- and Sat-Type III-SEDDS, respectively, vis-à-vis the pure drug. Pharmacokinetic studies indicated nearly 3.98- and 3.62-fold improvement in AUC0-72, and 8.01- and 5.42-fold in Cmax, along with 0.25-fold decrease in Tmax of the drug from Type III- and Sat-Type III-SEDDS, respectively, in comparison with the SFN suspension. Furthermore, high degree of level A linear correlation was established between fractions of drug dissolved (in vitro) and of drug absorbed (in vivo) at the corresponding time points for Sat-Type III-SEDDS and pure drug, whereas the Type III-SEDDS exhibited a nonlinear relationship. Stability studies indicated the robustness of Sat-Type III-SEDDS, when stored at 25 °C for 3 months. Overall, the manuscript documents the successful systematic development of SFN-loaded Sat-Type III-SEDDS with distinctly improved biopharmaceutical performance. Graphical abstract.
Collapse
Affiliation(s)
- Teenu Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Atul Jain
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh, 160014, India
| | - Ranjot Kaur
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Sumant Saini
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India. .,UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles & Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
12
|
Kumar Dubey S, Pradhan R, Hejmady S, Singhvi G, Choudhury H, Gorain B, Kesharwani P. Emerging innovations in nano-enabled therapy against age-related macular degeneration: A paradigm shift. Int J Pharm 2021; 600:120499. [PMID: 33753164 DOI: 10.1016/j.ijpharm.2021.120499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/03/2021] [Accepted: 03/14/2021] [Indexed: 12/16/2022]
Abstract
Age-related macular degeneration (AMD), a degenerative eye disease, is the major cause of irreversible loss of vision among individuals aged 50 and older. Both genetic and environmental factors are responsible for the progressive damage to central vision. It is a multifactorial retinal disease with features such as drusen, hypopigmentation and/or hyperpigmentation of the retinal pigment epithelium, and even choroidal neovascularization in certain patients. AMD is of two major forms: exudative (wet) and atrophic (dry) with changes affecting the macula leading to impaired vision. Although the retina remains an accessible portion for delivering drugs, there are no current options to cure or treat AMD. The existing expensive therapeutics are unable to treat the underlying pathology but display several side effects. However, recent innovations in nanotherapeutics provide an optimal alternative of drug delivery to treat the neovascular condition. These new-age technologies in the nanometer scale would enhance bioactivity and improve the bioavailability of drugs at the site of action to treat AMD. The nanomedicine also provides sustained release of the drug with prolonged retention after penetrating across the ocular tissues. In this review, the insights into the cellular and molecular mechanisms associated with the pathophysiology of AMD are provided. It also serves to review the current progress in nanoparticle-based drug delivery systems that offer feasible treatments in AMD.
Collapse
Affiliation(s)
- Sunil Kumar Dubey
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India; Medical Research, R&D Healthcare Division, Emami Ltd, 13, BT Road, Belgharia, Kolkata 700056, India.
| | - Rajesh Pradhan
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Siddhanth Hejmady
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani (BITS-PILANI), Pilani Campus, Rajasthan, India
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Bapi Gorain
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia; Center for Drug Delivery and Molecular Pharmacology, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor 47500, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia, Hamdard, New Delhi 110062, India.
