1
|
D’Amico V, Cavaliere M, Ivone M, Lacassia C, Celano G, Vacca M, la Forgia FM, Fontana S, De Angelis M, Denora N, Lopedota AA. Microencapsulation of Probiotics for Enhanced Stability and Health Benefits in Dairy Functional Foods: A Focus on Pasta Filata Cheese. Pharmaceutics 2025; 17:185. [PMID: 40006552 PMCID: PMC11859715 DOI: 10.3390/pharmaceutics17020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/27/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Probiotics provide significant health benefits, but their viability is often compromised during production, storage, and passage through the gastrointestinal tract. These challenges hinder their effective incorporation into functional applications, particularly in dairy functional foods, in which factors such as acidity, oxygen exposure, and storage conditions negatively impact cell survival. The focus was on functional dairy foods, particularly on pasta filata cheeses. Indeed, the use of probiotics in pasta filata cheeses presents significant challenges due to the specific manufacturing processes, which encompass the application of high temperatures and other harsh conditions. These factors can adversely affect the viability and availability of probiotic microorganisms. However, microencapsulation has emerged as a promising solution, offering a protective barrier that enhances probiotic stability, improves survival rates, and facilitates targeted release in the gastrointestinal environment. This review examines the pivotal role of microencapsulation in stabilising probiotics for functional applications, emphasising its relevance in high-value food systems. Functional applications, including foods designed to offer essential nutritional benefits and promote host health, play a crucial role in disease prevention and immune system support, reducing the risk of infections and other physiological impairments. Key microencapsulation technologies are analysed, focusing on their benefits, limitations, and challenges related to scalability and industrial implementation. Additionally, this review discusses strategies to optimise formulations, ensure the sensory quality of final products, and explore future opportunities for expanding innovative applications that align with growing consumer demand for health-promoting solutions.
Collapse
Affiliation(s)
- Vita D’Amico
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, 4, E. Orabona Street, 70125 Bari, Italy; (V.D.); (M.I.); (C.L.); (N.D.)
| | - Mariasimona Cavaliere
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 165/A, G. Amendola Street, 70126 Bari, Italy; (M.C.); (G.C.); (M.V.); (M.D.A.)
| | - Marianna Ivone
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, 4, E. Orabona Street, 70125 Bari, Italy; (V.D.); (M.I.); (C.L.); (N.D.)
| | - Chiara Lacassia
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, 4, E. Orabona Street, 70125 Bari, Italy; (V.D.); (M.I.); (C.L.); (N.D.)
| | - Giuseppe Celano
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 165/A, G. Amendola Street, 70126 Bari, Italy; (M.C.); (G.C.); (M.V.); (M.D.A.)
| | - Mirco Vacca
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 165/A, G. Amendola Street, 70126 Bari, Italy; (M.C.); (G.C.); (M.V.); (M.D.A.)
| | - Flavia Maria la Forgia
- Centro Studi e Ricerche “Dr. S. Fontana 1900–1982”, Farmalabor s.r.l., 47, Piano S. Giovanni Street, 76012 Canosa di Puglia, Italy; (F.M.l.F.); (S.F.)
| | - Sergio Fontana
- Centro Studi e Ricerche “Dr. S. Fontana 1900–1982”, Farmalabor s.r.l., 47, Piano S. Giovanni Street, 76012 Canosa di Puglia, Italy; (F.M.l.F.); (S.F.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, 165/A, G. Amendola Street, 70126 Bari, Italy; (M.C.); (G.C.); (M.V.); (M.D.A.)
| | - Nunzio Denora
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, 4, E. Orabona Street, 70125 Bari, Italy; (V.D.); (M.I.); (C.L.); (N.D.)
| | - Angela Assunta Lopedota
- Department of Pharmacy—Pharmaceutical Sciences, University of Bari Aldo Moro, 4, E. Orabona Street, 70125 Bari, Italy; (V.D.); (M.I.); (C.L.); (N.D.)
