1
|
Fahmy SA, Elghanam R, Rashid G, Youness RA, Sedky NK. Emerging tendencies for the nano-delivery of gambogic acid: a promising approach in oncotherapy. RSC Adv 2024; 14:4666-4691. [PMID: 38318629 PMCID: PMC10840092 DOI: 10.1039/d3ra08042k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
Despite the advancements in cancer therapies during the past few years, chemo/photo resistance, severe toxic effects, recurrence of metastatic tumors, and non-selective targeting remain incomprehensible. Thus, much effort has been spent exploring natural anticancer compounds endowed with biosafety and high effectiveness in cancer prevention and therapy. Gambogic acid (GA) is a promising natural compound in cancer therapy. It is the major xanthone component of the dry resin extracted from the Garcinia hanburyi Hook. f. tree. GA has significant antiproliferative effects on different types of cancer, and it exerts its anticancer activities through various pathways. Nonetheless, the clinical translation of GA has been hampered, partly due to its water insolubility, low bioavailability, poor pharmacokinetics, rapid plasma clearance, early degradation in blood circulation, and detrimental vascular irritation. Lately, procedures have been invented demonstrating the ability of nanoparticles to overcome the challenges associated with the clinical use of natural compounds both in vitro and in vivo. This review sheds light on the recent emerging trends for the nanodelivery of GA to cancer cells. To the best of our knowledge, no similar recent review described the different nanoformulations designed to improve the anticancer therapeutic activity and targeting ability of GA.
Collapse
Affiliation(s)
- Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Capital Cairo 11835 Egypt +20 1222613344
| | - Rawan Elghanam
- Nanotechnology Department, School of Sciences & Engineering, The American University in Cairo AUC Avenue, P.O. Box 74 New Cairo 11835 Egypt
| | - Gowhar Rashid
- Amity Medical School, Amity University Gurugram Haryana 122413 India
| | - Rana A Youness
- Biology and Biochemistry Department, Molecular Genetics Research Team (MGRT), Faculty of Biotechnology, German International University (GIU) Cairo 11835 Egypt
| | - Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation R5 New Garden City, New Administrative Capital Cairo Egypt
| |
Collapse
|
2
|
Nady DS, Hassan A, Amin MU, Bakowsky U, Fahmy SA. Recent Innovations of Mesoporous Silica Nanoparticles Combined with Photodynamic Therapy for Improving Cancer Treatment. Pharmaceutics 2023; 16:14. [PMID: 38276492 PMCID: PMC10821275 DOI: 10.3390/pharmaceutics16010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Cancer is a global health burden and is one of the leading causes of death. Photodynamic therapy (PDT) is considered an alternative approach to conventional cancer treatment. PDT utilizes a light-sensitive compound, photosensitizers (PSs), light irradiation, and molecular oxygen (O2). This generates cytotoxic reactive oxygen species (ROS), which can trigger necrosis and/ or apoptosis, leading to cancer cell death in the intended tissues. Classical photosensitizers impose limitations that hinder their clinical applications, such as long-term skin photosensitivity, hydrophobic nature, nonspecific targeting, and toxic cumulative effects. Thus, nanotechnology emerged as an unorthodox solution for improving the hydrophilicity and targeting efficiency of PSs. Among nanocarriers, mesoporous silica nanoparticles (MSNs) have gained increasing attention due to their high surface area, defined pore size and structure, ease of surface modification, stable aqueous dispersions, good biocompatibility, and optical transparency, which are vital for PDT. The advancement of integrated MSNs/PDT has led to an inspiring multimodal nanosystem for effectively treating malignancies. This review gives an overview of the main components and mechanisms of the PDT process, the effect of PDT on tumor cells, and the most recent studies that reported the benefits of incorporating PSs into silica nanoparticles and integration with PDT against different cancer cells.