| |
Collapse
|
13
|
Nallamolu S, Jayanti VR, Chitneni M, Khoon LY, Sood S, Riadi Y, Kesharwani P. Fabrication of thermodynamically stable self-microemulsifying drug delivery system of resveratrol with enhanced solubility and chemical stability. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1880432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Sivaram Nallamolu
- School of Pharmacy, Department of Pharmaceutical Technology, International Medical University, Kuala Lumpur, Malaysia
| | - Vijaya Ratna Jayanti
- Andhra University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam, AP, India
| | | | - Liew Yun Khoon
- School of Pharmacy, Department of Pharmaceutical Technology, International Medical University, Kuala Lumpur, Malaysia
| | - Shikha Sood
- Akal College of Pharmacy and Technical Education, Sangrur, Punjab, India
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, New Delhi, India
| |
Collapse
|
14
|
Kaur R, Dennison SR, Burrow AJ, Rudramurthy SM, Swami R, Gorki V, Katare OP, Kaushik A, Singh B, Singh KK. Nebulised surface-active hybrid nanoparticles of voriconazole for pulmonary Aspergillosis demonstrate clathrin-mediated cellular uptake, improved antifungal efficacy and lung retention. J Nanobiotechnology 2021; 19:19. [PMID: 33430888 PMCID: PMC7798018 DOI: 10.1186/s12951-020-00731-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 11/07/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Incidence of pulmonary aspergillosis is rising worldwide, owing to an increased population of immunocompromised patients. Notable potential of the pulmonary route has been witnessed in antifungal delivery due to distinct advantages of direct lung targeting and first-pass evasion. The current research reports biomimetic surface-active lipid-polymer hybrid (LPH) nanoparticles (NPs) of voriconazole, employing lung-specific lipid, i.e., dipalmitoylphosphatidylcholine and natural biodegradable polymer, i.e., chitosan, to augment its pulmonary deposition and retention, following nebulization. RESULTS The developed nanosystem exhibited a particle size in the range of 228-255 nm and drug entrapment of 45-54.8%. Nebulized microdroplet characterization of NPs dispersion revealed a mean diameter of ≤ 5 μm, corroborating its deep lung deposition potential as determined by next-generation impactor studies. Biophysical interaction of LPH NPs with lipid-monolayers indicated their surface-active potential and ease of intercalation into the pulmonary surfactant membrane at the air-lung interface. Cellular viability and uptake studies demonstrated their cytocompatibility and time-and concentration-dependent uptake in lung-epithelial A549 and Calu-3 cells with clathrin-mediated internalization. Transepithelial electrical resistance experiments established their ability to penetrate tight airway Calu-3 monolayers. Antifungal studies on laboratory strains and clinical isolates depicted their superior efficacy against Aspergillus species. Pharmacokinetic studies revealed nearly 5-, 4- and threefolds enhancement in lung AUC, Tmax, and MRT values, construing significant drug access and retention in lungs. CONCLUSIONS Nebulized LPH NPs were observed as a promising solution to provide effective and safe therapy for the management of pulmonary aspergillosis infection with improved patient compliance and avoidance of systemic side-effects.
Collapse
Affiliation(s)
- Ranjot Kaur
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Sarah R Dennison
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | - Andrea J Burrow
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK
| | | | - Rajan Swami
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Varun Gorki
- Department of Zoology, Panjab University, Chandigarh, India, 160 014
| | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Anupama Kaushik
- Dr SSB University Institute Chem Engineering and Technology, Panjab University, Chandigarh, India, 160 014
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India.
- UGC Centre for Excellence in Nano-Biomedical Applications, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160 014, India.
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, PR1 2HE, UK.
- UCLan Research Centre for Smarts Materials, University of Central Lancashire, Preston, PR1 2HE, UK.
- UCLan Research Centre for Drug Design and Development, University of Central Lancashire, Preston, PR1 2HE, UK.
| |
Collapse
|
15
|
Fatima S, Quadri SN, Parveen S, Beg S, Rahman M, Ahmad FJ, Abdin M. Polymeric nanoparticles for potential drug delivery applications in cancer. NANOFORMULATION STRATEGIES FOR CANCER TREATMENT 2021:65-88. [DOI: 10.1016/b978-0-12-821095-6.00009-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Shi Z, Alrobaian M, Kazmi I, Afzal O, Altamimi ASA, Al-Abbasi FA, Almalki WH, Baothman AA, Choudhry H, Rahman M, Webster TJ, Beg S. Cationic self-nanoemulsifying formulations of tamoxifen with improved biopharmaceutical attributes and anticancer activity: Systematic development and evaluation. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Nano lipid based carriers for lymphatic voyage of anti-cancer drugs: An insight into the in-vitro, ex-vivo, in-situ and in-vivo study models. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
18
|
Chaturvedi S, Verma A, Saharan VA. Lipid Drug Carriers for Cancer Therapeutics: An Insight into Lymphatic Targeting, P-gp, CYP3A4 Modulation and Bioavailability Enhancement. Adv Pharm Bull 2020; 10:524-541. [PMID: 33072532 PMCID: PMC7539309 DOI: 10.34172/apb.2020.064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
In the treatment of cancer, chemotherapy plays an important role though the efficacy of anti-cancer drug administered orally is limited, due to their poor solubility in physiological medium, inability to cross biological membrane, high Para-glycoprotein (P-gp) mediated drug efflux, and pre-systemic metabolism. These all factors cumulatively reduce drug exposure at the target site leading to multidrug resistance (MDR). Lipid based carriers systems has been explored to overcome solubility and permeability related issues of anti-cancer drugs. The lipid based formulations have also been reported to circumvent the effect of P-gp and CYP3A4. Further long chain triglycerides (LCT) has shown their ability to access Lymphatic route over Medium Chain Triglycerides, as the former has been extensively used for targeting anti-cancer drugs at proliferating cells through lymphatic route. Therefore this review tries to reflect the usefulness of lipid based drug carriers systems (viz. liposome, solid lipid nanoparticle, nano-lipid carriers, self-emulsifying, lipidic pro-drugs) in targeting lymphatic system and overcoming issues related to solubility and permeability of anti-cancer drugs. Moreover, we have also tried to reflect how critically lipid based carriers are important in maximizing therapeutic safety and efficacy of anti-cancer drugs.