| |
Collapse
|
2
|
Tobón YNF, Herrera-Ramírez A, Cardona-Galeano W, Mesa M. Correlations between in vitro gastrointestinal digestion of β-galactosidase/carboxymethylchitosan-silica dosage powder and its physicochemical properties. Int J Biol Macromol 2024; 279:135106. [PMID: 39197611 DOI: 10.1016/j.ijbiomac.2024.135106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 08/25/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Oral administration of β-galactosidase, which alleviate lactose intolerance symptoms, is challenging due to its instability throughout the gastrointestinal tract. The objective of this work was to make correlations between the in-vitro digestion and chemical characteristics of a β-galactosidase/carboxymethylchitosan-silica biocatalyst powder. This was obtained by a one-pot silica gel route assisted by carboxymethyl chitosan, using maltose as lyoprotectant. The chemical characterization allowed to understand as was modulated the calcium incorporation, through electrostatic interactions and as maltose protects the enzyme from agglomeration, by vitrification and formation of hydrogen bonds. The formulated biocatalyst could be a complement of silicon and calcium, in turn, it preserves 96 % and 63 % of the enzymatic activity compared with the biocatalyst control (without simulated digestion), in the gastric and intestinal phases, respectively. This activity was even greater than that observed in the commercial products evaluated in these phases. Likewise, the biocatalyst obtained retained its activity after 12 months of storage at 25 °C and it did not present cytotoxicity in cells derived from human colon epithelial mucosa (NCM460) under the conditions and concentrations evaluated. These results make this biocatalyst in an excellent candidate for release of this enzyme. Therefore, it could be useful for lactose-intolerant people.
Collapse
Affiliation(s)
| | | | | | - M Mesa
- Materials Science Group, Colombia
| |
Collapse
|
3
|
Luo S, Zhang J, Sun J, Zhao T, Deng J, Yang H. Future development trend of food-borne delivery systems of functional substances for precision nutrition. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 112:385-433. [PMID: 39218507 DOI: 10.1016/bs.afnr.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
BACKGROUND Precision nutrition, a personalized nutritional supplementation model, is widely acknowledged for its significant impact on human health. Nevertheless, challenges persist in the advancement of precision nutrition, including consumer dietary behaviors, nutrient absorption, and utilization. Thus, the exploration of effective strategies to enhance the efficacy of precision nutrition and maximize its potential benefits in dietary interventions and disease management is imperative. SCOPE AND APPROACH The primary objective of this comprehensive review is to synthesize and assess the latest technical approaches and future prospects for achieving precision nutrition, while also addressing the existing constraints in this field. The role of delivery systems is pivotal in the realization of precision nutrition goals. This paper outlines the potential applications of delivery systems in precision nutrition and highlights key considerations for their design and implementation. Additionally, the review offers insights into the evolving trends in delivery systems for precision nutrition, particularly in the realms of nutritional fortification, specialized diets, and disease prevention. KEY FINDINGS AND CONCLUSIONS By leveraging computer data collection, omics, and metabolomics analyses, this review scrutinizes the lifestyles, dietary patterns, and health statuses of diverse organisms. Subsequently, tailored nutrient supplementation programs are devised based on individual organism profiles. The utilization of delivery systems enhances the bioavailability of functional compounds and enables targeted delivery to specific body regions, thereby catering to the distinct nutritional requirements and disease prevention needs of consumers, with a particular emphasis on special populations and dietary preferences.
Collapse
Affiliation(s)
- Shuwei Luo
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Juntao Zhang
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Jing Sun
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Tong Zhao
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China
| | - Jianjun Deng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Haixia Yang
- College of Food Science and Nutritional and Engineering, China Agricultural University, Beijing, P.R. China.
| |
Collapse
|
4
|
Xiong Y, Li JR, Peng PZ, Liu B, Zhao LN. Positive effect of peptide-calcium chelates from Grifola frondosa on a mouse model of senile osteoporosis. J Food Sci 2024; 89:3816-3828. [PMID: 38685878 DOI: 10.1111/1750-3841.17073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/01/2024] [Accepted: 03/27/2024] [Indexed: 05/02/2024]
Abstract
Calcium supplementation has been shown to be efficacious in mitigating the progression of senile osteoporosis (SOP) and reducing the incidence of osteoporotic fractures resulting from prolonged calcium shortage. In this study, Grifola frondosa (GF) peptides-calcium chelate were synthesized through the interaction between peptide from GF and CaCl2. The chelation reaction was shown to involve the participation of the amino and carboxyl groups in the peptide, as revealed by scanning electron microscope, Fourier-transform infrared, and ultraviolet spectrophotometry. Furthermore, a mouse model of (SOP) induced by d-galactose was established (SCXK-2018-0004). Results demonstrated that low dosage of low-molecular weight GF peptides-calcium chelates (LLgps-Ca) could significantly improve serum index and pathological features of bone tissue and reduce bone injury. Further research suggested that LLgps-Ca could ameliorate SOP by modulating the disrupted metabolic pathway, which includes focal adhesion, extracellular matrix receptor interaction, and PI3K-Akt signaling pathway. Using Western blot, the differentially expressed proteins were further confirmed. Thus, calciumchelating peptides from GF could serve as functional calcium agents to alleviate SOP.