Collapse
Affiliation(s)
- Doaa Sayed Nady
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Afnan Hassan
- Biomedical Sciences Program, Zewail City of Science and Technology, Giza 12578, Egypt
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Sherif Ashraf Fahmy
- Department of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Capital, Cairo 11835, Egypt
| |
Collapse
|
3
|
Lin B, Xiao F, Jiang J, Zhao Z, Zhou X. Engineered aptamers for molecular imaging. Chem Sci 2023; 14:14039-14061. [PMID: 38098720 PMCID: PMC10718180 DOI: 10.1039/d3sc03989g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023] Open
Abstract
Molecular imaging, including quantification and molecular interaction studies, plays a crucial role in visualizing and analysing molecular events occurring within cells or organisms, thus facilitating the understanding of biological processes. Moreover, molecular imaging offers promising applications for early disease diagnosis and therapeutic evaluation. Aptamers are oligonucleotides that can recognize targets with a high affinity and specificity by folding themselves into various three-dimensional structures, thus serving as ideal molecular recognition elements in molecular imaging. This review summarizes the commonly employed aptamers in molecular imaging and outlines the prevalent design approaches for their applications. Furthermore, it highlights the successful application of aptamers to a wide range of targets and imaging modalities. Finally, the review concludes with a forward-looking perspective on future advancements in aptamer-based molecular imaging.
Collapse
Affiliation(s)
- Bingqian Lin
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Feng Xiao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Jinting Jiang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Zhengjia Zhao
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| | - Xiang Zhou
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers-Ministry of Education, Department of Hematology of Zhongnan Hospital, Taikang Center for Life and Medical Sciences, Wuhan University Wuhan 430072 China
| |
Collapse
|
4
|
Negahdary M, Buoro RM, Bacil RP, Santos BG, Angnes L. Design of an electrochemical aptasensor in the presence of an array of gold nanostructure and a GO-MWCNTs nanocomposite: application in diagnosis of Alzheimer's disease. Mikrochim Acta 2023; 190:409. [PMID: 37733170 DOI: 10.1007/s00604-023-05995-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/09/2023] [Indexed: 09/22/2023]
Abstract
Alzheimer's disease (AD) is considered one of the main progressive chronic diseases in elderly individuals. Early diagnosis using related biomarkers, specifically beta-amyloid peptide (Aβ), allows finding expected treatment routes. Here, we developed an electrochemical aptasensing platform for AD by employing a glassy carbon electrode (GCE) modified with a layer of jagged gold (JG) nanostructure (diameter: 60-185 nm) and graphene oxide-carboxylic acid functionalized multiwalled carbon nanotubes (GO-c-MWCNTs) nanocomposite. These surface modifications acted as the signal amplifier and provided an optimum nano-interface substrate for immobilizing aptamer strands. The measurements of Aβ were performed via differential pulse voltammetry (DPV), and the aptasensor detected the analyte in a linear range from 0.1 pg mL-1 to 1 ng mL-1, with an estimated limit of detection (LOD) of about 0.088 pg mL-1 (S/N = 3). The aptasensor showed sufficient stability (11 days), reversibility (three times), and reproducibility (five times re-fabrication with relative standard deviation (RSD): 1.27). The potential interfering agents showed negligible impact on the sensing performance. Finally, the application of the aptasensor was evaluated in the presence of 10 serum samples, and the recovery values were from 93 to 110.1%.
Collapse
Affiliation(s)
- Masoud Negahdary
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| | - Rafael Martos Buoro
- Institute of Chemistry of São Carlos, University of São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, 13556-590, Brazil
| | - Raphael Prata Bacil
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil
- Instituto de Química, Universidade Estadual de Campinas-UNICAMP-Rua Josué de Castro, 126, Cidade Universitária, Campinas, SP, CEP 13083-861, Brazil
| | - Berlane Gomes Santos
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil
| | - Lúcio Angnes
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes, 748, São Paulo, 05508-000, Brazil.
| |
Collapse
|
5
|
Arif ST, Khan MA, Zaman SU, Sarwar HS, Raza A, Sarfraz M, Bin Jardan YA, Amin MU, Sohail MF. Enhanced Antidepressant Activity of Nanostructured Lipid Carriers Containing Levosulpiride in Behavioral Despair Tests in Mice. Pharmaceuticals (Basel) 2023; 16:1220. [PMID: 37765028 PMCID: PMC10535960 DOI: 10.3390/ph16091220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/12/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The potential of levosulpiride-loaded nanostructured lipid carriers (LSP-NLCs) for enhanced antidepressant and anxiolytic effects was evaluated in the current study. A forced swim test (FST) and tail suspension test (TST) were carried out to determine the antidepressant effect whereas anxiolytic activity was investigated using light-dark box and open field tests. Behavioral changes were evaluated in lipopolysaccharide-induced depressed animals. The access of LSP to the brain to produce therapeutic effects was estimated qualitatively by using fluorescently labeled LSP-NLCs. The distribution of LSP-NLCs was analyzed using ex vivo imaging of major organs after oral and intraperitoneal administration. Acute toxicity studies were carried out to assess the safety of LSP-NLCs in vivo. An improved antidepressant effect of LSP-NLCs on LPS-induced depression showed an increase in swimming time (237 ± 51 s) and struggling time (226 ± 15 s) with a reduction in floating (123 ± 51 s) and immobility time (134 ± 15 s) in FST and TST. The anxiolytic activity in the light-dark box and open field tests exhibited superiority over LSP dispersion. Near-infrared images of fluorescently labeled LSP-NLCs demonstrated the presence of coumarin dye in the brain after 1 h of administration. An acute toxicity study revealed no significant changes in organ-to-body weight ratio, serum biochemistry or tissue histology of major organs. It can be concluded that nanostructured lipid carriers can efficiently deliver LSP to the brain for improved therapeutic efficacy.