Collapse
Affiliation(s)
- Shashank Chaturvedi
- Department of Pharmaceutics, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - Anurag Verma
- Department of Pharmaceutics, School of Pharmaceutical Sciences, IFTM University, Moradabad, Uttar Pradesh, India
| | - Vikas Anand Saharan
- Department of Pharmaceutics, School of Pharmaceutical Sciences and Technology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, India
| |
Collapse
|
19
|
Devi L, Gupta R, Jain SK, Singh S, Kesharwani P. Synthesis, characterization and in vitro assessment of colloidal gold nanoparticles of Gemcitabine with natural polysaccharides for treatment of breast cancer. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101565] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Tripathi PK, Gupta S, Rai S, Shrivatava A, Tripathi S, Singh S, Khopade AJ, Kesharwani P. Curcumin loaded poly (amidoamine) dendrimer-plamitic acid core-shell nanoparticles as anti-stress therapeutics. Drug Dev Ind Pharm 2020; 46:412-426. [PMID: 32011185 DOI: 10.1080/03639045.2020.1724132] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Despite poor bioavailability of the drug and in vivo stability, curcumin has been reported for many pharmacological activities. Considering the potential of dendrimers as a drug delivery system, current research work is focused on the formulation and characterization of G4 PAMAM dendrimer-Palmitic acid core-shell nanoparticle-containing curcumin as antistress therapeutics to maximize the bioavailability of curcumin. Various formulations were prepared using different concentrations of palmitic acid and an optimized ratio of dendrimer and curcumin. All formulations were investigated for evaluation of physicochemical parameters, encapsulation efficiency, and in vitro release. Particle size, PDI, zeta-potential, and encapsulation efficiency of final formulation was found to be 257.9 ± 0.365 nm, 0.10 ± 0.004, 3.59 ± 0.167 mV, and 80.87%, respectively. In vitro release studies have shown that 53.62 ± 2.431% of the drug was released after 24 h. In vivo studies pharmacokinetic parameters, drug distribution, pharmacological, and toxicological were also estimated using swiss albino mice. The findings have shown the selected formulation is better than plain curcumin formulation.
Collapse
Affiliation(s)
- Pushpendra Kumar Tripathi
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Shraddha Gupta
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Suruchi Rai
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Ankur Shrivatava
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Shalini Tripathi
- Department of Pharmacy, RITM, Dr APJ Abdual Kalam Technical University, Lucknow, Uttar Pradesh, India
| | - Sima Singh
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Ajay J Khopade
- Sun Pharma Advanced Research Company Limited, Mumbai, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
21
|
Nallamolu S, Jayanti VR, Chitneni M, Khoon LY, Kesharwani P. Self-micro Emulsifying Drug Delivery System “SMEDDS” for Efficient Oral Delivery of Andrographolide. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/2210303109666190723145209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Objective:
Andrographolide has potent anticancer and antimicrobial activity; however, its
clinical application has been limited due to its poor water solubility as well as lack of appropriate formulation.
The objective of this investigation was to formulate Self–Micro Emulsifying Drug Delivery
System (SMEDDS) of andrographolide and explore its oral drug delivery aptitudes.
