1
|
Anghelache M, Voicu G, Anton R, Safciuc F, Boteanu D, Deleanu M, Turtoi M, Simionescu M, Manduteanu I, Calin M. Inflammation resolution-based treatment of atherosclerosis using biomimetic nanocarriers loaded with specialized pro-resolving lipid mediators. Mater Today Bio 2025; 32:101733. [PMID: 40255582 PMCID: PMC12008601 DOI: 10.1016/j.mtbio.2025.101733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/22/2025] Open
Abstract
Recent studies have shown that chronic inflammation in atherosclerotic (ATH) lesions is due to an inability to resolve the inflammatory response. We evaluated the therapeutic potential of specialized pro-resolving mediators (SPMs) incorporated into biomimetic lipid nanoemulsions covered with macrophage membranes (Bio-LN/SPMs) to enhance their stability, targeting, and bioactivity in resolving atherosclerotic plaque inflammation. We utilized both in vitro and in vivo experimental models to test this hypothesis. In vitro, we found that Bio-LN/SPMs significantly reduced the inflammatory markers VCAM-1, MCP-1 in TNF-α-activated endothelial and smooth muscle cells, and iNOS, and NLRP3 in LPS-activated macrophages. In contrast, free SPMs exhibited a more modest effect. In vivo, the i.v. administration of Bio-LN/SPMs in ApoE-deficient mice with progressive atherosclerotic lesions developed after administration for 4 and 8 weeks of a high-fat diet, reduced plasma triglycerides, improved renal function, and decreased plasma proteins associated with complement activation and inflammation (i.e. C4d, C5b-9, IL-6, and MCP-1) to a greater extent than other treatment groups. Bio-LN/SPMs also affected circulated monocyte subpopulations by increasing the percentage of anti-inflammatory Ly6Clow monocytes and reducing that of pro-inflammatory Ly6Chigh monocytes. Additionally, they promoted the transition of macrophages in atherosclerotic plaques to a reparative M2 phenotype. They decreased the production of TNF-α, IL-1β, and IL-6 cytokines, along with lipid deposits in the aorta of ApoE-deficient mice. These findings demonstrate the improved therapeutic efficacy of Bio-LN/SPMs compared to unincorporated SPMs and standard nanoemulsions (LN/SPMs), emphasizing their potential as a novel approach for treating atherosclerosis and other inflammatory diseases.
Collapse
Affiliation(s)
- Maria Anghelache
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Geanina Voicu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Ruxandra Anton
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Florentina Safciuc
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Delia Boteanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Mariana Deleanu
- “Liquid and Gas Chromatography” Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Mihaela Turtoi
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Maya Simionescu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Ileana Manduteanu
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| | - Manuela Calin
- "Medical and Pharmaceutical Bionanotechnologies" Department, Institute of Cellular Biology and Pathology "Nicolae Simionescu" of the Romanian Academy, 050568, Bucharest, Romania
| |
Collapse
|
2
|
Sun X, Jia X, Tan Z, Fan D, Chen M, Cui N, Liu A, Liu D. Oral Nanoformulations in Cardiovascular Medicine: Advances in Atherosclerosis Treatment. Pharmaceuticals (Basel) 2024; 17:919. [PMID: 39065770 PMCID: PMC11279631 DOI: 10.3390/ph17070919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Atherosclerosis (AS) is the formation of atherosclerotic plaques on the walls of the arteries, causing them to narrow. If this occurs in the coronary arteries, the blood vessels may be completely blocked, resulting in myocardial infarction; if it occurs in the blood vessels of the brain, the blood vessels may be blocked, resulting in cerebral infarction, i.e., stroke. Studies have shown that the pathogenesis of atherosclerosis involves the processes of inflammation, lipid infiltration, oxidative stress, and endothelial damage, etc. SIRT, as a key factor regulating the molecular mechanisms of oxidative stress, inflammation, and aging, has an important impact on the pathogenesis of plaque formation, progression, and vulnerability. Statistics show that AS accounts for about 50 per cent of deaths in Western countries. Currently, oral medication is the mainstay of AS treatment, but its development is limited by side effects, low bioavailability and other unfavourable factors. In recent years, with the rapid development of nano-preparations, researchers have combined statins and natural product drugs within nanopreparations to improve their bioavailability. Based on this, this paper summarises the main pathogenesis of AS and also proposes new oral nanoformulations such as liposomes, nanoparticles, nanoemulsions, and nanocapsules to improve their application in the treatment of AS.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Aidong Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.S.); (X.J.); (Z.T.); (D.F.); (M.C.); (N.C.)
