1
|
Zarneshan SN, Arkan E, Kiani A, Hosseini SZ, Abbaszadeh F, Fakhri S. Protective effects of polydatin amphiphilic chitosan nanocarriers against an aluminum chloride-induced model of Alzheimer's disease in rats: relevance to its anti-inflammatory and antioxidant effects. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:7605-7624. [PMID: 39786589 DOI: 10.1007/s00210-024-03696-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 11/29/2024] [Indexed: 01/12/2025]
Abstract
Alzheimer's disease (AD) is the most frequent cause of dementia. Since there are complex pathophysiological mechanisms behind AD, and there is no effective treatment strategy, it is necessary to introduce novel multi-targeting agents with fewer side effects and higher efficacy. Polydatin (PD) is a naturally occurring resveratrol glucoside employing multiple mechanisms toward neuroprotection. In the current study, the anti-AD mechanisms of a novel amphiphilic chitosan nanocarrier formulation (ACN) of PD (NPD) were studied. After preparing the amphiphilic chitosan nanoformulation (i.e., NPD), physicochemical properties were assessed, including particle size, zeta potential, drug loading, drug release, MTT, Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). For in vivo analysis, aluminum chloride (AlCl3) was injected intraperitoneally for 14 days to induce AD in male Albino Wistar rats. To examine the anti-AD mechanisms of NPD, a total of 36 rats were divided into six groups of six. Behavioral tests, including open field, Y-maze, elevated plus maze, and shuttle box were done on days 7, 8, 14, and 15. Additionally, zymography, biochemical analysis, and histological studies were done. NPD, as a newly synthesized formulation for PD, potentially improved memory and cognitive behavioral parameters and reduced the activity of inflammatory matrix metalloproteinase 9 (MMP9) and serum nitrite levels, while increasing anti-inflammatory MMP2, antioxidant catalase, and glutathione. NPD also prevented morphological changes and increased neuronal survival in the CA2, CA4, and DG regions of the rat hippocampus. In conclusion, NPD is a novel formulation against AD through anti-inflammatory, antioxidant, and neuroprotective mechanisms.
Collapse
Affiliation(s)
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amir Kiani
- Regenerative Medicine Research Center (RMRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyede Zahra Hosseini
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Ayala-Peña VB, Jaimes AK, Conesa AL, García CC, Sepulveda CS, Dellatorre FG, Latour E, Ponce NMA, Álvarez VA, Lassalle VL. New Insights into Antiviral Natural Formulations: Biopolymeric Films for the Prevention and Treatment of a Wide Gamma of Viral Infections. Viruses 2025; 17:216. [PMID: 40006971 PMCID: PMC11861794 DOI: 10.3390/v17020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/24/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Viral infections remain a major concern, as existing treatments often yield inadequate responses or lead to the development of antiviral resistance in some cases. Fucoidan extracted from Undaria pinnatifida (F) is a natural sulphated polysaccharide that exhibits antiviral action. Despite its potential, the biomedical application of F is limited due to its difficult administration through trans-mucosal, skin, or oral ingestion. The most effective way to solve these problems is to propose novel methods of administration aiming to ensure better contact between the biopolymers and pathogens, leading to their inactivation. In this work, the synthesis of films based on chitosan (Ch)-coupled F is reported, aiming to generate a synergic effect between both biopolymers in terms of their antiviral and antioxidant capability. Biocomposites were prepared by a sonochemical method. They were characterized to infer structural properties, functionality, and possible F-Ch interactions by using Zeta potential, FTIR, and XRD techniques. The biocomposites showed excellent film-forming ability. They also exhibited improved antioxidant activity with respect to F and Ch individually and proved to be non-cytotoxic. These results demonstrate, for the first time, the antiviral activity of F:Ch biocomposites against bovine coronavirus and human viruses (adenovirus, poliovirus, herpes simplex, and respiratory syncytial virus), which could be applied in film form to prevent or treat viral infections.
Collapse
Affiliation(s)
- Victoria Belén Ayala-Peña
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca 8000, Argentina;
| | - Ana Karen Jaimes
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 8000, Argentina; (A.K.J.); (C.C.G.); (C.S.S.); (F.G.D.); (N.M.A.P.); (V.A.Á.)
- INQUISUR, Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca 8000, Argentina
- Facultad de Ingeniería, INTEMA, Universidad Nacional de Mar del Plata (UNMdP), Av. Colón 10850, Mar del Plata 2695, Argentina
| | - Ana Lucía Conesa
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur, San Juan 670, Bahía Blanca 8000, Argentina;
| | - Cybele Carina García
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 8000, Argentina; (A.K.J.); (C.C.G.); (C.S.S.); (F.G.D.); (N.M.A.P.); (V.A.Á.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Int. Güiraldes 2610, Buenos Aires 1053, Argentina
| | - Claudia Soledad Sepulveda
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 8000, Argentina; (A.K.J.); (C.C.G.); (C.S.S.); (F.G.D.); (N.M.A.P.); (V.A.Á.)
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Av. Int. Güiraldes 2610, Buenos Aires 1053, Argentina
| | - Fernando Gaspar Dellatorre
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 8000, Argentina; (A.K.J.); (C.C.G.); (C.S.S.); (F.G.D.); (N.M.A.P.); (V.A.Á.)
- Facultad Regional Chubut, Grupo de Investigación y Desarrollo Tecnológico en Acuicultura y Pesca (GIDTAP), Universidad Tecnológica Nacional, Av. del Trabajo 1536, Puerto Madryn 3000, Argentina;
| | - Ezequiel Latour
- Facultad Regional Chubut, Grupo de Investigación y Desarrollo Tecnológico en Acuicultura y Pesca (GIDTAP), Universidad Tecnológica Nacional, Av. del Trabajo 1536, Puerto Madryn 3000, Argentina;
| | - Nora Marta Andrea Ponce
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 8000, Argentina; (A.K.J.); (C.C.G.); (C.S.S.); (F.G.D.); (N.M.A.P.); (V.A.Á.)
- Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales and Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR-UBA), Universidad de Buenos Aires, Intendente Güiraldes 2160, Buenos Aires 1053, Argentina
| | - Vera Alejandra Álvarez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 8000, Argentina; (A.K.J.); (C.C.G.); (C.S.S.); (F.G.D.); (N.M.A.P.); (V.A.Á.)
- Facultad de Ingeniería, INTEMA, Universidad Nacional de Mar del Plata (UNMdP), Av. Colón 10850, Mar del Plata 2695, Argentina
| | - Verónica Leticia Lassalle
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires 8000, Argentina; (A.K.J.); (C.C.G.); (C.S.S.); (F.G.D.); (N.M.A.P.); (V.A.Á.)
- INQUISUR, Departamento de Química, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca 8000, Argentina
| |
Collapse
|
3
|
Sun H, Li X, Liu Q, Sheng H, Zhu L. pH-responsive self-assembled nanoparticles for tumor-targeted drug delivery. J Drug Target 2024; 32:672-706. [PMID: 38682299 DOI: 10.1080/1061186x.2024.2349124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
Recent advances in the field of drug delivery have opened new avenues for the development of novel nanodrug delivery systems (NDDS) in cancer therapy. Self-assembled nanoparticles (SANPs) based on tumour microenvironment have great advantages in improving antitumor effect, and pH-responsive SANPs prepared by the combination of pH-responsive nanomaterials and self-assembly technology can effectively improve the efficacy and reduce the systemic toxicity of antitumor drugs. In this review, we describe the characteristics of self-assembly and its driving force, the mechanism of pH-responsive NDDS, and the nanomaterials for pH-responsive SANPs type. A series of pH-responsive SANPs for tumour-targeted drug delivery are discussed, with an emphasis on the relation between structural features and theranostic performance.
Collapse
Affiliation(s)
- Henglai Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xinyu Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China
- Key Laboratory of Traditional Chinese Medicine Classical Theory, Ministry of Education, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
4
|
Babaeenezhad E, Rashidipour M, Jangravi Z, Moradi Sarabi M, Shahriary A. Cytotoxic and epigenetic effects of berberine-loaded chitosan/pectin nanoparticles on AGS gastric cancer cells: Role of the miR-185-5p/KLF7 axis, DNMTs, and global DNA methylation. Int J Biol Macromol 2024; 260:129618. [PMID: 38253156 DOI: 10.1016/j.ijbiomac.2024.129618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Poor bioavailability, solubility, and absorption of berberine (Ber) limit its widespread application. Here, we formulated novel chitosan/pectin nanoparticles (NPs) loaded with Ber to address delivery problems and promote the anticancer properties of Ber in AGS gastric cancer cells. The ionic gelification method was used to synthesize NPs-Ber. Physicochemical characterization of NPs-Ber was performed using FE-SEM, DLS, PDI, ζ potential, and FTIR. The cytotoxic effects of NPs-Ber on AGS cells were evaluated using the MTT assay. Apoptosis and cell cycle arrest were examined by flow cytometry. The gene expression levels of miR-185-5p, KLF7, caspase-3, and DNMTs were determined using RT-qPCR. In addition, the 5-methylcytosine level in the genomic DNA was quantified using ELISA. FE-SEM images revealed a denser and more packed matrix for NPs-Ber, and FTIR analysis confirmed the formation of NPs-Ber. The size (550.39 nm), PDI (0.134), and ζ potential (-16.52 mV) confirmed the stability of the prepared NPs-Ber. NPs-Ber showed a continuous release pattern following the Korsmeyer-Peppas model such that 81.36 % of Ber was released from the formulation after 240 min. Compared to NPs and free Ber, NPs-Ber was found to possess higher anticancer activity in AGS cells. This result was indicated by the viability test and further clarified by augmented apoptosis and cell cycle arrest at the G0/G1 phase. The IC50 value of NP-Ber against AGS cells was significantly lower than those of free Ber and NPs. Interestingly, our results showed that NPs-Ber considerably changed the expression levels of miR-185-5p, KLF7, caspase-3, and DNMTs (DNMT1, 3A, and 3B) compared with unloaded NPs and free Ber. Additionally, 5-methylated cytosine (5-mC) levels in cells treated with NPs-Ber were significantly higher than those in cells treated with unloaded NPs or free Ber. In summary, the present study demonstrated that Ber encapsulation in NPs enhances its cytotoxic and epigenetic effects on AGS cells, suggesting the promising potential of NPs-Ber in GC therapy.