Collapse
Affiliation(s)
- Yu Xiong
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jing-Ru Li
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Pei-Zhi Peng
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Bin Liu
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Li-Na Zhao
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|
5
|
Li A, Zheng J, Han X, Jiang Z, Yang B, Yang S, Zhou W, Li C, Sun M. Health implication of lactose intolerance and updates on its dietary management. Int Dairy J 2023. [DOI: 10.1016/j.idairyj.2023.105608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Shao J, Wang M, Zhang G, Zhang B, Hao Z. Preparation and characterization of sesame peptide-calcium chelate with different molecular weight. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2022. [DOI: 10.1080/10942912.2022.2130355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Jiawei Shao
- School of Food Science and Engineering, Shandong Agricultural and Engineering University, Jinan, China
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Minghui Wang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Guixiang Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Bingwen Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Zhenghong Hao
- School of Food Science and Engineering, Shandong Agricultural and Engineering University, Jinan, China
| |
Collapse
|
7
|
Figueiredo JDA, Silva CRDP, Souza Oliveira MF, Norcino LB, Campelo PH, Botrel DA, Borges SV. Microencapsulation by spray chilling in the food industry: Opportunities, challenges, and innovations. Trends Food Sci Technol 2022; 120:274-287. [PMID: 36569414 PMCID: PMC9759634 DOI: 10.1016/j.tifs.2021.12.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 12/27/2022]
Abstract
Background The increasing demand for healthy eating habits and the emergence of the COVID-19 pandemic, which resulted in a health crisis and global economic slowdown, has led to the consumption of functional and practical foods. Bioactive ingredients can be an alternative for healthy food choices; however, most functional compounds are sensitive to the adverse conditions of processing and digestive tract, impairing its use in food matrices, and industrial-scale applications. Microencapsulation by spray chilling can be a viable alternative to reduce these barriers in food processing. Scope and approach This review discusses the use of spray chilling technique for microencapsulation of bioactive food ingredients. Although this technology is known in the pharmaceutical industry, it has been little exploited in the food sector. General aspects of spray chilling, the process parameters, advantages, and disadvantages are addressed. The feasibility and stability of encapsulated bioactive ingredients in food matrices and the bioavailability in vitro of solid lipid microparticles produced by spray chilling are also discussed. Main findings and conclusions Research on the microencapsulation of bioactive ingredients by spray chilling for use in foods has shown the effectiveness of this technique to encapsulate bioactive compounds for application in food matrices. Solid microparticles produced by spray chilling can improve the stability and bioavailability of bioactive ingredients. However, further studies are required, including the use of lipid-based encapsulating agents, process parameters, and novel formulations for application in food, beverages, and packaging, as well as in vivo studies to prove the effectiveness of the formulations.