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, China; (X.S.); (X.J.); (Z.T.); (D.F.); (M.C.); (N.C.)
| |
Collapse
|
3
|
de Castro Leão M, di Piazza I, Caria SJ, Broering MF, Farsky SHP, Uchiyama MK, Araki K, Bonjour K, Cogliati B, Pohlmann AR, Guterres SS, Castro IA. Effect of nanocapsules containing docosahexaenoic acid in mice with chronic inflammation. Biomed Pharmacother 2023; 167:115474. [PMID: 37741249 DOI: 10.1016/j.biopha.2023.115474] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/06/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Omega 3 fatty acids, such as docosahexaenoic acid (DHA) have been widely consumed as supplements to control chronic inflammation. Nanocapsules containing DHA (MLNC-DHA-a1) were developed and showed excellent stability. Thus, our objective was to evaluate the effect of MLNC-DHA-a1 nanocapsules on biomarkers of chronic inflammation. METHODS Cells viability was determined by flow cytometry. The uptake of MLNC-DHA-a1 nanocapsules by macrophages and their polarization were determined. In vivo, LDLr(-,-) mice were fed a Western diet to promote chronic inflammation and were treated with MLNC-DHA-a1 nanocapsules, intravenously injected via the caudal vein once a week for 8 weeks. RESULTS MLNC-DHA-a1 nanocapsules decreased the concentration of TNFα (p = 0.02) in RAW 264.7 cells compared to the non-treated group (NT), with no changes in IL-10 (p = 0.29). The nanocapsules also exhibited an increase in the M2 (F4/80+ CD206) phenotype (p < 0.01) in BMDM cells. In vivo, no difference in body weight was observed among the groups, suggesting that the intervention was well tolerated. However, compared to the CONT group, MLNC-DHA-a1 nanocapsules led to an increase in IL-6 (90.45 ×13.31 pg/mL), IL-1β (2.76 ×1.34 pg/mL) and IL-10 (149.88 ×2.51 pg/mL) levels in plasma. CONCLUSION MLNC-DHA-a1 nanocapsules showed the potential to promote in vitro macrophage polarization and were well-tolerated in vivo. However, they also increased systemic pro-inflammatory cytokines. Therefore, considering that this immune response presents a limitation for clinical trials, further studies are needed to identify the specific compound in MLNC-DHA-a1 that triggered the immune response. Addressing this issue is essential, as MLNC-DHA-a1 tissue target nanocapsules could contribute to reducing chronic inflammation.
Collapse
Affiliation(s)
- Matheus de Castro Leão
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Isabella di Piazza
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Sarah Jorge Caria
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Milena Fronza Broering
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical & Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Mayara Klimuk Uchiyama
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Kennedy Bonjour
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Adriana Raffin Pohlmann
- Department of Organic Chemistry, Institute of Chemistry, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Silvia Stanisçuaski Guterres
- Department of Production and Drugs Control, Pharmaceutical Faculty, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Inar Alves Castro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil.