Collapse
Affiliation(s)
- Esmaeel Babaeenezhad
- Student Research Committee, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Marzieh Rashidipour
- Student Research Committee, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran; Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Zohreh Jangravi
- Department of Biochemistry, Faculty of Medicine, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mostafa Moradi Sarabi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Department of Biochemistry and Genetics, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Liu Z, Wang H, Bu Y, Wu T, Chen X, Yan H, Lin Q. Fabrication of self-assembled micelles based on amphiphilic oxidized sodium alginate grafted oleoamine derivatives via Schiff base reduction amination reaction for delivery of hydrophobic food active ingredients. Int J Biol Macromol 2024; 257:128653. [PMID: 38072345 DOI: 10.1016/j.ijbiomac.2023.128653] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/20/2023] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
The application of hydrophobic β-carotene in the food industry are limited due to its susceptibility to light, high temperature, pH value, and other factors, leading to poor stability and low bioavailability. To address this problem, we adopt a more green and environmentally friendly reducing agent, 2-methylpyridine borane complex (pic-BH3), instead of traditional sodium borohydride, to achieve the simple green and efficient synthesis of amphiphilic oxidized sodium alginate grafted oleoamine derivatives (OSAOLA) through the reduction amination reaction of Schiff base. The resultant OSAOLA with the degree of substitution (DS) of 7.2 %, 23.6 %, and 38.8 % were synthesized, and their CMC values ranged from 0.0095 to 0.062 mg/mL, indicating excellent self-assembly capability in aqueous solution. Meanwhile, OSAOLA showed no obvious cytotoxicity to RAW 264.7 cells, thus revealing good biocompatibility. Furthermore, β-carotene, as the hydrophobic active ingredients in foods was successfully encapsulated in the OSAOLA micelles by ultrasonic-dialysis method. The prepared drug-loaded OSAOLA micelles could maintain good stability when stored at room temperature for 7 d. Additionally, they were able to continuously release β-carotene and exert long-term effects in pH 7.4 PBS at 37 °C, effectively improving the bioavailability of β-carotene, which exhibited tremendous application potential in functional food and biomedical fields.
Collapse
Affiliation(s)
- Zhaowen Liu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; College of Pharmacy, Gannan Medical University, Ganzhou 341000, Jiangxi, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Hongcai Wang
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Yanan Bu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Ting Wu
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Xiuqiong Chen
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| | - Huiqiong Yan
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China.
| | - Qiang Lin
- Key Laboratory of Water Pollution Treatment & Resource Reuse of Hainan province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Natural Polymer Functional Material of Haikou City, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China; Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, Hainan, PR China
| |
Collapse
|
6
|
Wei C, Yang X, Li Y, Wang L, Xing S, Qiao C, Li Y, Wang S, Zheng J, Dong Q. N-lauric-O-carboxymethyl chitosan: Synthesis, characterization and application as a pH-responsive carrier for curcumin particles. Int J Biol Macromol 2024; 256:128421. [PMID: 38013085 DOI: 10.1016/j.ijbiomac.2023.128421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 11/13/2023] [Accepted: 11/23/2023] [Indexed: 11/29/2023]
Abstract
A pH-responsive amphiphilic chitosan derivative, N-lauric-O-carboxymethyl chitosan (LA-CMCh), is synthesized. Its molecular structures are characterized by FTIR, 1H NMR, and XRD methods. The influencing factors are investigated, including the amount of lauric acid (LA), carboxymethyl chitosan (CMCh), N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), and N-hydroxysuccinimide (NHS), and their molar ratio, reaction time, and reaction temperature on the substitution. The degrees of substitution (DS) of the lauric groups on the -NH2 groups are calculated based on the integrated data of 1H NMR spectra. The optimum reaction condition is obtained as a reaction time of 6 h, a reaction temperature of 80 °C, and a molar ratio of lauric acid to O-carboxymethyl chitosan to N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride to N-hydroxysuccinimide of 1:3:4.5:4.5, respectively. The crystallinity and initial decomposition temperature of LA-CMCh decrease, but the maximum decomposition temperature increases. The crystallinity is reduced due to the introduction of LA and the degree of hydrogen bonding among LA-CMCh molecules. LA-CMCh could self-aggregate into particles, which size and critical aggregation concentration depend on the degree of substitution and medium pH. LA-CMCh aggregates could load curcumin up to 21.70 %, and continuously release curcumin for >200 min. LA-CMCh shows nontoxicity to fibroblast HFF-1 cells and good antibacterial activity against S. aureus and E. coli, indicating that it could be used as an oil-soluble-drug carrier.
Collapse
Affiliation(s)
- Chunyan Wei
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Xiaodeng Yang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China.
| | - Yong Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Ling Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Shu Xing
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Congde Qiao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China
| | - Yan Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China.
| | - Shoujuan Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China.
| | - Jialin Zheng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Ji'nan 250353, China; School of Chemistry and Chemical Engineering, University of Jinan, Ji'nan 250353, China
| | - Qiaoyan Dong
- Technology Center of Shandong Fangyan Biological Technology Co., LTD, 250021 Ji'nan, China
| |
Collapse
|
7
|
Li T, Ashrafizadeh M, Shang Y, Nuri Ertas Y, Orive G. Chitosan-functionalized bioplatforms and hydrogels in breast cancer: immunotherapy, phototherapy and clinical perspectives. Drug Discov Today 2024; 29:103851. [PMID: 38092146 DOI: 10.1016/j.drudis.2023.103851] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/12/2023] [Accepted: 12/01/2023] [Indexed: 12/19/2023]
Abstract
Breast cancer is the most common and malignant tumor among women. Chitosan (CS)-based nanoparticles have been introduced into breast cancer therapy as a way to increase the targeted delivery of drugs and genes to the tumor site. CS nanostructures suppress tumorigenesis by enhancing both the targeted delivery of cargo (drug and gene) and its accumulation in tumor cells. The tumor cells internalize CS-based nanoparticles through endocytosis. Moreover, chitosan nanocarriers can also induce phototherapy-mediated tumor ablation. Smart and multifunctional types of CS nanoparticles, including pH-, light- and redox-responsive nanoparticles, can be used to improve the potential for breast cancer removal. In addition, the acceleration of immunotherapy by CS nanoparticles has also been achieved, and there is potential to develop CS-nanoparticle hydrogels that can be used to suppress tumorigenesis.
Collapse
Affiliation(s)
- Tianfeng Li
- Reproductive Medicine Center, Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen, Guangdong, 518055, China; Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Yuru Shang
- Southern University of Science and Technology Hospital, Shenzhen 518055, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Turkey; Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey.
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology (UIRMI) (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain.
| |
Collapse
|
8
|
Joshi H, Gupta DS, Kaur G, Singh T, Ramniwas S, Sak K, Aggarwal D, Chhabra RS, Gupta M, Saini AK, Tuli HS. Nanoformulations of quercetin for controlled delivery: a review of preclinical anticancer studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:3443-3458. [PMID: 37490121 DOI: 10.1007/s00210-023-02625-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023]
Abstract
One of the well-studied older molecules, quercetin, is found in large quantities in many fruits and vegetables. Natural anti-oxidant quercetin has demonstrated numerous pharmacological properties in preclinical and clinical research, including anti-inflammatory and anti-cancer effects. Due to its ability to control cell signaling pathways, including NF-κB, p53, activated protein-1 (AP-1), STAT3, and epidermal growth response-1 (Egr-1), which is essential in the initiation and proliferation of cancer, it has gained a lot of fame as an anticancer molecule. Recent research suggests that using nanoformulations can help quercetin to overcome its hydrophobicity while also enhancing its stability and cellular bioavailability both in vitro and in vivo. The main aim of this review is to focus on the comprehensive insights of several nanoformulations, including liposomes, nano gels, micelles, solid lipid nanoparticles (SLN), polymer nanoparticles, gold nanoparticles, and cyclodextrin complexes, to transport quercetin for application in cancer.
Collapse
Affiliation(s)
- Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 400056, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 400056, India
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | | | - Diwakar Aggarwal
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | | | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Adesh K Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
- Faculty of Agriculture, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
9
|
Parsaei M, Akhbari K. Magnetic UiO-66-NH 2 Core-Shell Nanohybrid as a Promising Carrier for Quercetin Targeted Delivery toward Human Breast Cancer Cells. ACS OMEGA 2023; 8:41321-41338. [PMID: 37969997 PMCID: PMC10633860 DOI: 10.1021/acsomega.3c04863] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/03/2023] [Indexed: 11/17/2023]
Abstract
In this study, a magnetic core-shell metal-organic framework (MOF) nanocomposite, Fe3O4-COOH@UiO-66-NH2, was synthesized for tumor-targeting drug delivery by incorporating carboxylate groups as functional groups onto ferrite nanoparticle surfaces, followed by fabrication of the UiO-66-NH2 shell using a facile self-assembly approach. The anticancer drug quercetin (QU) was loaded into the magnetic core-shell nanoparticles. The synthesized magnetic nanoparticles were comprehensively evaluated through multiple techniques, including FT-IR, PXRD, FE-SEM, TEM, EDX, BET, UV-vis, ZP, and VSM. Drug release investigations were conducted to investigate the release behavior of QU from the nanocomposite at two different pH values (7.4 and 5.4). The results revealed that QU@Fe3O4-COOH@UiO-66-NH2 exhibited a high loading capacity of 43.1% and pH-dependent release behavior, maintaining sustained release characteristics over a prolonged duration of 11 days. Furthermore, cytotoxicity assays using the human breast cancer cell line MDA-MB-231 and the normal cell line HEK-293 were performed to evaluate the cytotoxic effects of QU, UiO-66-NH2, Fe3O4-COOH, Fe3O4-COOH@UiO-66-NH2, and QU@Fe3O4-COOH@UiO-66-NH2. Treatment with QU@Fe3O4-COOH@UiO-66-NH2 substantially reduced the cell viability in cancerous MDA-MB-231 cells. Cellular uptake and cell death mechanisms were further investigated, demonstrating the internalization of QU@Fe3O4-COOH@UiO-66-NH2 by cancer cells and the induction of cancer cell death through the apoptosis pathway. These findings highlight the considerable potential of Fe3O4-COOH@UiO-66-NH2 as a targeted nanocarrier for the delivery of anticancer drugs.
Collapse
Affiliation(s)
- Mozhgan Parsaei
- School of Chemistry, College
of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Kamran Akhbari
- School of Chemistry, College
of Science, University of Tehran, 14155-6455 Tehran, Iran
| |
Collapse
|
10
|
Xu X, Xu S, Wan J, Wang D, Pang X, Gao Y, Ni N, Chen D, Sun X. Disturbing cytoskeleton by engineered nanomaterials for enhanced cancer therapeutics. Bioact Mater 2023; 29:50-71. [PMID: 37621771 PMCID: PMC10444958 DOI: 10.1016/j.bioactmat.2023.06.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/26/2023] Open
Abstract
Cytoskeleton plays a significant role in the shape change, migration, movement, adhesion, cytokinesis, and phagocytosis of tumor cells. In clinical practice, some anti-cancer drugs achieve cytoskeletal therapeutic effects by acting on different cytoskeletal protein components. However, in the absence of cell-specific targeting, unnecessary cytoskeletal recombination in organisms would be disastrous, which would also bring about severe side effects during anticancer process. Nanomedicine have been proven to be superior to some small molecule drugs in cancer treatment due to better stability and targeting, and lower side effects. Therefore, this review summarized the recent developments of various nanomaterials disturbing cytoskeleton for enhanced cancer therapeutics, including carbon, noble metals, metal oxides, black phosphorus, calcium, silicon, polymers, peptides, and metal-organic frameworks, etc. A comprehensive analysis of the characteristics of cytoskeleton therapy as well as the future prospects and challenges towards clinical application were also discussed. We aim to drive on this emerging topic through refreshing perspectives based on our own work and what we have also learnt from others. This review will help researchers quickly understand relevant cytoskeletal therapeutic information to further advance the development of cancer nanomedicine.