Methods:
Andrographolide SMEDDS was optimized by ternary phase approach and studied for various
in vitro characteristics: Particle size, electron microscopy, polydispersity index, surface charge, dilution
effect, pH stability, freeze-thaw effect, dissolution profile and stability studies. Further, antimicrobial
and cytotoxic performance of andrographolide SMEDDS were evaluated in MCF–7 breast cancer cell
lines and methicillin-resistant microorganisms, respectively.
Results:
An optimized SMEDDS formulation of andrographolide was successfully prepared and evaluated
for its drug delivery potential. The solubility of andrographolide in the developed SMEDDS formulation
was increased significantly, and the drug loading was enough for making this drug clinically
applicable. The andrographolide SMEDDS formulation competitively inhibited the growth of microorganisms
and showed enhanced anti–microbial activity against MRSA microorganisms.
Conclusion:
The SMEDDS strategy represents one of the best approaches to deliver andrographolide
via oral route, while resolving its solubility limitations.
Collapse
Affiliation(s)
- Sivaram Nallamolu
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, 57000 Kuala Lumpur, Malaysia
| | - Vijaya R. Jayanti
- Andhra University College of Pharmaceutical Sciences, Andhra University, Visakhapatnam-530003, AP, India
| | - Mallikarjun Chitneni
- Jurox Private Limited. 85 Gardiner St, Rutherford New South Wales 2320, Australia
| | - Liew Y. Khoon
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Jalan Jalil Perkasa 19, 57000 Kuala Lumpur, Malaysia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi, 110062, India
| |
Collapse
|
22
|
Garg B, Beg S, Kumar R, Katare O, Singh B. Nanostructured lipidic carriers of lopinavir for effective management of HIV-associated neurocognitive disorder. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101220] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
23
|
Du Q, Chen J, Yan G, Lyu F, Huang J, Ren J, Di L. Comparison of different aliphatic acid grafted N-trimethyl chitosan surface-modified nanostructured lipid carriers for improved oral kaempferol delivery. Int J Pharm 2019; 568:118506. [PMID: 31302169 DOI: 10.1016/j.ijpharm.2019.118506] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/10/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022]
Abstract
This study compared the in vitro and in vivo effects of different aliphatic acid grafted N-trimethyl chitosan (TMC) surface-modified nanostructured lipid carriers (NLC) by oral delivery. Medium-chain fatty acids, decylic acids (DA), and long-chain fatty acids, palmitic acids (PA) were selected as contrasting objects. TMC, DA grafted TMC (DA-TMC), and PA grafted TMC (PA-TMC) were successively synthesized. Kaempferol loaded NLC (KNLC), KNLC coated with DA-TMC (DA-TMC-KNLC) and PA-TMC (PA-TMC-KNLC) were fabricated, respectively. KNLC were subspherical in shape at nano-size limits. The particle size increased from 93.6 to 125.5 nm and the zeta potential changed from negative to positive due to surface-modification. The KNLC surface-modified with different aliphatic acid grafted TMC displayed a diverse release profiles at the simulative physiological environment, which contrasted that of KNLC. Pharmacokinetic studies demonstrated that the nanoparticles all could improve the AUC values and prolong blood retention times compared to that of kaempferol suspensions. Cell uptake and in situ intestinal perfusion experiments revealed that DA-TMC-KNLC and PA-TMC-KNLC could remarkably enhance cellular uptake of kaempferol into Caco-2 cells and drug absorption in each intestinal segment in comparison with KNLC, repectively. Wherein, DA-TMC-KNLC exhibits the greatest uptake and absorption efficiency as compared to kaempferol suspensions, KNLC and PA-TMC-KNLC. Collectively, DA-TMC surface-modified NLC might serve as a potential drug carrier for oral delivery of water-insoluble flavonoid ingredients.