Collapse
Affiliation(s)
- Sadia Tabassam Arif
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan; (S.T.A.); (M.A.K.); (S.u.Z.)
| | - Muhammad Ayub Khan
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan; (S.T.A.); (M.A.K.); (S.u.Z.)
| | - Shahiq uz Zaman
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 44000, Pakistan; (S.T.A.); (M.A.K.); (S.u.Z.)
| | - Hafiz Shoaib Sarwar
- Faculty of Pharmaceutical Sciences, University of Central Punjab, Lahore 54000, Pakistan;
| | - Abida Raza
- Nanomedicine Research Laboratory, National Institute of Lasers and Optronics (NILOP), PIEAS, Islamabad 45650, Pakistan;
| | - Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain 64141, United Arab Emirates;
| | - Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, 35032 Marburg, Germany;
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences, Riphah International University Lahore Campus, Lahore 54000, Pakistan
| |
Collapse
|
6
|
Amin MU, Ali S, Ali MY, Fuhrmann DC, Tariq I, Seitz BS, Preis E, Brüßler J, Brüne B, Bakowsky U. Co-delivery of carbonic anhydrase IX inhibitor and doxorubicin as a promising approach to address hypoxia-induced chemoresistance. Drug Deliv 2022; 29:2072-2085. [PMID: 35848469 PMCID: PMC9297722 DOI: 10.1080/10717544.2022.2092234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Hypoxia, an oxygen-deprived condition of the tumor, is one of the major reasons for resistance to chemotherapy. Carbonic anhydrases are generally involved in pH homeostasis in normal conditions, but in solid tumors having a strong relation with hypoxia, the carbonic anhydrase IX (CA-IX) enzyme is overexpressed and results in an extracellular acidic environment. For most weakly basic anticancer drugs, including doxorubicin (Dox), the ionization in an acidic environment limits their cellular uptake, and consequently, the tumor exposure to the drug at sub-therapeutic concentration comes out as chemoresistance. Herein, a combined drug delivery system of liposomes and mesoporous silica nanoparticles (MSNPs) was developed for the co-delivery of the CA-IX enzyme inhibitor and Dox in hypoxic condition. The unique structure of MSNPs with higher surface area was utilized for higher drug loading and sustained release of Dox. Additionally, the biocompatible nature of liposomal coating as a second loading site for the CA-IX enzyme inhibitor has provided gatekeeping effects at pore opening to avoid premature drug release. Lipid coated MSNPs as a co-delivery system for Dox and the CA-IX inhibitor have synergistic cytotoxic effects against MDA-MB 231 breast cancer cells in hypoxic conditions. These findings assure the potential of this drug delivery system to overcome hypoxia-related chemoresistance.