Collapse
Affiliation(s)
- Xueli Xu
- School of Science, Shandong Jianzhu University, Jinan, 250101, China
| | - Shanbin Xu
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jipeng Wan
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Diqing Wang
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Xinlong Pang
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Yuan Gao
- School of Chemistry and Pharmaceutical Engineering, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Nengyi Ni
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 117585, Singapore
| | - Dawei Chen
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Xiao Sun
- Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, China
| |
Collapse
|
11
|
Ashrafizadeh M, Zarrabi A, Bigham A, Taheriazam A, Saghari Y, Mirzaei S, Hashemi M, Hushmandi K, Karimi-Maleh H, Nazarzadeh Zare E, Sharifi E, Ertas YN, Rabiee N, Sethi G, Shen M. (Nano)platforms in breast cancer therapy: Drug/gene delivery, advanced nanocarriers and immunotherapy. Med Res Rev 2023; 43:2115-2176. [PMID: 37165896 DOI: 10.1002/med.21971] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/12/2023]
Abstract
Breast cancer is the most malignant tumor in women, and there is no absolute cure for it. Although treatment modalities including surgery, chemotherapy, and radiotherapy are utilized for breast cancer, it is still a life-threatening disease for humans. Nanomedicine has provided a new opportunity in breast cancer treatment, which is the focus of the current study. The nanocarriers deliver chemotherapeutic agents and natural products, both of which increase cytotoxicity against breast tumor cells and prevent the development of drug resistance. The efficacy of gene therapy is boosted by nanoparticles and the delivery of CRISPR/Cas9, Noncoding RNAs, and RNAi, promoting their potential for gene expression regulation. The drug and gene codelivery by nanoparticles can exert a synergistic impact on breast tumors and enhance cellular uptake via endocytosis. Nanostructures are able to induce photothermal and photodynamic therapy for breast tumor ablation via cell death induction. The nanoparticles can provide tumor microenvironment remodeling and repolarization of macrophages for antitumor immunity. The stimuli-responsive nanocarriers, including pH-, redox-, and light-sensitive, can mediate targeted suppression of breast tumors. Besides, nanoparticles can provide a diagnosis of breast cancer and detect biomarkers. Various kinds of nanoparticles have been employed for breast cancer therapy, including carbon-, lipid-, polymeric- and metal-based nanostructures, which are different in terms of biocompatibility and delivery efficiency.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Turkey
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials - National Research Council (IPCB-CNR), Naples, Italy
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Yalda Saghari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, PR China
| | | | - Esmaeel Sharifi
- Cancer Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, Australia
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Western Australia, Australia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Mingzhi Shen
- Department of Cardiology, Hainan Hospital of PLA General Hospital, Sanya, China
| |
Collapse
|
12
|
Abdouss H, Pourmadadi M, Zahedi P, Abdouss M, Yazdian F, Rahdar A, Díez-Pascual AM. Green synthesis of chitosan/polyacrylic acid/graphitic carbon nitride nanocarrier as a potential pH-sensitive system for curcumin delivery to MCF-7 breast cancer cells. Int J Biol Macromol 2023; 242:125134. [PMID: 37257532 DOI: 10.1016/j.ijbiomac.2023.125134] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
A novel pH-sensitive nanocarrier containing chitosan (CS), polyacrylic acid (PAA), and graphitic carbon nitride (g-C3N4) was designed via water/oil/water (W/O/W) emulsification to administer curcumin (CUR) drug. g-C3N4 nanosheets with a high surface area and porous structure were produced via simple one-step pyrolysis process using thiourea as precursor, and incorporated into CS/PAA hydrogel. X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FT-IR) were used to assess the crystalline structure of the nanocarrier and the interactions between its components, respectively. Scanning electron microscopy (SEM) images revealed a spherical structure and confirmed the g-C3N4 impregnation into the CS/PAA matrix. Zeta potential and dynamic light scattering (DLS) provided information about the surface charge and average size distribution. High CUR loading and entrapment efficiencies were obtained, which were further improved upon addition of g-C3N4. The release kinetics of drug-loaded CS/PAA/g-C3N4 nanocomposites were investigated at pH = 5.4 and pH = 7.4, and the results showed an excellent controlled pH-sensitive release profile. Cell apoptosis and in vitro cytotoxicity were investigated using flow cytometry and MTT analyses. CS/PAA/g-C3N4/CUR resulted in the highest rate of apoptosis in MCF-7 breast cancer cells, demonstrating the excellent nanocomposite efficacy in eliminating cancerous cells. CS/PAA hydrogel coated with g-C3N4 shows great potential for pH-sensitive controlled drug release.
Collapse
Affiliation(s)
- Hamidreza Abdouss
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Payam Zahedi
- Department of Polymer, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Majid Abdouss
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran.
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Abbas Rahdar
- Department of Physics, Faculty of Sciences, University of Zabol, Zabol 538-98615, Iran.
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Química Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Km. 33.6, 28805 Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
13
|
Improvement of Therapeutic Value of Quercetin with Chitosan Nanoparticle Delivery Systems and Potential Applications. Int J Mol Sci 2023; 24:ijms24043293. [PMID: 36834702 PMCID: PMC9959398 DOI: 10.3390/ijms24043293] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
This paper reviews recent studies investigating chitosan nanoparticles as drug delivery systems for quercetin. The therapeutic properties of quercetin include antioxidant, antibacterial and anti-cancer potential, but its therapeutic value is limited by its hydrophobic nature, low bioavailability and fast metabolism. Quercetin may also act synergistically with other stronger drugs for specific disease states. The encapsulation of quercetin in nanoparticles may increase its therapeutic value. Chitosan nanoparticles are a popular candidate in preliminary research, but the complex nature of chitosan makes standardisation difficult. Recent studies have used in-vitro, and in-vivo experiments to study the delivery of quercetin alone or in combination with another active pharmaceutical ingredient encapsulated in chitosan nanoparticles. These studies were compared with the administration of non-encapsulated quercetin formulation. Results suggest that encapsulated nanoparticle formulations are better. In-vivo or animal models simulated the type of disease required to be treated. The types of diseases were breast, lung, liver and colon cancers, mechanical and UVB-induced skin damage, cataracts and general oxidative stress. The reviewed studies included various routes of administration: oral, intravenous and transdermal routes. Although toxicity tests were often included, it is believed that the toxicity of loaded nanoparticles needs to be further researched, especially when not orally administered.
Collapse
|
14
|
Sabzini M, Pourmadadi M, Yazdian F, Khadiv-Parsi P, Rashedi H. Development of chitosan/halloysite/graphitic‑carbon nitride nanovehicle for targeted delivery of quercetin to enhance its limitation in cancer therapy: An in vitro cytotoxicity against MCF-7 cells. Int J Biol Macromol 2023; 226:159-171. [PMID: 36435458 DOI: 10.1016/j.ijbiomac.2022.11.189] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 11/12/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022]
Abstract
Although quercetin (QC) has valuable advantages, its low water solubility and poor permeability have limited its utilization as an anticancer drug. In this study, hydrogel nanocomposite of chitosan (CS), halloysite (HNT), and graphitic‑carbon nitride (g-C3N4) was prepared and loaded by QC using a water in oil in water emulsification process to attain QC sustained-release. Using g-C3N4 in the HNT/CS hydrogel solution enhanced the entrapment effectiveness (EE %) by up to 86 %. The interactions between QC and nanoparticles caused the nanocomposite pH-responsive behavior that assists in minimizing the side effect of the anticancer agent by controlling the burst release of QC at neutral conditions. According to DLS analysis, the size of the QC-loaded nanovehicle was 454.65 nm, showing that nanoparticles are highly monodispersed, which also was approved by FE-SEM. Additionally, Zeta potential value for the fabricated drug-loaded nanocarrier is +55.23 mV displaying that nanoparticles have good stability. The hydrogel nanocomposite structure's completeness was shown by FTIR pattern, and quercetin was included into the designed delivery system based on XRD data. Besides, the drug release profile indicated that a targeted sustained-release and pH-sensitive release of anticancer drug with the 96-hour extended-release were noticed. In order to comprehend the process of QC release at pH 5.4 and 7.4, four kinetic models were employed to find the best-suited model according to the acquired release data. Finally, the MTT experiment revealed considerable cytotoxicity against breast cancer cells, MCF-7 cell line was experimented in vitro, for the CS/HNT/g-C3N4 targeted delivery system in comparison to QC as a free drug. According to the above description, the CS/HNT/g-C3N4 delivery platform is a unique pH-sensitive drug delivery system for anticancer purposes that improves loading as well as sustained-release of quercetin.
Collapse
Affiliation(s)
- Mahdi Sabzini
- Department of Biotechnology Engineering, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Biotechnology Engineering, School of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Parissa Khadiv-Parsi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology Engineering, School of Chemical Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
15
|
An insight into anticancer, antioxidant, antimicrobial, antidiabetic and anti-inflammatory effects of quercetin: a review. Polym Bull (Berl) 2023; 80:241-262. [PMID: 35125574 PMCID: PMC8800825 DOI: 10.1007/s00289-022-04091-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 01/17/2023]
Abstract
Flavonoids are present naturally in many fruits and vegetables including onions, apples, tea, cabbage, cauliflower, berries and nuts which provide us with quercetin, a powerful natural antioxidant and cytotoxic compound. Due to antioxidant property, many nutraceuticals and cosmeceuticals products contain quercetin as a major ingredient nowadays. Current review enlightened sources and quercetin's role as an antioxidant, antimicrobial, antidiabetic, anticancerous and anti-inflammatory agent in medical field during last 5 to 6 years. Literature search was systematically done using scientific for the published articles of quercetin. A total of 345 articles were reviewed, and it was observed that more than 40% of articles were about quercetin's use as an antioxidant agent, more than 25% of studies were about its use as an anticancer agent, and articles on antimicrobial activity were more than 15%. 10% of the articles showed anti-inflamamatory effects of quercetin. Literature search also revealed that quercetin alone and its complexes with chitosan, metal ions and polymers possessed good antidiabetic properties. Thus, the review focuses on new therapeutic interventions and drug delivery system of quercetin in medical field for the benefit of mankind.
Collapse
|
16
|
Elmowafy M, Alruwaili NK, Ahmad N, Kassem AM, Ibrahim MF. Quercetin-Loaded Mesoporous Silica Nanoparticle-Based Lyophilized Tablets for Enhanced Physicochemical Features and Dissolution Rate: Formulation, Optimization, and In Vitro Evaluation. AAPS PharmSciTech 2022; 24:6. [PMID: 36447021 DOI: 10.1208/s12249-022-02464-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/08/2022] [Indexed: 12/05/2022] Open
Abstract
Mesoporous silica nanoparticles (MSNPs) have been proposed as a potential approach for stabilizing the amorphous state of poorly water-soluble actives. This study aimed to improve the physiochemical characteristics of poorly water-soluble quercetin (QT) through a novel lyophilized formulation. Various parameters, including solvent polarity, QT-carrier mass ratio, and adsorption time, were studied to improve the loading of QT into MSNPs. The optimized loaded MSNPs were formulated into lyophilized tablets through a freeze-drying process using hydrophilic polyvinylpyrrolidone (PVP-K30) as a polymeric stabilizer and water-soluble sucrose as a cryoprotectant. The effect of PVP-K30 and sucrose on the particle size, disintegration time, friability, and time required to release 90% of QT were studied using 32 full factorial design. The optimized formula was characterized using different evaluating techniques; for instance, differential scanning calorimetry, X-ray diffractometry, Fourier transform infrared spectroscopy, drug content, moisture content, and saturation solubility. The analysis proved that QT was consistently kept in the nanosize range with a narrow size distribution. The loaded silica nanoparticles and the optimized formulation are in an amorphous state devoid of any chemical interaction with the silica matrix or the lyophilization excipients. The optimized formula also featured low friability (less than 1%), fast disintegration (< 30 s), and a pronounced enhancement in saturation solubility and dissolution rate. Briefly, we established that the lyophilized MSNPs-based tablet would be a potential strategy for improving the rate of dissolution and, ultimately, the bioavailability of the poorly water-soluble QT.