Collapse
Affiliation(s)
- Qian Du
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jianqiu Chen
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Guojun Yan
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fannan Lyu
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jie Huang
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Jin Ren
- College of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China
| | - Liuqing Di
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
24
|
Abdifetah O, Na-Bangchang K. Pharmacokinetic studies of nanoparticles as a delivery system for conventional drugs and herb-derived compounds for cancer therapy: a systematic review. Int J Nanomedicine 2019; 14:5659-5677. [PMID: 31632004 PMCID: PMC6781664 DOI: 10.2147/ijn.s213229] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 05/31/2019] [Indexed: 01/19/2023] Open
Abstract
The poor pharmacokinetic characteristics of most anticancer drugs have limited their clinical effectiveness. The application of nanoparticles as a novel drug delivery system has provided opportunities to tackle the current challenges facing conventional drug delivery systems such as poor pharmacokinetics, lack of specificity to tumor cells, multidrug resistance, and toxicity. This systematic review aims to examine the application of pharmacokinetic studies of nanoparticles loaded in conventional drugs and herb-derived compounds for cancer therapy. The pharmacokinetic parameters of several herbal medicines and chemotherapeutic drugs loaded into nanoparticles were reported. This included area under the curve (AUC) of plasma concentration-time profile, maximum plasma concentration (Cmax), time to maximum plasma concentration (Tmax), volume of distribution (Vd or Vss), elimination half-life (t½), and clearance (CL). The systematic review was conducted using information available in the PubMed and Science Direct databases up to February 2019. The search terms employed were: pharmacokinetics, pharmacokinetic study, nanoparticles, anticancer, traditional medicine, herbal medicine, herb-derived compounds, natural products, and chemotherapy. Overall, nanoparticle carriers not only significantly improved pharmacokinetics but also further enhanced permeability, solubility, stability, specificity, and selectivity of the carried anticancer drugs/herb-derived compounds to target tumor cells. Additionally, they also limited hepatic first-pass metabolism and P-glycoprotein (P-gp) efflux of the carried anticancer drugs/herb-derived compounds. Based on this systematic review, polymeric nanoparticles were the most commonly used nanocarrier to improve the pharmacokinetic parameters. The use of nanoparticles as a novel drug delivery system has the potential to improve both pharmacokinetics and cytotoxicity activity of the loaded drugs/herb-derived compounds for cancer therapy.
Collapse
Affiliation(s)
- Omar Abdifetah
- Graduate Studies, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand
| | - Kesara Na-Bangchang
- Graduate Studies, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand.,Center of Excellence in Pharmacology and Molecular Biology of Malaria and Cholangiocarcinoma, Chulabhorn International College of Medicine, Thammasat University, Pathumthani, Thailand.,Drug Discovery Center, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
25
|
Beg S, Kaur R, Khurana RK, Rana V, Sharma T, Singh B. QbD-Based Development of Cationic Self-nanoemulsifying Drug Delivery Systems of Paclitaxel with Improved Biopharmaceutical Attributes. AAPS PharmSciTech 2019; 20:118. [PMID: 30790136 DOI: 10.1208/s12249-019-1319-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
The present studies describe quality-by-design-based design and characterization of cationic self-nanoemulsifying formulations of paclitaxel for improving its biopharmaceutical attributes. Solubility and phase titration experiments were designed to select the lipidic and emulsifying excipients. Two different types of lipidic nanoformulations were developed using medium-chain triglycerides (MCTs) and long-chain triglycerides (LCTs). The nanoformulations were optimized by mixture designs and subjected to evaluation for globule size, zeta potential, drug release, and intestinal permeability. Following apt mathematical modeling, the optimum nanoformulation was earmarked using numerical optimization. Further, cationic formulations were developed for both LCT- and MCT-containing formulations and subjected to performance evaluation. The optimized formulations were extensively evaluated, where an in vitro drug release study indicated 2.7-fold improvement in dissolution rate from optimized cationic nanoformulations over powder pure drug. Ex vivo and in situ evaluation performed on Wistar rats exhibited nearly six- to eightfold enhancement in permeation and absorption parameters of the drug for the optimized cationic nanoformulation as compared to the pure paclitaxel. Pharmacokinetic studies indicated nearly 13.4-fold improvement in AUC and Cmax, along with 1.8-fold reduction in Tmax of the drug from cationic nanoformulations as compared to the pure drug suspension. Moreover, nanoformulation containing long-chain lipids exhibited superior performance (1.18-fold improvement in drug absorption) over medium-chain lipids. Cytotoxicity evaluation of cationic nanoformulations on MCF-7 cells revealed significant reduction in growth vis-à-vis the pure drug. Overall, the current paper reports successful systematic development of paclitaxel-loaded cationic self-nanoemulsifying systems with distinctly improved biopharmaceutical performance.