Collapse
Affiliation(s)
- Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | - Sajid Ali
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany.,Department of Chemistry, Angström Laboratory, Uppsala University, Uppsala, Sweden
| | - Muhammad Yasir Ali
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany.,Faculty of Pharmaceutical Sciences, GC University Faisalabad, Faisalabad, Pakistan
| | - Dominik C Fuhrmann
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Imran Tariq
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany.,Punjab University College of Pharmacy, University of Punjab, Lahore, Pakistan
| | - Benjamin S Seitz
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | - Jana Brüßler
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| |
Collapse
|
7
|
Gandullo-Sánchez L, Ocaña A, Pandiella A. HER3 in cancer: from the bench to the bedside. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:310. [PMID: 36271429 PMCID: PMC9585794 DOI: 10.1186/s13046-022-02515-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022]
Abstract
The HER3 protein, that belongs to the ErbB/HER receptor tyrosine kinase (RTK) family, is expressed in several types of tumors. That fact, together with the role of HER3 in promoting cell proliferation, implicate that targeting HER3 may have therapeutic relevance. Furthermore, expression and activation of HER3 has been linked to resistance to drugs that target other HER receptors such as agents that act on EGFR or HER2. In addition, HER3 has been associated to resistance to some chemotherapeutic drugs. Because of those circumstances, efforts to develop and test agents targeting HER3 have been carried out. Two types of agents targeting HER3 have been developed. The most abundant are antibodies or engineered antibody derivatives that specifically recognize the extracellular region of HER3. In addition, the use of aptamers specifically interacting with HER3, vaccines or HER3-targeting siRNAs have also been developed. Here we discuss the state of the art of the preclinical and clinical development of drugs aimed at targeting HER3 with therapeutic purposes.
Collapse
Affiliation(s)
- Lucía Gandullo-Sánchez
- grid.428472.f0000 0004 1794 2467Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| | - Alberto Ocaña
- grid.411068.a0000 0001 0671 5785Hospital Clínico San Carlos and CIBERONC, 28040 Madrid, Spain
| | - Atanasio Pandiella
- grid.428472.f0000 0004 1794 2467Instituto de Biología Molecular y Celular del Cáncer, CSIC, IBSAL and CIBERONC, Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
8
|
Abu Dayyih A, Alawak M, Ayoub AM, Amin MU, Abu Dayyih W, Engelhardt K, Duse L, Preis E, Brüßler J, Bakowsky U. Thermosensitive liposomes encapsulating hypericin: Characterization and photodynamic efficiency. Int J Pharm 2021; 609:121195. [PMID: 34673168 DOI: 10.1016/j.ijpharm.2021.121195] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 09/20/2021] [Accepted: 10/06/2021] [Indexed: 12/22/2022]
Abstract
The potent photodynamic properties of Hypericin (Hyp) elicit a range of light-dose-dependent anti-tumor activities. However, its low water solubility hampers its broad application. Therefore, the administration of Hyp into biological systems requires drug carriers that would enable sufficient bioavailability. Stimuli-triggered nanocarriers, which are sensitive to endogenous or exogenous stimuli, have become an attractive replacement for conventional therapeutic regimens. Herein, we produced optimized Hyp thermosensitive liposomes (Hyp-TSL), self-assembled from DPPC, DSPC, DSPE-PEG2000. Hyp-TSL displayed a hydrodynamic diameter below 100 nm with an adequate encapsulation efficiency of 94.5 % and good colloidal stability. Hyp-TSL exhibited thermal sensitivity over a narrow range with a phase transition temperature of 41.1 °C, in which liposomal destruction was evident in AFM images after elevated temperature above the phase transition temperature. The uptake of TSL-Hyp into MDA-MB-231 cells was significantly increased with hyperthermic treatment of 42 °C when compared to the uptake at a average physiological temperature of 37 °C. Consequent enhancement of cellular reactive oxygen species was observed after hyperthermic treatment at 42 °C. The half-maximal inhibitory concentration of Hyp TSL was reduced by 3.8 fold after hyperthermic treatment at 42 °C in comparison to treatment at 37 °C. Hyp-TSL were considered safe for intravenous applications as compared by hemocompatibility studies, where coagulation time was <50 s and hemolytic potential was <10%. Conclusively, the enhancement in tumor drug availability correlated with improved therapeutic outcomes.
Collapse
Affiliation(s)
- Alice Abu Dayyih
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Mohamad Alawak
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Abdallah M Ayoub
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt
| | - Muhammad U Amin
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Wael Abu Dayyih
- College of Pharmacy, Mutah University, 61710 Alkarak, Jordan
| | - Konrad Engelhardt
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Lili Duse
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Jana Brüßler
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, Philipps Universität Marburg, 35037 Marburg, Germany.