Collapse
Affiliation(s)
- Mohammed Elmowafy
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia.
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Naveed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Jouf University, P.O. Box 2014, Sakaka, Saudi Arabia
| | - Abdulsalam M Kassem
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Mohamed F Ibrahim
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
17
|
Talib WH, Abuawad A, Thiab S, Alshweiat A, Mahmod AI. Flavonoid-based nanomedicines to target tumor microenvironment. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Xie Y, Gong X, Jin Z, Xu W, Zhao K. Curcumin encapsulation in self-assembled nanoparticles based on amphiphilic palmitic acid-grafted-quaternized chitosan with enhanced cytotoxic, antimicrobial and antioxidant properties. Int J Biol Macromol 2022; 222:2855-2867. [DOI: 10.1016/j.ijbiomac.2022.10.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/06/2022] [Accepted: 10/07/2022] [Indexed: 11/05/2022]
|
19
|
Parsaei M, Akhbari K. Smart Multifunctional UiO-66 Metal-Organic Framework Nanoparticles with Outstanding Drug-Loading/Release Potential for the Targeted Delivery of Quercetin. Inorg Chem 2022; 61:14528-14543. [PMID: 36074039 DOI: 10.1021/acs.inorgchem.2c00743] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Herein, UiO-66 and its two functional analogs (with -NO2 and -NH2 functional groups) were synthesized, and their potential ability as pH stimulus nanocarriers of quercetin (QU), an anticancer agent, was studied. UiO-66 is a low-toxicity, biocompatible metal-organic framework with a large surface area and good stability, which can be prepared through a facile and inexpensive method. Before and after drug loading, various analyses were conducted to characterize the synthesized nanocarriers. Moreover, Monte Carlo simulations were performed to investigate their structures and interactions with quercetin. The most promising drug loading potential and prolonged drug release (over 25 days) were observed in QU@UiO-66-NO2 with 37% drug loading content, which was the best-tested sample that exhibited a higher release rate under acidic conditions (pH = 5) than that in normal cells (pH = 7.4). This behavior is known as pH-stimulus-controlled ability. The cell treatment with free QU, UiO-66-R, and QU@UiO-66-R (R = -H, -NO2, and -NH2) was performed, and an MTT assay was conducted on HEK-293 and MDA-MB-231 cells for the cytotoxicity study. Additionally, the kinetic modeling of drug release was investigated on the basis of the analysis of the drug release profiles.
Collapse
Affiliation(s)
- Mozhgan Parsaei
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Kamran Akhbari
- School of Chemistry, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| |
Collapse
|
20
|
Solanki R, Jodha B, Prabina KE, Aggarwal N, Patel S. Recent advances in phytochemical based nano-drug delivery systems to combat breast cancer: A review. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
21
|
Vodyashkin AA, Kezimana P, Vetcher AA, Stanishevskiy YM. Biopolymeric Nanoparticles-Multifunctional Materials of the Future. Polymers (Basel) 2022; 14:2287. [PMID: 35683959 PMCID: PMC9182720 DOI: 10.3390/polym14112287] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 11/16/2022] Open
Abstract
Nanotechnology plays an important role in biological research, especially in the development of delivery systems with lower toxicity and greater efficiency. These include not only metallic nanoparticles, but also biopolymeric nanoparticles. Biopolymeric nanoparticles (BPNs) are mainly developed for their provision of several advantages, such as biocompatibility, biodegradability, and minimal toxicity, in addition to the general advantages of nanoparticles. Therefore, given that biopolymers are biodegradable, natural, and environmentally friendly, they have attracted great attention due to their multiple applications in biomedicine, such as drug delivery, antibacterial activity, etc. This review on biopolymeric nanoparticles highlights their various synthesis methods, such as the ionic gelation method, nanoprecipitation method, and microemulsion method. In addition, the review also covers the applications of biodegradable polymeric nanoparticles in different areas-especially in the pharmaceutical, biomedical, and agricultural domains. In conclusion, the present review highlights recent advances in the synthesis and applications of biopolymeric nanoparticles and presents both fundamental and applied aspects that can be used for further development in the field of biopolymeric nanoparticles.
Collapse
Affiliation(s)
- Andrey A. Vodyashkin
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
| | - Parfait Kezimana
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
- Department of Agrobiotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia
| | - Alexandre A. Vetcher
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
- Complementary and Integrative Health Clinic of Dr. Shishonin, 5 Yasnogorskaya Str., 117588 Moscow, Russia
| | - Yaroslav M. Stanishevskiy
- Institute of Biochemical Technology and Nanotechnology, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Str., 117198 Moscow, Russia; (P.K.); (Y.M.S.)
| |
Collapse
|
22
|
Ferreira M, Costa D, Sousa Â. Flavonoids-Based Delivery Systems towards Cancer Therapies. Bioengineering (Basel) 2022; 9:197. [PMID: 35621475 PMCID: PMC9137930 DOI: 10.3390/bioengineering9050197] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer is the second leading cause of death worldwide. Cervical cancer, for instance, is considered a major scourge in low-income countries. Its development is mostly associated with the human papillomavirus persistent infection and despite the availability of preventive vaccines, they are only widely administered in more developed countries, thus leaving a large percentage of unvaccinated women highly susceptible to this type of cancer. Current treatments are based on invasive techniques, being far from effective. Therefore, the search for novel, advanced and personalized therapeutic approaches is imperative. Flavonoids belong to a group of natural polyphenolic compounds, well recognized for their great anticancer capacity, thus promising to be incorporated in cancer therapy protocols. However, their use is limited due to their low solubility, stability and bioavailability. To surpass these limitations, the encapsulation of flavonoids into delivery systems emerged as a valuable strategy to improve their stability and bioavailability. In this context, the aim of this review is to present the most reliable flavonoids-based delivery systems developed for anticancer therapies and the progress accomplished, with a special focus on cervical cancer therapy. The gathered information revealed the high therapeutic potential of flavonoids and highlights the relevance of delivery systems application, allowing a better understanding for future studies on effective cancer therapy.
Collapse
Affiliation(s)
| | - Diana Costa
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| | - Ângela Sousa
- CICS-UBI—Health Science Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal;
| |
Collapse
|
23
|
Wu Z, Li H, Zhao X, Ye F, Zhao G. Hydrophobically modified polysaccharides and their self-assembled systems: A review on structures and food applications. Carbohydr Polym 2022; 284:119182. [DOI: 10.1016/j.carbpol.2022.119182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 12/27/2021] [Accepted: 01/21/2022] [Indexed: 01/05/2023]
|
24
|
Loureiro J, Miguel SP, Seabra IJ, Ribeiro MP, Coutinho P. Single-Step Self-Assembly of Zein–Honey–Chitosan Nanoparticles for Hydrophilic Drug Incorporation by Flash Nanoprecipitation. Pharmaceutics 2022; 14:pharmaceutics14050920. [PMID: 35631506 PMCID: PMC9144985 DOI: 10.3390/pharmaceutics14050920] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 12/11/2022] Open
Abstract
Zein- and chitosan-based nanoparticles have been described as promising carrier systems for food, biomedical and pharmaceutical applications. However, the manufacture of size-controlled zein and chitosan particles is challenging. In this study, an adapted anti-solvent nanoprecipitation method was developed. The effects of the concentration of zein and chitosan and the pH of the collection solution on the properties of the zein–honey–chitosan nanoparticles were investigated. Flash nanoprecipitation was demonstrated as a rapid, scalable, single-step method to achieve the self-assembly of zein–honey–chitosan nanoparticles. The nanoparticles size was tuned by varying certain formulation parameters, including the total concentration and ratio of the polymers. The zein–honey–chitosan nanoparticles’ hydrodynamic diameter was below 200 nm and the particles were stable for 30 days. Vitamin C was used as a hydrophilic model substance and efficiently encapsulated into these nanoparticles. This study opens a promising pathway for one-step producing zein–honey–chitosan nanoparticles by flash nanoprecipitation for hydrophilic compounds’ encapsulation.
Collapse
Affiliation(s)
- Jorge Loureiro
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (J.L.); (S.P.M.); (M.P.R.)
| | - Sónia P. Miguel
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (J.L.); (S.P.M.); (M.P.R.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Inês J. Seabra
- Bioengineering Department, Lehigh University, Bethlehem, PA 18015, USA;
| | - Maximiano P. Ribeiro
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (J.L.); (S.P.M.); (M.P.R.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Paula Coutinho
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, Av. Dr. Francisco de Sá Carneiro, No. 50, 6300-559 Guarda, Portugal; (J.L.); (S.P.M.); (M.P.R.)
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
- Correspondence: ; Tel.: +351-965544187
| |
Collapse
|
25
|
One-Pot Synthesis of Amphiphilic Biopolymers from Oxidized Alginate and Self-Assembly as a Carrier for Sustained Release of Hydrophobic Drugs. Polymers (Basel) 2022; 14:polym14040694. [PMID: 35215606 PMCID: PMC8879484 DOI: 10.3390/polym14040694] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 02/01/2023] Open
Abstract
In this paper, we developed an organic solvent-free, eco-friendly, simple and efficient one-pot approach for the preparation of amphiphilic conjugates (Ugi-OSAOcT) by grafting octylamine (OCA) to oxidized sodium alginate (OSA). The optimum reaction parameters that were obtained based on the degree of substitution (DS) of Ugi-OSAOcT were a reaction time of 12 h, a reaction temperature of 25 °C and a molar ratio of 1:2.4:3:3.3 (OSA:OCA:HAc:TOSMIC), respectively. The chemical structure and composition were characterized by Fourier transform infrared spectroscopy (FTIR), 1H nuclear magnetic resonance (1H NMR), X-ray diffraction (XRD), thermogravimetry analyser (TGA), gel permeation chromatography (GPC) and elemental analysis (EA). It was found that the Ugi-OSAOcT conjugates with a CMC value in the range of 0.30–0.085 mg/mL could self-assemble into stable and spherical micelles with a particle size of 135.7 ± 2.4–196.5 ± 3.8 nm and negative surface potentials of −32.8 ± 0.4–−38.2 ± 0.8 mV. Furthermore, ibuprofen (IBU), which served as a model poorly water-soluble drug, was successfully incorporated into the Ugi-OSAOcT micelles by dialysis method. The drug loading capacity (%DL) and encapsulation efficiency (%EE) of the IBU-loaded Ugi-OSAOcT micelles (IBU/Ugi-OSAOcT = 3:10) reached as much as 10.9 ± 0.4–14.6 ± 0.3% and 40.8 ± 1.6–57.2 ± 1.3%, respectively. The in vitro release study demonstrated that the IBU-loaded micelles had a sustained and pH-responsive drug release behavior. In addition, the DS of the hydrophobic segment on an OSA backbone was demonstrated to have an important effect on IBU loading and drug release behavior. Finally, the in vitro cytotoxicity assay demonstrated that the Ugi-OSAOcT conjugates exhibited no significant cytotoxicity against RAW 264.7 cells up to 1000 µg/mL. Therefore, the amphiphilic Ugi-OSAOcT conjugates synthesized by the green method exhibited great potential to load hydrophobic drugs, acting as a promising nanocarrier capable of responding to pH for sustained release of hydrophobic drugs.