Collapse
Affiliation(s)
- Jayne de Abreu Figueiredo
- Department of Food Science (DCA), Federal University of Lavras, P.O. Box 3037, 37200-900, Lavras, MG, Brazil,Corresponding author. Federal University of Lavras, Department of Food Science (DCA), Laboratory of Packaging and Encapsulation, P.O. Box 3037, 37200-000, Lavras/Minas Gerais, Brazil
| | - Carlos Ramon de Paula Silva
- Department of Food Science (DCA), Federal University of Lavras, P.O. Box 3037, 37200-900, Lavras, MG, Brazil
| | | | - Laís Bruno Norcino
- Biomaterials Engineering, Federal University of Lavras, P.O. Box 3037, 37200-900, Lavras, MG, Brazil
| | - Pedro Henrique Campelo
- Faculty of Agrarian Science, Federal University of Amazonas, 69077-000, Manaus, AM, Brazil
| | - Diego Alvarenga Botrel
- Department of Food Science (DCA), Federal University of Lavras, P.O. Box 3037, 37200-900, Lavras, MG, Brazil
| | - Soraia Vilela Borges
- Department of Food Science (DCA), Federal University of Lavras, P.O. Box 3037, 37200-900, Lavras, MG, Brazil
| |
Collapse
|
8
|
Bertoni S, Hasa D, Albertini B, Perissutti B, Grassi M, Voinovich D, Passerini N. Better and greener: sustainable pharmaceutical manufacturing technologies for highly bioavailable solid dosage forms. Drug Deliv Transl Res 2022; 12:1843-1858. [PMID: 34988827 DOI: 10.1007/s13346-021-01101-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 11/03/2022]
Abstract
In the last decades, Green Chemistry has been gaining widespread attention within the pharmaceutical field. It is thus very important to bring more sustainable approaches into the design and manufacture of effective oral drug delivery systems. This review focuses on spray congealing and mechanochemical activation, two technologies endorsing different principles of green chemistry, and at the same time, addressing some of the challenges related to the transformation of poorly water-soluble drugs in highly bioavailable solid dosage forms. We therefore present an overview of the basic principles, equipment, and application of these particle-engineering technologies, with specific attention to case studies carried out by the groups working in Italian Universities.
Collapse
Affiliation(s)
- Serena Bertoni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy
| | - Dritan Hasa
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Beatrice Albertini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy
| | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Alfonso Valerio, 6/1, 34127, Trieste, Italy
| | - Dario Voinovich
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127, Trieste, Italy
| | - Nadia Passerini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via S. Donato 19/2, 40127, Bologna, Italy.
| |
Collapse
|
9
|
Solvent-Free Fabrication of Biphasic Lipid-Based Microparticles with Tunable Structure. Pharmaceutics 2021; 14:pharmaceutics14010054. [PMID: 35056953 PMCID: PMC8780016 DOI: 10.3390/pharmaceutics14010054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/01/2022] Open
Abstract
Lipid-based biphasic microparticles are generally produced by long and complex techniques based on double emulsions. In this study, spray congealing was used as a solvent-free fabrication method with improved processability to transform water-in-oil non-aqueous emulsions into spherical solid lipid-based particles with a biphasic structure (b-MPs). Emulsions were prepared by melt emulsification using different compositions of lipids (Dynasan®118 and Compritol®888 ATO), surfactants (Cetylstearyl alcohol and Span®60) and hydrophilic carriers (PEGs, Gelucire®48/16 and Poloxamer 188). First, pseudo-ternary phase diagrams were constructed to identify the area corresponding to each emulsion type (coarse emulsion or microemulsion). The hydrophobicity of the lipid mostly affected the interfacial tension, and thus the microstructure of the emulsion. Emulsions were then processed by spray congealing and the obtained b-MPs were characterized in terms of thermal and chemical properties (by DSC and FT-IR), external and internal morphology (by SEM, CLSM and Raman mapping). Solid free-flowing spherical particles (main size range 200–355 µm) with different architectures were successfully produced: microemulsions led to the formation of particles with a homogeneous internal structure, while coarse emulsions generated “multicores-shell” particles consisting of variable size hydrophilic cores evenly distributed within the crystalline lipid phase. Depending on their composition and structure, b-MPs could achieve various release profiles, representing a more versatile system than microparticles based on a single lipid phase. The formulation and technological strategy proposed, provides a feasible and cost-effective way of fabricating b-MPs with tunable internal structure and release behavior.