| |
Collapse
|
9
|
Zhang X, Zhang X, Li Y, Zhong M, Zhao P, Guo C, Xu H, Wang T, Gao H. Brain Targeting and Aβ Binding Bifunctional Nanoparticles Inhibit Amyloid Protein Aggregation in APP/PS1 Transgenic Mice. ACS Chem Neurosci 2021; 12:2110-2121. [PMID: 34042421 DOI: 10.1021/acschemneuro.1c00035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is an insidious and progressive neurodegenerative disease with few disease-modifying treatments. A variety of peptide/protein drugs have neuroprotective effects, which brings new hope for the treatment of AD. However, the application of these drugs is limited because of their low specificity and difficulty in crossing the blood-brain barrier. Herein, using the phage display technology, we identified the Aβ oligomer binding peptide (KH) and the brain targeting peptide (IS). We combined these peptides to develop a bifunctional nanoparticle (IS@NP/KH) for the delivery of Aβ1-42 oligomer binding peptide into the brain. Intranasal administration of IS@NP/KH significantly attenuated the cognitive and behavioral deficits and reduced the Aβ deposition in the brain of an AD animal model (APPswe/PS 1d9 double-transgenic mice). Our results suggest that intranasal IS@NP/KH administration could be a novel therapeutic strategy for the treatment of AD.
Collapse
Affiliation(s)
- Xiancheng Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyu Zhang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - You Li
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Manli Zhong
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Pu Zhao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - He Xu
- Department of Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Tao Wang
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
| | - Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110819, China
| |
Collapse
|
10
|
Amin MU, Ali S, Ali MY, Tariq I, Nasrullah U, Pinnapreddy SR, Wölk C, Bakowsky U, Brüßler J. Enhanced efficacy and drug delivery with lipid coated mesoporous silica nanoparticles in cancer therapy. Eur J Pharm Biopharm 2021; 165:31-40. [PMID: 33962002 DOI: 10.1016/j.ejpb.2021.04.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/05/2021] [Accepted: 04/27/2021] [Indexed: 01/16/2023]
Abstract
The exposure of cancer cells to subtherapeutic drug concentrations results in multidrug resistance (MDR). The uniqueness of mesoporous silica nanoparticles (MSNPs) with larger surface area for higher drug loading can solve the issue by delivering higher amounts of chemotherapeutics to the cancer cells. However, premature drug release and lower biocompatibility remain challenging. Lipid coating of MSNPs at the same time, can enhance the stability and biocompatibility of nanocarriers. Furthermore, the lipid coating can reduce the systemic drug release and deliver higher amounts to the tumor site. Herein, lipid coated MSNPs were prepared by utilizing cationic liposomes and further investigations were made. Our studies have shown the higher entrapment of doxorubicin (Dox) to MSNPs due to availability of porous structure. Lipid coating could provide a barrier to sustain the release of drug along with reduced premature leakage. In addition, the biocompatibility and enhanced interaction of cationic liposomes to cell membranes resulted in better cellular uptake. Lipid coated silica nanoparticles have shown higher cellular toxicity as compared to non-lipid coated particles. The increase in cytotoxicity with time supports the hypothesis of sustained release of drug from lipid coated MSNPs. We propose the Lip-Dox-MSNPs as an effective approach to treat cancer by delivering and maintaining effective concentration of drugs to the tumor site without systemic side effects.
Collapse
Affiliation(s)
- Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany; Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Sajid Ali
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany; Department of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Muhammad Yasir Ali
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany; Faculty of Pharmaceutical Sciences, GC University Faisalabad, Faisalabad, Pakistan
| | - Imran Tariq
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany; Punnjab University College of Pharmacy, University of Punjab, Lahore, Pakistan
| | - Usman Nasrullah
- Institute of General Pharmacology and Toxicology, Goethe University Frankfurt am Main, Germany
| | | | - Christian Wölk
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany; Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine Leipzig University, Leipzig, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | - Jana Brüßler
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany.