Collapse
|
26
|
Improving the biopharmaceutical attributes of mangiferin using vitamin E-TPGS co-loaded self-assembled phosholipidic nano-mixed micellar systems. Drug Deliv Transl Res 2018; 8:617-632. [PMID: 29637488 PMCID: PMC5937873 DOI: 10.1007/s13346-018-0498-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The current research work encompasses the development, characterization, and evaluation of self-assembled phospholipidic nano-mixed miceller system (SPNMS) of a poorly soluble BCS Class IV xanthone bioactive, mangiferin (Mgf) functionalized with co-delivery of vitamin E TPGS. Systematic optimization using I-optimal design yielded self-assembled phospholipidic nano-micelles with a particle size of < 60 nm and > 80% of drug release in 15 min. The cytotoxicity and cellular uptake studies performed using MCF-7 and MDA-MB-231 cell lines demonstrated greater kill and faster cellular uptake. The ex vivo intestinal permeability revealed higher lymphatic uptake, while in situ perfusion and in vivo pharmacokinetic studies indicated nearly 6.6- and 3.0-folds augmentation in permeability and bioavailability of Mgf. In a nutshell, vitamin E functionalized SPNMS of Mgf improved the biopharmaceutical performance of Mgf in rats for enhanced anticancer potency.
Collapse
|
27
|
Khurana RK, Kumar R, Gaspar BL, Welsby G, Welsby P, Kesharwani P, Katare OP, Singh KK, Singh B. Clathrin-mediated endocytic uptake of PUFA enriched self-nanoemulsifying lipidic systems (SNELS) of an anticancer drug against triple negative cancer and DMBA induced preclinical tumor model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:645-658. [PMID: 30033299 DOI: 10.1016/j.msec.2018.05.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 04/24/2018] [Accepted: 05/02/2018] [Indexed: 12/14/2022]
Abstract
The current studies envisage unravelling the underlying cellular internalisation mechanism of the systematically developed docetaxel (DTH) polyunsaturated fatty acid (PUFA) enriched self-nanoemulsifying lipidic micellar systems (SNELS). The concentration-, time- and cytotoxicity-related effects of DTH-SNELS on triple negative breast cancer (TNBC) MDA-MB-231 and non-TNBC MCF-7 cell lines were assessed through Presto-blue assay. Subsequently, rhodamine-123 (Rh-123) loaded SNELS were employed for evaluating their internalisation through flow cytometry and fluorescence microscopy, establishing it to be "clathrin-mediated" endocytic pathway. Apoptosis assay (65% cell death) and cell cycle distribution (47% inhibition at G2/M phase) further corroborated the cytotoxicity of DTH-SNELS towards cancerous cells. Biodistribution, histopathology and haematology studies indicated insignificant toxicity of the optimized formulation on vital organs. Preclinical anticancer efficacy studies using 7,12-dimethylbenzantracene (DMBA)-induced model construed significant reduction in breast tumor-volume. Overall, extensive in vitro and in vivo studies indicated the intracellular localization and cytotoxicity, suggesting DTH-SNELS as promising delivery systems for breast tumor therapeutics including TNBC.
Collapse
Affiliation(s)
- Rajneet Kaur Khurana
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Rajendra Kumar
- UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh 160014, India
| | - Balan Louis Gaspar
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Gail Welsby
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Philip Welsby
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Prashant Kesharwani
- Department of Pharmaceutical Technology, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia; Pharmaceutics Division, CSIR-Central Drug Research Institute, Lucknow, UP 226031, India
| | - O P Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India
| | - Kamalinder K Singh
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Bhupinder Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh 160014, India; UGC-Centre of Excellence in Applications of Nanomaterials, Nanoparticles and Nanocomposites (Biomedical Sciences), Panjab University, Chandigarh 160014, India.
| |
Collapse
|
28
|
Li Z, Zhang Y, Zhang K, Wu Z, Feng N. Biotinylated-lipid bilayer coated mesoporous silica nanoparticles for improving the bioavailability and anti-leukaemia activity of Tanshinone IIA. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:578-587. [DOI: 10.1080/21691401.2018.1431651] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Zhe Li
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yongtai Zhang
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Kai Zhang
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Zimei Wu
- School of Pharmacy, University of Auckland, Auckland, New Zealand
| | - Nianping Feng
- Department of Pharmaceutical Sciences School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|