Collapse
|
10
|
Bialas F, Reichinger D, Becker CF. Biomimetic and biopolymer-based enzyme encapsulation. Enzyme Microb Technol 2021; 150:109864. [DOI: 10.1016/j.enzmictec.2021.109864] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/02/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022]
|
11
|
Liquid Lipids Act as Polymorphic Modifiers of Tristearin-Based Formulations Produced by Melting Technologies. Pharmaceutics 2021; 13:pharmaceutics13071089. [PMID: 34371779 PMCID: PMC8308959 DOI: 10.3390/pharmaceutics13071089] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 11/27/2022] Open
Abstract
Despite the growing interest in lipid-based formulations, their polymorphism is still a challenge in the pharmaceutical industry. Understanding and controlling the polymorphic behavior of lipids is a key element for achieving the quality and preventing stability issues. This study aims to evaluate the impact of different oral-approved liquid lipids (LL) on the polymorphism, phase transitions and structure of solid lipid-based formulations and explore their influence on drug release. The LL investigated were isopropyl myristate, ethyl oleate, oleic acid, medium chain trigycerides, vitamin E acetate, glyceryl monooleate, lecithin and sorbitane monooleate. Spray-congealing was selected as an example of a melting-based solvent-free manufacturing method to produce microparticles (MPs) of tristearin (Dynasan®118). During the production process, tristearin MPs crystallized in the metastable α-form. Stability studied evidenced a slow phase transition to the stable β-polymorph overtime, with the presence of the α-form still detected after 60 days of storage at 25 °C. The addition of 10% w/w of LL promoted the transition of tristearin from the α-form to the stable β-form with a kinetic varying from few minutes to days, depending on the specific LL. The combination of various techniques (DSC, X-ray diffraction analysis, Hot-stage polarized light microscopy, SEM) showed that the addition of LL significantly modified the crystal structure of tristearin-based formulations at different length scales. Both the polymorphic form and the LL addition had a strong influence on the release behavior of a model hydrophilic drug (caffeine). Overall, the addition of LL can be considered an interesting approach to control triglyceride crystallization in the β-form. From the industrial viewpoint, this approach might be advantageous as any polymorphic change will be complete before storage, hence enabling the production of stable lipid formulations.
Collapse
|
12
|
Yu C, Lu P, Liu S, Li Q, Xu E, Gong J, Liu S, Yang C. Efficiency of Deoxynivalenol Detoxification by Microencapsulated Sodium Metabisulfite Assessed via an In Vitro Bioassay Based on Intestinal Porcine Epithelial Cells. ACS OMEGA 2021; 6:8382-8393. [PMID: 33817499 PMCID: PMC8015119 DOI: 10.1021/acsomega.1c00117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/10/2021] [Indexed: 05/11/2023]
Abstract
Deoxynivalenol (DON) contamination occurs in feeds and causes a reduction in growth performance, damage to the intestinal epithelial cells, and increased susceptibility to enteric pathogen challenge. Sodium metabisulfite (SMBS) has shown promise in reducing DON; however, SMBS quickly degrades under aqueous acidic conditions such as the environment within a stomach. Thus, protection of SMBS is required for effective delivery to the small intestine to detoxify DON. This study was to encapsulate SMBS into hydrogenated palm oil-based microparticles for its delivery to the small intestine and to evaluate its efficacy on DON detoxification in simulated intestinal fluids using IPEC-J2 cells in vitro. The diameter of the SMBS containing microparticles was 511 ± 135 μm, and the loading capacity of SMBS in the microparticles was 45.50%; 1.41% of the encapsulated SMBS (ES) was released into the simulated gastric fluid, and 66.39% of ES was progressively released into the simulated intestinal fluid within 4 h at 37 °C. In IPEC-J2 cells, when DON was treated with the simulated gastric fluid containing 0.5% ES for 2 h, then mixed with the simulated intestinal fluid (1:1) and incubated for 2 h, cytotoxicity was not observed. DON treated with 0.5 ES decreased the gene expression of inflammatory cytokines in the cells compared with DON alone and maintained the cell integrity. To conclude, the SMBS containing microparticles were stable in the simulated gastric fluid and allowed a progressive release of SMBS in the simulated intestinal fluid. The released SMBS in the simulated intestinal fluid effectively detoxified DON.