Collapse
|
26
|
Majumdar S, Mandal T, Dasgupta Mandal D. Comparative performance evaluation of chitosan based polymeric microspheres and nanoparticles as delivery system for bacterial β-carotene derived from Planococcus sp. TRC1. Int J Biol Macromol 2022; 195:384-397. [PMID: 34863970 DOI: 10.1016/j.ijbiomac.2021.11.167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/09/2021] [Accepted: 11/23/2021] [Indexed: 02/07/2023]
Abstract
β-carotene is a natural compound with immense healthcare benefits. To overcome insolubility and lack of stability which restricts its application, in this study, β-carotene from Planococcus sp. TRC1 was entrapped into formulations of chitosan‑sodium alginate microspheres (MF1, MF2 and MF3) and chitosan nanoparticles (NF1, NF2 and NF3). The maximum entrapment efficiency (%) and loading capacity (%) were 80.6 ± 4.28 and 26 ± 3.05 (MF2) and 92.1 ± 3.44 and 41.86 ± 4.65 (NF2) respectively. Korsmeyer-Peppas model showed best fit with release, revealing non-Fickian diffusion. Thermal and UV treatment exhibited higher activation energy (kJ/mol), 17.76 and 15.57 (MF2) and 37.03 and 19.33 (NF2) compared to free β-carotene (3.7 and 3.9), uncovering enhanced stability. MF2 and NF2 revealed swelling index (%) 721 ± 1.7 and 18.1 ± 1.5 (pH 6.8) and particle size 69.5 ± 3.2 μm and 92 ± 2.5 nm respectively. FESEM, FT-IR, XRD and DSC depicted spherical morphology, intactness of functional groups and masking of crystallinity. The IC50 (μg ml-1) values for antioxidant and anticancer (A-549) activities were 33.1 ± 1.7, 45.1 ± 2.8, 39.3 ± 2.9 and 31.3 ± 1.7, 27.9 ± 2.4, 25.3 ± 2.2 for β-carotene, MF2 and NF2 respectively with no significant cytotoxicity on HEK-293 cells and RBCs (p > 0.05). This comparative study of microspheres and nanoparticles may allow the diverse applications of an unconventional bacterial β-carotene with promising stability and efficacies.
Collapse
Affiliation(s)
- Subhasree Majumdar
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India; Department of Zoology, Sonamukhi College, Sonamukhi, Bankura 722207, West Bengal, India
| | - Tamal Mandal
- Department of Chemical Engineering, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India
| | - Dalia Dasgupta Mandal
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur 713209, West Bengal, India.
| |
Collapse
|
27
|
Ion D, Niculescu AG, Păduraru DN, Andronic O, Mușat F, Grumezescu AM, Bolocan A. An Up-to-Date Review of Natural Nanoparticles for Cancer Management. Pharmaceutics 2021; 14:18. [PMID: 35056915 PMCID: PMC8779479 DOI: 10.3390/pharmaceutics14010018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/10/2023] Open
Abstract
Cancer represents one of the leading causes of morbidity and mortality worldwide, imposing an urgent need to develop more efficient treatment alternatives. In this respect, much attention has been drawn from conventional cancer treatments to more modern approaches, such as the use of nanotechnology. Extensive research has been done for designing innovative nanoparticles able to specifically target tumor cells and ensure the controlled release of anticancer agents. To avoid the potential toxicity of synthetic materials, natural nanoparticles started to attract increasing scientific interest. In this context, this paper aims to review the most important natural nanoparticles used as active ingredients (e.g., polyphenols, polysaccharides, proteins, and sterol-like compounds) or as carriers (e.g., proteins, polysaccharides, viral nanoparticles, and exosomes) of various anticancer moieties, focusing on their recent applications in treating diverse malignancies.
Collapse
Affiliation(s)
- Daniel Ion
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Dan Nicolae Păduraru
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Octavian Andronic
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Florentina Mușat
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 050044 Bucharest, Romania
| | - Alexandra Bolocan
- General Surgery Department, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.I.); (D.N.P.); (O.A.); (F.M.); (A.B.)
- 3rd Clinic of General and Emergency Surgery, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
28
|
Madamsetty VS, Tavakol S, Moghassemi S, Dadashzadeh A, Schneible JD, Fatemi I, Shirvani A, Zarrabi A, Azedi F, Dehshahri A, Aghaei Afshar A, Aghaabbasi K, Pardakhty A, Mohammadinejad R, Kesharwani P. Chitosan: A versatile bio-platform for breast cancer theranostics. J Control Release 2021; 341:733-752. [PMID: 34906606 DOI: 10.1016/j.jconrel.2021.12.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/11/2022]
Abstract
Breast cancer is considered one of the utmost neoplastic diseases globally, with a high death rate of patients. Over the last decades, many approaches have been studied to early diagnose and treat it, such as chemotherapy, hormone therapy, immunotherapy, and MRI and biomarker tests; do not show the optimal efficacy. These existing approaches are accompanied by severe side effects, thus recognizing these challenges, a great effort has been done to find out the new remedies for breast cancer. Main finding: Nanotechnology opened a new horizon to the treatment of breast cancer. Many nanoparticulate platforms for the diagnosis of involved biomarkers and delivering antineoplastic drugs are under either clinical trials or just approved by the Food and Drug Administration (FDA). It is well known that natural phytochemicals are successfully useful to treat breast cancer because these natural compounds are safer, available, cheaper, and have less toxic effects. Chitosan is a biocompatible and biodegradable polymer. Further, it has outstanding features, like chemical functional groups that can easily modify our interest with an exceptional choice of promising applications. Abundant studies were directed to assess the chitosan derivative-based nanoformulation's abilities in delivering varieties of drugs. However, the role of chitosan in diagnostics and theranostics not be obligated. The present servey will discuss the application of chitosan as an anticancer drug carrier such as tamoxifen, doxorubicin, paclitaxel, docetaxel, etc. and also, its role as a theranostics (i.e. photo-responsive and thermo-responsive) moieties. The therapeutic and theranostic potential of chitosan in cancer is promising and it seems that to have a good potential to get to the clinic.
Collapse
Affiliation(s)
- Vijay Sagar Madamsetty
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Jacksonville, FL 32224, USA
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran
| | - Saeid Moghassemi
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Arezoo Dadashzadeh
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - John D Schneible
- NC State University, Department of Chemical and Biomolecular Engineering, 911 Partners Way, Raleigh 27695, USA
| | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Abdolsamad Shirvani
- Department of Biotechnology, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34485 Istanbul, Turkey
| | - Fereshteh Azedi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1449614525, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Ali Dehshahri
- Pharmaceutical Sciences Research center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Aghaei Afshar
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Kian Aghaabbasi
- Department of Biotechnology, University of Guilan, University Campus 2, Khalij Fars Highway 5th km of Ghazvin Road, Rasht, Iran
| | - Abbas Pardakhty
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran
| | - Reza Mohammadinejad
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran.
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
29
|
Chen G, Svirskis D, Lu W, Ying M, Li H, Liu M, Wen J. N-trimethyl chitosan coated nano-complexes enhance the oral bioavailability and chemotherapeutic effects of gemcitabine. Carbohydr Polym 2021; 273:118592. [PMID: 34560993 DOI: 10.1016/j.carbpol.2021.118592] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022]
Abstract
N-trimethyl chitosan (TMC) is a multifunctional polymer that can be used in various nanoparticle forms in the pharmaceutical, nutraceutical and biomedical fields. In this study, TMC was used as a mucoadhesive adjuvant to enhance the oral bioavailability and hence antitumour effects of gemcitabine formulated into nanocomplexes composed of poly(lactic-co-glycolic acid) nanoparticles (PLGA NPs) conjugated with d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS). A central composite design was applied to achieve the optimal formulation. Cellular uptake and drug transportation studies revealed the nanocomplexes permeate over the intestinal cells via adsorptive-mediated and caveolae-mediated endocytosis. Pharmacokinetic studies demonstrated the oral drug bioavailability of the nanocomplexes was increased 5.1-fold compared with drug solution. In pharmacodynamic studies, the formulation reduced tumour size 3.1-fold compared with the drug solution. The data demonstrates that TMC modified nanocomplexes can enhance gemcitabine oral bioavailability and promote the anticancer efficacy.
Collapse
Affiliation(s)
- Guanyu Chen
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China; School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Darren Svirskis
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Weiyue Lu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Man Ying
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Hongyu Li
- Department of Pharmaceutical Science, University of Arkansas for Medical Sciences, AR, USA
| | - Min Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, China
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
30
|
Nanotechnology Applications of Flavonoids for Viral Diseases. Pharmaceutics 2021; 13:pharmaceutics13111895. [PMID: 34834309 PMCID: PMC8625292 DOI: 10.3390/pharmaceutics13111895] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/14/2021] [Accepted: 11/01/2021] [Indexed: 12/14/2022] Open
Abstract
Recent years have witnessed the emergence of several viral diseases, including various zoonotic diseases such as the current pandemic caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Other viruses, which possess pandemic-causing potential include avian flu, Ebola, dengue, Zika, and Nipah virus, as well as the re-emergence of SARS (Severe Acute Respiratory Syndrome) and MERS (Middle East Respiratory Syndrome) coronaviruses. Notably, effective drugs or vaccines against these viruses are still to be discovered. All the newly approved vaccines against the SARS-CoV-2-induced disease COVID-19 possess real-time possibility of becoming obsolete because of the development of ‘variants of concern’. Flavonoids are being increasingly recognized as prophylactic and therapeutic agents against emerging and old viral diseases. Around 10,000 natural flavonoid compounds have been identified, being phytochemicals, all plant-based. Flavonoids have been reported to have lesser side effects than conventional anti-viral agents and are effective against more viral diseases than currently used anti-virals. Despite their abundance in plants, which are a part of human diet, flavonoids have the problem of low bioavailability. Various attempts are in progress to increase the bioavailability of flavonoids, one of the promising fields being nanotechnology. This review is a narrative of some anti-viral dietary flavonoids, their bioavailability, and various means with an emphasis on the nanotechnology system(s) being experimented with to deliver anti-viral flavonoids, whose systems show potential in the efficient delivery of flavonoids, resulting in increased bioavailability.
Collapse
|
31
|
Sawanny R, Pramanik S, Agarwal U. Role of Phytochemicals in the Treatment of Breast Cancer: Natural Swords Battling Cancer Cells. CURRENT CANCER THERAPY REVIEWS 2021. [DOI: 10.2174/1573394716666210106123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Breast cancer is the most common type of malignancy among ladies (around 30% of
newly diagnosed patients every year). To date, various modern treatment modalities for breast cancer,
such as radiotherapy, surgical method, hormonal therapy, and chemotherapeutic drug utilisation,
are available. However, adverse drug reactions, therapeutic resistance, metastasis, or cancer reoccurrence
chances remain the primary causes of mortality for breast cancer patients. To overcome
all the potential drawbacks, we need to investigate novel techniques and strategies that are not considered
previously to treat breast cancer effectively with safety and efficacy. For centuries, we
utilise phytochemicals to treat various diseases because of their safety, low-cost, and least or no
side effects. Recently, naturally produced phytochemicals gain immense attention as potential
breast cancer therapeutics because of their ideal characteristics; for instance, they operate via modulating
molecular pathways associated with cancer growth and progression. The primary mechanism
involves inhibition of cell proliferation, angiogenesis, migration, invasion, increasing anti-oxidant
status, initiation of the arrest of the cell cycle, and apoptosis. Remedial viability gets effectively enhanced
when phytochemicals work as adjuvants with chemotherapeutic drugs. This comprehensive
review revolves around the latest chemopreventive, chemotherapeutic, and chemoprotective treatments
with their molecular mechanisms to treat breast cancer by utilising phytochemicals such as
vinca alkaloids, resveratrol, curcumin, paclitaxel, silibinin, quercetin, genistein, and epigallocatechin
gallate. The authors wish to extend the field of phytochemical study for its scientific validity
and its druggability.