| |
Collapse
|
11
|
Ali S, Amin MU, Tariq I, Sohail MF, Ali MY, Preis E, Ambreen G, Pinnapireddy SR, Jedelská J, Schäfer J, Bakowsky U. Lipoparticles for Synergistic Chemo-Photodynamic Therapy to Ovarian Carcinoma Cells: In vitro and in vivo Assessments. Int J Nanomedicine 2021; 16:951-976. [PMID: 33603362 PMCID: PMC7884954 DOI: 10.2147/ijn.s285950] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/17/2020] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Lipoparticles are the core-shell type lipid-polymer hybrid systems comprising polymeric nanoparticle core enveloped by single or multiple pegylated lipid layers (shell), thereby melding the biomimetic properties of long-circulating vesicles as well as the mechanical advantages of the nanoparticles. The present study was aimed at the development of such an integrated system, combining the photodynamic and chemotherapeutic approaches for the treatment of multidrug-resistant cancers. METHODS For this rationale, two different sized Pirarubicin (THP) loaded poly lactic-co-glycolic acid (PLGA) nanoparticles were prepared by emulsion solvent evaporation technique, whereas liposomes containing Temoporfin (mTHPC) were prepared by lipid film hydration method. Physicochemical and morphological characterizations were done using dynamic light scattering, laser doppler anemometry, atomic force microscopy, and transmission electron microscopy. The quantitative assessment of cell damage was determined using MTT and reactive oxygen species (ROS) assay. The biocompatibility of the nanoformulations was evaluated with serum stability testing, haemocompatibility as well as acute in vivo toxicity using female albino (BALB/c) mice. RESULTS AND CONCLUSION The mean hydrodynamic diameter of the formulations was found between 108.80 ± 2.10 to 405.70 ± 10.00 nm with the zeta (ζ) potential ranging from -12.70 ± 1.20 to 5.90 ± 1.10 mV. Based on the physicochemical evaluations, the selected THP nanoparticles were coated with mTHPC liposomes to produce lipid-coated nanoparticles (LCNPs). A significant (p< 0.001) cytotoxicity synergism was evident in LCNPs when irradiated at 652 nm, using an LED device. No incidence of genotoxicity was observed as seen with the comet assay. The LCNPs decreased the generalized in vivo toxicity as compared to the free drugs and was evident from the serum biochemical profile, visceral body index, liver function tests as well as renal function tests. The histopathological examinations of the vital organs revealed no significant evidence of toxicity suggesting the safety and efficacy of our lipid-polymer hybrid system.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Imran Tariq
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
- Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore, Pakistan
- Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Muhammad Yasir Ali
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
- Faculty of Pharmaceutical Sciences, GC University Faisalabad, Faisalabad, Pakistan
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | - Ghazala Ambreen
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | | | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | - Jens Schäfer
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| |
Collapse
|
12
|
Lagreca E, Onesto V, Di Natale C, La Manna S, Netti PA, Vecchione R. Recent advances in the formulation of PLGA microparticles for controlled drug delivery. Prog Biomater 2020; 9:153-174. [PMID: 33058072 PMCID: PMC7718366 DOI: 10.1007/s40204-020-00139-y] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Polymeric microparticles (MPs) are recognized as very popular carriers to increase the bioavailability and bio-distribution of both lipophilic and hydrophilic drugs. Among different kinds of polymers, poly-(lactic-co-glycolic acid) (PLGA) is one of the most accepted materials for this purpose, because of its biodegradability (due to the presence of ester linkages that are degraded by hydrolysis in aqueous environments) and safety (PLGA is a Food and Drug Administration (FDA)-approved compound). Moreover, its biodegradability depends on the number of glycolide units present in the structure, indeed, lower glycol content results in an increased degradation time and conversely a higher monomer unit number results in a decreased time. Due to this feature, it is possible to design and fabricate MPs with a programmable and time-controlled drug release. Many approaches and procedures can be used to prepare MPs. The chosen fabrication methodology influences size, stability, entrapment efficiency, and MPs release kinetics. For example, lipophilic drugs as chemotherapeutic agents (doxorubicin), anti-inflammatory non-steroidal (indomethacin), and nutraceuticals (curcumin) were successfully encapsulated in MPs prepared by single emulsion technique, while water-soluble compounds, such as aptamer, peptides and proteins, involved the use of double emulsion systems to provide a hydrophilic compartment and prevent molecular degradation. The purpose of this review is to provide an overview about the preparation and characterization of drug-loaded PLGA MPs obtained by single, double emulsion and microfluidic techniques, and their current applications in the pharmaceutical industry.Graphic abstract.
Collapse
Affiliation(s)
- Elena Lagreca
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Valentina Onesto
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Concetta Di Natale
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| | - Sara La Manna
- Department of Pharmacy, CIRPEB: Centro Interuniversitario di Ricerca sui Peptidi Bioattivi, University of Naples "Federico II", Via Mezzocannone 16, 80134, Naples, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy
- Department of Chemical, Materials and Industrial Production Engineering (DICMaPI), University of Naples Federico II, P.le Tecchio 80, 80125, Naples, Italy
| | - Raffaele Vecchione
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy.
- Interdisciplinary Research Center of Biomaterials, CRIB, University Federico II, P.leTecchio 80, 80125, Naples, Italy.
| |
Collapse
|