Collapse
Affiliation(s)
- Changning Yu
- Department
of Biosystems Engineering, University of
Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Peng Lu
- Department
of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Shangxi Liu
- Department
of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Qiao Li
- Department
of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Erhua Xu
- King
Techina Group, No. 8,
Yinxing Road, Renhe Street, Yuhang District, Hangzhou 311107, China
| | - Joshua Gong
- Guelph
Research and Development Centre, Agriculture Agri-Food Canada, Guelph, Ontario N1G 5C9, Canada
| | - Song Liu
- Department
of Biosystems Engineering, University of
Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Chengbo Yang
- Department
of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| |
Collapse
|
13
|
Mesa M. Chitosan and silica as dietary carriers: Potential application for β-galactosidase, silicon and calcium supplementation. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
14
|
Bertoni S, Tedesco D, Bartolini M, Prata C, Passerini N, Albertini B. Solid Lipid Microparticles for Oral Delivery of Catalase: Focus on the Protein Structural Integrity and Gastric Protection. Mol Pharm 2020; 17:3609-3621. [PMID: 32786955 PMCID: PMC8009523 DOI: 10.1021/acs.molpharmaceut.0c00666] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 01/22/2023]
Abstract
Protein inactivation either during the production process or along the gastrointestinal tract is the major problem associated with the development of oral delivery systems for biological drugs. This work presents an evaluation of the structural integrity and the biological activity of a model protein, catalase, after its encapsulation in glyceryl trimyristate-based solid lipid microparticles (SLMs) obtained by the spray congealing technology. Circular dichroism and fluorescence spectroscopies were used to assess the integrity of catalase released from SLMs. The results confirmed that no conformational change occurred during the production process and both the secondary and tertiary structures were retained. Catalase is highly sensitive to temperature and undergoes denaturation above 60 °C; nevertheless, spray congealing allowed the retention of most biological activity due to the loading of the drug at the solid state, markedly reducing the risk of denaturation. Catalase activity after exposure to simulated gastric conditions (considering both acidic pH and the presence of gastric digestive hydrolases) ranged from 35 to 95% depending on the carrier: increasing of both the fatty acid chain length and the degree of substitution of the glyceride enhanced residual enzyme activity. SLMs allowed the protein release in a simulated intestinal environment and were not cytotoxic against HT29 cells. In conclusion, the encapsulation of proteins into SLMs by spray congealing might be a promising strategy for the formulation of nontoxic and inexpensive oral biotherapeutic products.
Collapse
Affiliation(s)
- Serena Bertoni
- PharmTech
Lab, Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Daniele Tedesco
- Bio-Pharmaceutical
Analysis Section (Bio-PhASe), Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Manuela Bartolini
- Bio-Pharmaceutical
Analysis Section (Bio-PhASe), Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Cecilia Prata
- Biochemistry
Lab, Department of Pharmacy and Biotechnology, University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Nadia Passerini
- PharmTech
Lab, Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Beatrice Albertini
- PharmTech
Lab, Department of Pharmacy and Biotechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| |
Collapse
|
15
|
Spray congealed solid lipid microparticles as a sustained release delivery system for Gonadorelin [6-D-Phe]: Production, optimization and in vitro release behavior. Eur J Pharm Biopharm 2020; 154:18-32. [PMID: 32599272 DOI: 10.1016/j.ejpb.2020.06.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 11/20/2022]
Abstract
Sustained release lipid microparticles for a potential veterinary application were produced by the means of spray congealing using saturated triglycerides with respective surfactants. The spray congealing process was optimized using unloaded and loaded microparticles, revealing the highest impact of the spray flow on material loss. Yield could be optimized by increasing the spray flow as well as a reduction of the melt temperature from 90 to 75 °C. For the delivery system developed in this study, a release of around 15 days was targeted. The release profile was in first hand determined with the use of model substances (aspartame and tryptophan), before incorporating the decapeptide Gonadorelin [6-D-Phe]. Release could be controlled between 2 and 28 d, which was dependent on stability of microparticles upon incubation, type and concentration of emulsifier, as well as the used triglyceride. Differential scanning calorimetry and X-ray powder diffraction confirmed the crystallization behavior of C14 and C16-triglycerides in combination with various emulsifiers in different modification without impact on release.
Collapse
|
16
|
Perry SL, McClements DJ. Recent Advances in Encapsulation, Protection, and Oral Delivery of Bioactive Proteins and Peptides using Colloidal Systems. Molecules 2020; 25:E1161. [PMID: 32150848 PMCID: PMC7179163 DOI: 10.3390/molecules25051161] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/01/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
There are many areas in medicine and industry where it would be advantageous to orally deliver bioactive proteins and peptides (BPPs), including ACE inhibitors, antimicrobials, antioxidants, hormones, enzymes, and vaccines. A major challenge in this area is that many BPPs degrade during storage of the product or during passage through the human gut, thereby losing their activity. Moreover, many BPPs have undesirable taste profiles (such as bitterness or astringency), which makes them unpleasant to consume. These challenges can often be overcome by encapsulating them within colloidal particles that protect them from any adverse conditions in their environment, but then release them at the desired site-of-action, which may be inside the gut or body. This article begins with a discussion of BPP characteristics and the hurdles involved in their delivery. It then highlights the characteristics of colloidal particles that can be manipulated to create effective BPP-delivery systems, including particle composition, size, and interfacial properties. The factors impacting the functional performance of colloidal delivery systems are then highlighted, including their loading capacity, encapsulation efficiency, protective properties, retention/release properties, and stability. Different kinds of colloidal delivery systems suitable for encapsulation of BPPs are then reviewed, such as microemulsions, emulsions, solid lipid particles, liposomes, and microgels. Finally, some examples of the use of colloidal delivery systems for delivery of specific BPPs are given, including hormones, enzymes, vaccines, antimicrobials, and ACE inhibitors. An emphasis is on the development of food-grade colloidal delivery systems, which could be used in functional or medical food applications. The knowledge presented should facilitate the design of more effective vehicles for the oral delivery of bioactive proteins and peptides.