Collapse
Affiliation(s)
- Rajni Sawanny
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-II, Institutional Area, Greater Noida, Uttar Pradesh-201306, India
| | - Sheersha Pramanik
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu-600036, India
| | - Unnati Agarwal
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Delhi, Grand Trunk Road, Phagwara, Punjab-144001, India
| |
Collapse
|
32
|
Nandgude T, Pagar R. Plausible role of chitosan in drug and gene delivery against resistant breast cancer cells. Carbohydr Res 2021; 506:108357. [PMID: 34146935 DOI: 10.1016/j.carres.2021.108357] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023]
Abstract
Breast cancer is the highest global spread of invasive cancer in women. While significant progress has been made in breast cancer, diagnostic and therapeutic effective prevention and treatment options remain scarce. Concerning chitosan-based chemotherapeutic therapies, the studies reported cell migration resistance, improved drug absorption, membrane interaction and permeability, immune stimulating behavior, and extended in-vitro drug release. However, chitosan has been practically restricted mostly to unmodified forms. Targeted distribution is ensured by chitosan-based ligand conjugated carrier systems in conjunction with active moieties such as DNA, RNA, proteins, and therapeutic agents. The purpose of this context is to emphasize the efficient drug delivery to breast cancer cell lines using chitosan. Chitosan also exhibited excellent capabilities in gene packaging. For the interaction of bioactive molecules and the regulation of the drug release profile, chemical modification of chitosan is beneficial. This article discusses the various chitosan-based ligand conjugated carrier systems. From the studies reviewed it can be concluded that chitosan derivatives are promising materials for targeted and non-viral gene delivery in treatment of breast cancer.
Collapse
Affiliation(s)
- Tanaji Nandgude
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Science & Research, Pimpri, Pune, 411018, Maharashtra, India.
| | - Roshani Pagar
- Department of Pharmaceutics, Dr. D.Y. Patil Institute of Pharmaceutical Science & Research, Pimpri, Pune, 411018, Maharashtra, India.
| |
Collapse
|
33
|
Wang G, Li R, Parseh B, Du G. Prospects and challenges of anticancer agents' delivery via chitosan-based drug carriers to combat breast cancer: a review. Carbohydr Polym 2021; 268:118192. [PMID: 34127212 DOI: 10.1016/j.carbpol.2021.118192] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022]
Abstract
Breast cancer (BC) is considered as one the most prevalent cancers worldwide. Due to its high resistance to chemotherapy and high probability of metastasis, BC is one of the leading causes of cancer-related deaths. The controlled release of chemotherapy drugs to the precise site of the tumor tissue will increase the therapeutic efficacy and decrease side effects of systemic administration. Among various drug delivery systems, natural polymers-based drug carriers have gained significant attention for cancer therapy. Chitosan, a natural polymer obtained by de-acetylation of chitin, holds huge potential for drug delivery applications because chitosan is non-toxic, non-immunogenic, biocompatible, chemically modifiable, and can be processed to form various formulations. In the current review, we will discuss the prospects and challenges of chitosan-based drug delivery systems in treating BC.
Collapse
Affiliation(s)
- Guiqiu Wang
- Guangxi Medical College, Nanning, Guangxi 530023, China
| | - Rilun Li
- Guangxi Medical College, Nanning, Guangxi 530023, China
| | - Benyamin Parseh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gang Du
- The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
| |
Collapse
|
34
|
Nematollahi E, Pourmadadi M, Yazdian F, Fatoorehchi H, Rashedi H, Nigjeh MN. Synthesis and characterization of chitosan/polyvinylpyrrolidone coated nanoporous γ-Alumina as a pH-sensitive carrier for controlled release of quercetin. Int J Biol Macromol 2021; 183:600-613. [PMID: 33932424 DOI: 10.1016/j.ijbiomac.2021.04.160] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/04/2021] [Accepted: 04/24/2021] [Indexed: 02/07/2023]
Abstract
pH-sensitive drug delivery systems based on amphiphilic copolymers constitute a promising strategy to overcome some challenges to cancer treatment. In the present study, quercetin-loaded chitosan/polyvinylpyrrolidone/γ-Alumina nanocomposite was fabricated through a double oil in water emulsification method for the first time. γ-Alumina was incorporated to improve the drug loading efficiency and release behavior of polyvinylpyrrolidone and chitosan copolymeric hydrogel. γ-Alumina nanoparticles were obtained by the sol-gel method with a nanoporous structure, high surface area, and hydroxyl-rich surface. Quercetin, a natural anticancer agent, was loaded into the nanocomposite as a drug model. XRD and FTIR analyses confirmed the crystalline properties and chemical bonding of the prepared nanocomposite. The size of drug-loaded nanocomposites was 141 nm with monodisperse particle distribution, having a spherical shape approved by DLS analysis and FE-SEM, respectively. Incorporating γ-Alumina nanoparticles improved the encapsulation efficiency up to 95%. Besides, swelling study and the quercetin release profile demonstrated that γ-Alumina ameliorated pH sensitivity of nanocomposite and a targeted controlled release was obtained. Various release kinetic models were applied to the experimental release data to study the mechanism of drug release. Through MTT assay and flow cytometry, the quercetin-loaded nanocomposite showed significant cytotoxicity on MCF-7 breast cancer cells. Also, the enhanced apoptotic cell death confirmed the anticancer activity of γ-Alumina. These results suggest that the chitosan/polyvinylpyrrolidone/γ-Alumina nanocomposite is a novel pH-sensitive drug delivery system for anticancer applications.
Collapse
Affiliation(s)
- Elnaz Nematollahi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mehrab Pourmadadi
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering, Faculty of New Science and Technologies, University of Tehran, Tehran, Iran.
| | - Hooman Fatoorehchi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
| | - Hamid Rashedi
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mona Navaei Nigjeh
- Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
35
|
Jaiswal S, Dutta P, Kumar S, Chawla R. Chitosan modified by organo-functionalities as an efficient nanoplatform for anti-cancer drug delivery process. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102407] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Piñón-Castillo HA, Martínez-Chamarro R, Reyes-Martínez R, Salinas-Vera YM, Manjarrez-Nevárez LA, Muñoz-Castellanos LN, López-Camarillo C, Orrantia-Borunda E. Palladium Nanoparticles Functionalized with PVP-Quercetin Inhibits Cell Proliferation and Activates Apoptosis in Colorectal Cancer Cells. APPLIED SCIENCES 2021; 11:1988. [DOI: 10.3390/app11051988] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Nanotechnology is focused on the development and application of novel nanomaterials with particular physicochemical properties. Palladium nanoparticles (PdNPs) have been used as antimicrobials, antifungals, and photochemicals and for catalytic activity in dye reduction. In the present investigation, we developed and characterized PdNPs as a carrier of quercetin and initiated a study of its effects in colorectal cancer cells. PdNPs were first functionalized with polyvinylpyrrolidone (PVP) and then coupled to quercetin (PdNPs-PVP-Q). Our results showed that quercetin was efficiently incorporated to PdNPs-PVP, as demonstrated using UV/Vis and FT-IR spectroscopy. Using transmission electron microscopy, we demonstrated a reduction in size from 3–14.47 nm of PdNPs alone to 1.8–7.4 nm of PdNPs-PVP and to 2.12–3.14 of PdNPs-PVP-Q, indicating an increase in superficial area in functionalized PdNPs-Q. Moreover, hydrodynamic size studies using dynamic light scattering showed a reduction in size from 2120.33 nm ± 112.53 with PdNPs alone to 129.96 nm ± 6.23 for PdNPs-PVP-Q, suggesting a major reactivity when quercetin is coupled to nanoparticles. X-ray diffraction assays show that the addition of PVP or quercetin to PdNPs does not influence the crystallinity state. Catalytic activity assays of PdNPs-PVP-Q evidenced the chemical reduction of 4-nitrophenol, methyl orange, and methyl blue, thus confirming an electron acceptor capacity of nanoparticles. Finally, biological activity studies using MTT assays showed a significant inhibition (p < 0.05) of cell proliferation of HCT-15 colorectal cancer cells exposed to PdNPs-PVP-Q in comparison to untreated cells. Moreover, treatment with PdNPs-PVP-Q resulted in the apoptosis activation of HCT-15 cells. In conclusion, here we show for the first time the development of PdNPs-PVP-Q and evidence its biological activities through the inhibition of cell proliferation and apoptosis activation in colorectal cancer cells in vitro.
Collapse
Affiliation(s)
- Hilda Amelia Piñón-Castillo
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Campus II 1552, Chihuahua 31125, Mexico
| | - Rigoberto Martínez-Chamarro
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Campus II 1552, Chihuahua 31125, Mexico
| | - Reyna Reyes-Martínez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Campus II 1552, Chihuahua 31125, Mexico
| | - Yarely M. Salinas-Vera
- Departamento de Bioquímica, CINVESTAV-IPN, Av. Instituto Politecnico Nacional 2508, Ciudad de Mexico 07360, Mexico
| | - Laura A. Manjarrez-Nevárez
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Campus II 1552, Chihuahua 31125, Mexico
| | - Laila Nayzzel Muñoz-Castellanos
- Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario S/N Campus II 1552, Chihuahua 31125, Mexico
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, San Lorenzo 290, Ciudad de México 03100, Mexico
| | - Erasmo Orrantia-Borunda
- Centro de Investigación en Materiales Avanzados, S. C. Miguel de Cervantes 120, Complejo Industrial Chihuahua, Chihuahua 31136, Mexico
| |
Collapse
|
37
|
Mu CF, Cui F, Yin YM, Cho HJ, Kim DD. Docetaxel-Loaded Chitosan-Cholesterol Conjugate-Based Self-Assembled Nanoparticles for Overcoming Multidrug Resistance in Cancer Cells. Pharmaceutics 2020; 12:pharmaceutics12090783. [PMID: 32825000 PMCID: PMC7558660 DOI: 10.3390/pharmaceutics12090783] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022] Open
Abstract
Cholesteryl hemisuccinate (CHS)-conjugated chitosan (CS)-based self-assembled nanoparticles (NPs) were developed for enhancing the intracellular uptake of docetaxel in multidrug resistance (MDR)-acquired cancer cells. CHS-CS was successfully synthesized and self-aggregation, particle size, zeta potential, drug entrapment efficiency, and in vitro drug release of docetaxel-loaded CHS-CS NPs were tested. The optimized NPs had a mean hydrodynamic diameter of 303 nm, positive zeta potential of 21.3 mV, and spherical shape. The in vitro release of docetaxel from the optimized CHS-CS NPs in different pH medium (pH 6.0 and 7.4) revealed that the release was improved in a more acidic condition (pH 6.0), representing a tumor cell's environment. The superior MDR-overcoming effect of docetaxel-loaded CHS-CS NPs, compared with docetaxel solution, was verified in anti-proliferation and cellular accumulation studies in MDR-acquired KBV20C cells. Thus, CHS-CS NPs could be potentially used for overcoming the MDR effect in anticancer drug delivery.