Collapse
Affiliation(s)
- Sarah L. Perry
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - David Julian McClements
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Food Science & Bioengineering, Zhejiang Gongshang University, 18 Xuezheng Street, Hangzhou 310018, China
| |
Collapse
|
17
|
Carboxymethylpachymaran-zein coated plant microcapsules-based β-galactosidase encapsulation system for long-term effective delivery. Food Res Int 2020; 128:108867. [DOI: 10.1016/j.foodres.2019.108867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/06/2019] [Accepted: 11/26/2019] [Indexed: 12/13/2022]
|
18
|
Bertoni S, Albertini B, Facchini C, Prata C, Passerini N. Glutathione-Loaded Solid Lipid Microparticles as Innovative Delivery System for Oral Antioxidant Therapy. Pharmaceutics 2019; 11:pharmaceutics11080364. [PMID: 31357663 PMCID: PMC6723327 DOI: 10.3390/pharmaceutics11080364] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/23/2019] [Accepted: 07/25/2019] [Indexed: 01/16/2023] Open
Abstract
The present study aimed to develop a novel formulation containing glutathione (GSH) as an oral antioxidant therapy for the treatment of oxidative stress-related intestinal diseases. To this purpose, solid lipid microparticles (SLMs) with Dynasan 114 and a mixture of Dynasan 114 and Dynasan 118 were produced by spray congealing technology. The obtained SLMs had main particle sizes ranging from 250 to 355 µm, suitable for oral administration. GSH was efficiently loaded into the SLMs at 5% or 20% w/w and the encapsulation process did not modify its chemico-physical properties, as demonstrated by FT-IR, DSC and HSM analysis. Moreover, in vitro release studies using biorelevant media showed that Dynasan 114-based SLMs could efficiently release GSH in various intestinal fluids, while 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay demonstrated the good radical scavenging activity of this formulation. Dynasan 114-based SLMs exhibited an excellent biocompatibility on intestinal HT-29 cells at concentrations up to 2000 μg/mL. SLMs containing GSH alone or together with another antioxidant agent (catalase) were effective in reducing intracellular reactive oxygen species (ROS) levels. Overall, this study indicated that spray congealed SLMs are a promising oral drug delivery system for the encapsulation of one or more biological antioxidant agents for local intestinal treatment.
Collapse
Affiliation(s)
- Serena Bertoni
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Beatrice Albertini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy.
| | - Carlotta Facchini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Cecilia Prata
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| | - Nadia Passerini
- Department of Pharmacy and BioTechnology, University of Bologna, Via S. Donato 19/2, 40127 Bologna, Italy
| |
Collapse
|
19
|
Bertoni S, Albertini B, Ferraro L, Beggiato S, Dalpiaz A, Passerini N. Exploring the use of spray congealing to produce solid dispersions with enhanced indomethacin bioavailability: In vitro characterization and in vivo study. Eur J Pharm Biopharm 2019; 139:132-141. [DOI: 10.1016/j.ejpb.2019.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/21/2019] [Accepted: 03/21/2019] [Indexed: 11/25/2022]
|
20
|
Dolci LS, Panzavolta S, Torricelli P, Albertini B, Sicuro L, Fini M, Bigi A, Passerini N. Modulation of Alendronate release from a calcium phosphate bone cement: An in vitro osteoblast-osteoclast co-culture study. Int J Pharm 2019; 554:245-255. [DOI: 10.1016/j.ijpharm.2018.11.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 01/12/2023]
|