Collapse
Affiliation(s)
- Chao-Feng Mu
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (C.-F.M.); (Y.-M.Y.)
| | - Fude Cui
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Yong-Mei Yin
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (C.-F.M.); (Y.-M.Y.)
- College of Pharmacy, Nankai University, Tianjin 300071, China
| | - Hyun-Jong Cho
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon 24341, Korea
- Correspondence: (H.-J.C.); (D.-D.K.); Tel.: +82-33-250-6916 (H.-J.C.); +82-2-880-7870 (D.-D.K.)
| | - Dae-Duk Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Korea; (C.-F.M.); (Y.-M.Y.)
- Correspondence: (H.-J.C.); (D.-D.K.); Tel.: +82-33-250-6916 (H.-J.C.); +82-2-880-7870 (D.-D.K.)
| |
Collapse
|
38
|
Abbaszadeh S, Rashidipour M, Khosravi P, Shahryarhesami S, Ashrafi B, Kaviani M, Moradi Sarabi M. Biocompatibility, Cytotoxicity, Antimicrobial and Epigenetic Effects of Novel Chitosan-Based Quercetin Nanohydrogel in Human Cancer Cells. Int J Nanomedicine 2020; 15:5963-5975. [PMID: 32884259 PMCID: PMC7441583 DOI: 10.2147/ijn.s263013] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 07/28/2020] [Indexed: 12/25/2022] Open
Abstract
Background Previous studies have reported that quercetin (Q) has a potential antibacterial and anticancer activity. However, its application is limited by many important factors including high hydrophobicity and low absorption. Methodology In the current study, we synthesized and characterized (Patent) a novel chitosan-based quercetin nanohydrogel (ChiNH/Q). Encapsulation efficiency was confirmed by UV/VIS spectrophotometer. Physicochemical characterization of ChiNH/Q was assessed by PDI, DLS, SEM, FTIR, and XRD. The toxicity of the ChiNH/Q against five strains of the pathogen and HepG2 cells was examined. Moreover, the quantification of ChiNH/Q on genomic global DNA methylation and expression of DNMTs (DNMT1/3A/3B) in HepG2 cancer cells were evaluated by ELISA and real-time PCR, respectively. Results Under the SEM-based images, the hydrodynamic size of the ChiNH/Q was 743.6 nm. The changes in the PDI were 0.507, and zeta potential was obtained as 12.1 mV for ChiNH/Q. The FTIR peak of ChiNH/Q showed the peak at 627 cm−1 corresponded to tensile vibrational of NH2-groups related to Q, and it is the indication of Q loading in the formulation. Moreover, XRD data have detected the encapsulation of ChiNH/Q. The ChiNH/Q showed a potent antimicrobial inhibitory effect and exerted cytotoxic effects against HepG2 cancer cells with IC50 values of 100 µg/mL. Moreover, our data have shown that ChiNH/Q effectively reduced (65%) the average expression level of all the three DNMTs (p<0.05) and significantly increased (1.01%) the 5-methylated cytosine (5-mC) levels in HepG2 cells. Conclusion Our results showed for the first time the bioavailability and potentiality of ChiNH/Q as a potent antimicrobial and anticancer agent against cancer cells. Our result provided evidence that ChiNH/Q could effectively reduce cellular DNMT expression levels and increase genomic global DNA methylation in HepG2 cancer cells. Our results suggest a potential clinical application of nanoparticles as antimicrobial and anticancer agents in combination cancer therapy.
Collapse
Affiliation(s)
- Saber Abbaszadeh
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Marzieh Rashidipour
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Peyman Khosravi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Soroosh Shahryarhesami
- Functional Genome Analysis/B070, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Behnam Ashrafi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mozhgan Kaviani
- Department of Internal Medicine, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mostafa Moradi Sarabi
- Department of Biochemistry and Genetics, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.,Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
39
|
Wang Y, Tao B, Wan Y, Sun Y, Wang L, Sun J, Li C. Drug delivery based pharmacological enhancement and current insights of quercetin with therapeutic potential against oral diseases. Biomed Pharmacother 2020; 128:110372. [PMID: 32521458 DOI: 10.1016/j.biopha.2020.110372] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/24/2020] [Accepted: 06/02/2020] [Indexed: 02/06/2023] Open
Abstract
The heavy burden of oral diseases such as oral cancers, dental caries, periodontitis, etc. and their consequence on the patient's quality of life demonstrated an urgent demand for developing effective therapeutics. Quercetin as a natural derived flavonoid, could be utilized in the therapeutic formulation of various diseases such as diabetes, breast cancer and asthma, owing to its prominent pharmacological values. In the last decade, the applications of quercetin as a natural compound in oral treatment have attracted increasing interest due to its multifunction including antioxidant, antibacterial, anti-inflammatory and antineoplastic activities. Besides, considering the low bioavailability of quercetin, great efforts have been made in its drug delivery systems to address the problem of limited application. Therefore, this review summarized the cutting-edge researches on versatile effects and enhanced bioavailability of quercetin resulting from innovative drug delivery systems, particularly focused on its potential against oral diseases. The application of quercetin would provide novel and promising therapeutic approach for clinical treatment, promoting the development of global dental public health.
Collapse
Affiliation(s)
- Yu Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, 130021, China
| | - Baoxin Tao
- Department of Oral Implantology, School of Medicine, Ninth People's Hospital Affiliated with Shanghai Jiao Tong University, Shanghai, China
| | - Yao Wan
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, 130021, China; Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Yue Sun
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, 130021, China; Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Lin Wang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Jiao Sun
- Department of Cell Biology, Norman Bethune College of Medicine, Jilin University, Changchun, Jilin Province, China.
| | - Chunyan Li
- Department of Prosthodontics, School and Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
40
|
Salehi B, Machin L, Monzote L, Sharifi-Rad J, Ezzat SM, Salem MA, Merghany RM, El Mahdy NM, Kılıç CS, Sytar O, Sharifi-Rad M, Sharopov F, Martins N, Martorell M, Cho WC. Therapeutic Potential of Quercetin: New Insights and Perspectives for Human Health. ACS OMEGA 2020; 5:11849-11872. [PMID: 32478277 PMCID: PMC7254783 DOI: 10.1021/acsomega.0c01818] [Citation(s) in RCA: 319] [Impact Index Per Article: 63.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 05/03/2023]
Abstract
Quercetin (Que) and its derivatives are naturally occurring phytochemicals with promising bioactive effects. The antidiabetic, anti-inflammatory, antioxidant, antimicrobial, anti-Alzheimer's, antiarthritic, cardiovascular, and wound-healing effects of Que have been extensively investigated, as well as its anticancer activity against different cancer cell lines has been recently reported. Que and its derivatives are found predominantly in the Western diet, and people might benefit from their protective effect just by taking them via diets or as a food supplement. Bioavailability-related drug-delivery systems of Que have also been markedly exploited, and Que nanoparticles appear as a promising platform to enhance their bioavailability. The present review aims to provide a brief overview of the therapeutic effects, new insights, and upcoming perspectives of Que.
Collapse
Affiliation(s)
- Bahare Salehi
- Student
Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Laura Machin
- Institute
of Pharmacy and Food, University of Havana, Havana, Cuba
| | - Lianet Monzote
- Parasitology
Department, Institute of Medicine Tropical
Pedro Kourí, Havana, Cuba
| | - Javad Sharifi-Rad
- Phytochemistry
Research Center, Shahid Beheshti University
of Medical Sciences, Tehran 1991953381, Iran
| | - Shahira M. Ezzat
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr El-Aini
Street, Cairo 11562, Egypt
- Department
of Pharmacognosy, Faculty of Pharmacy, October
University for Modern Sciences and Arts (MSA), 6th October 12566, Egypt
| | - Mohamed A. Salem
- Department
of Pharmacognosy, Faculty of Pharmacy, Menoufia
University, Gamal Abd
El Nasr st., Shibin Elkom, Menoufia 32511, Egypt
| | - Rana M. Merghany
- Department
of Pharmacognosy, National Research Centre, Giza 12622, Egypt
| | - Nihal M. El Mahdy
- Department
of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), 6th of October 12566, Egypt
| | - Ceyda Sibel Kılıç
- Department
of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara 06100, Turkey
| | - Oksana Sytar
- Department of Plant Biology Department, Institute of Biology, Taras Shevchenko National University of Kyiv, Volodymyrska str., 64, Kyiv 01033, Ukraine
- Department of Plant Physiology, Slovak
University of Agriculture, Nitra, A. Hlinku 2, Nitra 94976, Slovak Republic
| | - Mehdi Sharifi-Rad
- Department
of Medical Parasitology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616913555, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Rudaki 139, Dushanbe 734003, Tajikistan
| | - Natália Martins
- Faculty of Medicine, University
of Porto, Porto 4200-319, Portugal
- Institute
for Research and Innovation in Health (i3S), University of Porto, Porto 4200-135, Portugal
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy,
and Centre
for Healthy Living, University of Concepción, Concepción 4070386, Chile
- Universidad de Concepción, Unidad
de Desarrollo Tecnológico,
UDT, Concepción 4070386, Chile
| | - William C. Cho
- Department
of Clinical Oncology, Queen
Elizabeth Hospital, 30
Gascoigne Road, Kowloon, Hong
Kong
| |
Collapse
|
41
|
Ahlawat J, Neupane R, Deemer E, Sreenivasan ST, Narayan M. Chitosan-Ellagic Acid Nanohybrid for Mitigating Rotenone-induced Oxidative Stress. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18964-18977. [PMID: 32216327 DOI: 10.1021/acsami.9b21215] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Antioxidants derived from nature, such as ellagic acid (EA), demonstrated high potency to mitigate neuronal oxidative stress and related pathologies, including Parkinson's disease. However, the application of EA is limited due to its toxicity at moderate doses and poor solubility, cellular permeability, and bioavailability. Here, we introduce a sustainably resourced, green nanoencasement strategy to overcome the limitations of EA and derive synergistic effects to prevent oxidative stress in neuronal cells. Chitosan, with its high biocompatibility, potential antioxidant properties, and flexible surface chemistry, was chosen as the primary component of the nanoencasement in which EA is immobilized. Using a rotenone model to mimic intracellular oxidative stress, we examined the effectiveness of EA and chitosan to limit cell death. Our studies indicate a synergistic effect between EA and chitosan in mitigating rotenone-induced reactive oxygen species death. Our analysis suggests that chitosan encapsulation of EA reduces the inherent cytotoxicity of the polyphenol (a known anticancer molecule). Furthermore, its encapsulation permits its delivery via a rapid burst phase and a relatively slow phase making the nanohybrid suitable for drug release over extended time periods.
Collapse
Affiliation(s)
- Jyoti Ahlawat
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Rabin Neupane
- Department of Industrial Pharmacy, The University of Toledo, Toledo, Ohio 43606, United States
| | - Eva Deemer
- Department of Material Science and Engineering, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Sreeprasad T Sreenivasan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| | - Mahesh Narayan
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, Texas 79968, United States
| |
Collapse
|
42
|
Liu Q, Li Y, Yang X, Xing S, Qiao C, Wang S, Xu C, Li T. O-Carboxymethyl chitosan-based pH-responsive amphiphilic chitosan derivatives: Characterization, aggregation behavior, and application. Carbohydr Polym 2020; 237:116112. [PMID: 32241407 DOI: 10.1016/j.carbpol.2020.116112] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 11/26/2022]
Abstract
Chitosan has attracted much attention in drug delivery, however, carboxymethyl chitosan (CMC)-based self-aggregated nanocarriers are seldom reported. In this paper, two kinds of CMC-based pH-responsive amphiphilic chitosan derivatives, N-2-hydroxylpropyl-3-butyl ether-O-carboxymethyl chitosan (HBCC) and N-2-hydroxylpropyl-3-(2-ethylhexyl glycidyl ether)-O-carboxymethyl chitosan (H2ECC), have been synthesized by the homogeneous reaction. The molecular structures were characterized by FTIR, 1H NMR and 13C NMR. The optimum reaction condition was obtained based on the data of 1H NMR spectrum: reaction time of 4 h, reaction temperature of 80 °C and nepoxyn-NH2 of 3/1, respectively. The XRD patterns showed the crystallinity of HBCC and H2ECC decreased due to the introduction of hydrophobic segments. The thermostability of HBCC and H2ECC was improved for the formation of heat-resistant stereo-complexed structures. The intermolecular hydrophobic interaction hindered the intermolecular mobility by increasing glass transition temperature of ca. 10 °C. Both HBCC and H2ECC have very low critical aggregation concentrations (HBCC: 0.66-1.56 g/L, H2ECC: 0.57-1.07 g/L) and moderate aggregate particle size, which is advantageous for utilization as a drug carrier. The curcumin loaded HBCC and H2ECC aggregates showed nontoxicity, meanwhile, HBCC and H2ECC showed good antibacterial activity against Staphylococcus aureus and Escherichia coli. As a result of these two favorable properties, HBCC and H2ECC could be used as curcumin nanocarriers as well as antibacterial agents.
Collapse
Affiliation(s)
- Qun Liu
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Yan Li
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Xiaodeng Yang
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China.
| | - Shu Xing
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Congde Qiao
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Shoujuan Wang
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Chunlin Xu
- Laboratory of Natural Materials and Technology, Johan Gadolin Process Chemistry Centre, Abo Akademi University, Porthansgatan 3, 20500 Turku, Finland
| | - Tianduo Li
- Shandong Key Laboratory of Molecular Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| |
Collapse
|
43
|
Synthesis, structure, and properties of N-2-hydroxylpropyl-3-trimethylammonium-O-carboxymethyl chitosan derivatives. Int J Biol Macromol 2020; 144:568-577. [DOI: 10.1016/j.ijbiomac.2019.12.125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/23/2019] [Accepted: 12/14/2019] [Indexed: 01/10/2023]
|
44
|
Lin L, He J, Li J, Xu Y, Li J, Wu Y. Chitosan Nanoparticles Strengthen Vγ9Vδ2 T-Cell Cytotoxicity Through Upregulation Of Killing Molecules And Cytoskeleton Polarization. Int J Nanomedicine 2019; 14:9325-9336. [PMID: 31819434 PMCID: PMC6890518 DOI: 10.2147/ijn.s212898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/30/2019] [Indexed: 01/01/2023] Open
Abstract
Background During the past few years, immune cell therapy for malignant cancer has benefited a considerable amount of patients worldwide. As one of several promising candidates for immunotherapy, Vγ9Vδ2 γδ T cells have many unique biological advantages, such as non-MHC restriction and have been noted as the earliest source of IFN-γ. However, potentiating anti-tumor functions of γδ T cells has become of particular interest to researchers studying γδ T cell applications. Purpose In this study, we proposed a nanotechnology-based methodology for strengthening γδ T cell functions. Methods As a type of reliable, biocompatible material, chitosan nanoparticles (CSNPs) were used to enhance anti-tumor immunity of γδ T cells. Results First, we found that the size of prepared CSNPs distributed 50 to 100 nm, and that CSNPs had optimal immunocompatibility. Then, we observed that CSNPs could induce α-tubulin cytoskeleton polarization and rearrangement, correlating with a higher killing ability of γδ T cells. Furthermore, we revealed that CSNPs could enhance Vγ9Vδ2 T cell anti-tumor functions by upregulating killing of related receptors, including NKG2D, CD56, FasL, and perforin secretion. Conclusion Our work provided evidence of application for CSNPs based bio-carrier in immunotherapy. More importantly, we proposed a new strategy for enhancing γδ T cell anti-tumor activity using nanobiomaterial, which could benefit future clinical applications of γδ T cells.
Collapse
Affiliation(s)
- Li Lin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, People's Republic of China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Junyi He
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Jiawei Li
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yan Xu
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Jingxia Li
- The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| | - Yangzhe Wu
- Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai, Guangdong 519000, People's Republic of China.,The Biomedical Translational Research Institute, Faculty of Medical Science, Jinan University, Guangzhou, Guangdong 510632, People's Republic of China
| |
Collapse
|
45
|
Khursheed R, Singh SK, Wadhwa S, Gulati M, Awasthi A. Enhancing the potential preclinical and clinical benefits of quercetin through novel drug delivery systems. Drug Discov Today 2019; 25:209-222. [PMID: 31707120 DOI: 10.1016/j.drudis.2019.11.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/20/2019] [Accepted: 11/01/2019] [Indexed: 12/27/2022]
Abstract
Quercetin is reported to have numerous pharmacological actions, including antidiabetic, anti-inflammatory and anticancer activities. The main mechanism responsible for its pharmacological activities is its ability to quench reactive oxygen species (ROS) and, hence, decrease the oxidative stress responsible for the development of various diseases. Despite its proven therapeutic potential, the clinical use of quercetin remains limited because of its low aqueous solubility, bioavailability, and substantial first-pass metabolism. To overcome this, several novel formulations have been reported. In this review, we focus on the applications of quercetin extract as well as its novel formulations for treating different disorders. We also examine its proposed mechanism of action of quercetin.
Collapse
Affiliation(s)
- Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
46
|
Guo M, Qu D, Qin Y, Chen Y, Liu Y, Huang M, Chen Y. Transferrin-Functionalized Microemulsions Coloaded with Coix Seed Oil and Tripterine Deeply Penetrate To Improve Cervical Cancer Therapy. Mol Pharm 2019; 16:4826-4835. [PMID: 31663764 DOI: 10.1021/acs.molpharmaceut.9b00717] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Mengfei Guo
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Ding Qu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yue Qin
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yunyan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yuping Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Mengmeng Huang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Yan Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
- Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing 210028, China
| |
Collapse
|
47
|
Valencia GA, Zare EN, Makvandi P, Gutiérrez TJ. Self-Assembled Carbohydrate Polymers for Food Applications: A Review. Compr Rev Food Sci Food Saf 2019; 18:2009-2024. [PMID: 33336964 DOI: 10.1111/1541-4337.12499] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/26/2019] [Accepted: 08/24/2019] [Indexed: 12/17/2022]
Abstract
The self-assembled natural and synthetic polymers are booming. However, natural polymers obtained from native or modified carbohydrate polymers (CPs), such as celluloses, chitosan, glucans, gums, pectins, and starches, have had special attention as raw material in the manufacture of self-assembled polymer composite materials having several forms: films, hydrogels, micelles, and particles. The easy manipulation of the architecture of the CPs, as well as their high availability in nature, low cost, and being sustainable and green polymers have been the main positive points in the use of them for different applications. CPs have been used as building blocks for composite structures, and their easy orientation and ordering has given rise to self-assembled CPs (SCPs). These macromolecules have been little studied for food applications. Nonetheless, their research has grown mainly in the last 5 years as encapsulated food additive wall materials, food coatings, and edible films. The multifaceted properties (systems sensitive to pH, temperature, ionic strength, types of ions, mechanical force, and enzymes) of these devices are leading to the development of advanced food materials. This review article focused on the analysis of SCPs for food applications in order to encourage other research groups for their preparation and implementation.
Collapse
Affiliation(s)
- Germán Ayala Valencia
- Dept. of Chemical and Food Engineering, Federal Univ. of Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | | | - Pooyan Makvandi
- Inst. for Polymers, Composites and Biomaterials (IPCB), Natl. Research Council (CNR), Naples, Italy.,Dept. of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran Univ. of Medical Sciences, Tehran, Iran
| | - Tomy J Gutiérrez
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Colón 10850, B7608FLC, Mar del Plata, Argentina
| |
Collapse
|
48
|
Peñalva R, Esparza I, Morales-Gracia J, González-Navarro CJ, Larrañeta E, Irache JM. Casein nanoparticles in combination with 2-hydroxypropyl-β-cyclodextrin improves the oral bioavailability of quercetin. Int J Pharm 2019; 570:118652. [PMID: 31472219 DOI: 10.1016/j.ijpharm.2019.118652] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 01/30/2023]
Abstract
The aim of this work was to optimize the preparative process of quercetin loaded casein nanoparticles as well as to evaluate the pharmacokinetics of this flavonoid when administered orally in Wistar rats. Nanoparticles were obtained by coacervation after the incubation of casein, 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) and quercetin in an aqueous environment. Then, nanoparticles were purified and dried. The resulting nanoparticles displayed a size of 200 nm with a negative zeta potential and a payload of about 32 μg/mg. Release studies showed a zero-order kinetic, suggesting a mechanism based on erosion of the nanoparticle matrix. For the pharmacokinetic study, quercetin was orally administered to rats as a single dose of 25 mg/kg. Animals treated with quercetin-loaded casein nanoparticles displayed higher plasma levels than those observed in animals receiving the solution of the flavonoid (control). Thus, the relative oral bioavailability of quercetin when administered as casein nanoparticles (close to 37%) was found to be about 9-times higher than the oral solution of the flavonoid in a mixture of PEG 400 and water. In summary, the combination of casein and 2-hydroxypropyl-β-cyclodextrin produces nanoparticles that may be a good option to load quercetin for both nutraceutical and pharmaceutical purposes.
Collapse
Affiliation(s)
- Rebeca Peñalva
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Irene Esparza
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Jorge Morales-Gracia
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Carlos J González-Navarro
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Eneko Larrañeta
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain
| | - Juan M Irache
- Department of Chemistry and Pharmaceutical Technology, NANO-VAC Research Group, University of Navarra, Spain.
| |
Collapse
|
49
|
Wang H, Yang Z, He Z, Zhou C, Wang C, Chen Y, Liu X, Li S, Li P. Self-assembled amphiphilic chitosan nanomicelles to enhance the solubility of quercetin for efficient delivery. Colloids Surf B Biointerfaces 2019; 179:519-526. [DOI: 10.1016/j.colsurfb.2019.04.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/13/2019] [Accepted: 04/03/2019] [Indexed: 01/07/2023]
|
50
|
Amphiphilic carboxylated cellulose-g-poly(l-lactide) copolymer nanoparticles for oleanolic acid delivery. Carbohydr Polym 2019; 214:100-109. [DOI: 10.1016/j.carbpol.2019.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/22/2019] [Accepted: 03/12/2019] [Indexed: 01/15/2023]
|