| |
Collapse
|
4
|
Omidian H, Babanejad N, Cubeddu LX. Nanosystems in Cardiovascular Medicine: Advancements, Applications, and Future Perspectives. Pharmaceutics 2023; 15:1935. [PMID: 37514121 PMCID: PMC10386572 DOI: 10.3390/pharmaceutics15071935] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Cardiovascular diseases (CVDs) remain a leading cause of morbidity and mortality globally. Despite significant advancements in the development of pharmacological therapies, the challenges of targeted drug delivery to the cardiovascular system persist. Innovative drug-delivery systems have been developed to address these challenges and improve therapeutic outcomes in CVDs. This comprehensive review examines various drug delivery strategies and their efficacy in addressing CVDs. Polymeric nanoparticles, liposomes, microparticles, and dendrimers are among the drug-delivery systems investigated in preclinical and clinical studies. Specific strategies for targeted drug delivery, such as magnetic nanoparticles and porous stent surfaces, are also discussed. This review highlights the potential of innovative drug-delivery systems as effective strategies for the treatment of CVDs.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Niloofar Babanejad
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| | - Luigi X Cubeddu
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA
| |
Collapse
|
5
|
Broering MF, Leão MDC, da Rocha GHO, Scharf P, Xavier LF, Alves ADCS, Castro I, Reutelingsperger C, Uchiyama MK, Araki K, Guterres SS, Pohlmann AR, Farsky SHP. Development of Annexin A1-surface-functionalized metal-complex multi-wall lipid core nanocapsules and effectiveness on experimental colitis. Eur J Pharm Biopharm 2022; 181:49-59. [PMID: 36334840 DOI: 10.1016/j.ejpb.2022.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Annexin A1 (AnxA1), a 37KDa protein, is secreted by inflammatory and epithelial cells and displays anti-inflammatory and wound healing activities in intestinal bowel diseases. Herein, we aimed to functionalize recombinant AnxA1 (AnxA1) on multi-wall lipid core nanocapsules (MLNC) and investigate its effectiveness on experimental colitis. MLNC were prepared by covering lipid core nanocapsules (LNC) with chitosan, which coordinates metals to specific protein chemisorption sites. Therefore, MLNC were linked to Zn2+ and AnxA1 was added to form MLNC-AnxA1. LNC, MLNC and MLNC-AnxA1 presented average size of 129, 152 and 163 nm, respectively, and similar polydispersity indexes (0.xx); incorporation of chitosan inverted the negative potential zeta; the coordination efficiency of AnxA1 was 92.22 %, and transmission electron microscope photomicrograph showed MLNC-AnxA1 had a spherical shape. The effectiveness of MLNC-AnxA1 was measured in Dextran Sulfate Sodium (DSS)-induced colitis in male C57BL/6 mice. DSS (2 % solution) was administered from days 1-6; saline, LNC, MLNC, MLNC-AnxA1 or AnxA1 were administered, once a day, by oral or intraperitoneal (i.p.) routes, from days 6-9. Clinical parameters of the disease were measured from day 0-10 and gut tissues were collected for histopathology, immunohistochemistry and flow cytometry analyses. Only i.p. treatment with MLNC-AnxA1 reduced weight loss, diarrhea and disease activity index, and prevented loss of colonic structure integrity; induced the switch of macrophages into M2 phenotype in the lamina propria; recovered the colonic histoarchitecture by decreasing dysplasia of crypts, inflammation and ulcerations; restored the expression of claudin-1 Zonna-occludens-1 tight junctions in the inflamed gut; and induced stem cell proliferation in intestinal crypts. Associated, data highlight the functionalization of MLNC with AnxA1 as a tool to improve the local actions of such protein in the inflamed gut by inducing resolution of inflammation and tissue repair.
Collapse
Affiliation(s)
- Milena Fronza Broering
- Department of Clinical & Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | - Matheus de Castro Leão
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | | | - Pablo Scharf
- Department of Clinical & Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | - Luana Fillipi Xavier
- Department of Clinical & Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | - Aline de Cristo Soares Alves
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Inar Castro
- Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil
| | - Chris Reutelingsperger
- Faculty of Health, Medicine and Life Sciences, Part of Maastricht University Medical Center, Part of Maastricht University, 6211 LK Maastricht, the Netherlands
| | - Mayara Klimuk Uchiyama
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, SP, Brazil
| | - Koiti Araki
- Department of Fundamental Chemistry, Institute of Chemistry, University of Sao Paulo, SP, Brazil
| | - Sílvia Stanisçuaski Guterres
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Raffin Pohlmann
- Postgraduate Program in Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Sandra Helena Poliselli Farsky
- Department of Clinical & Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of Sao Paulo, SP, Brazil.
| |
Collapse
|
6
|
Nanoparticle-Based Modification of the DNA Methylome: A Therapeutic Tool for Atherosclerosis? CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular epigenomics is a relatively young field of research, yet it is providing novel insights into gene regulation in the atherosclerotic arterial wall. That information is already pointing to new avenues for atherosclerosis (AS) prevention and therapy. In parallel, advances in nanoparticle (NP) technology allow effective targeting of drugs and bioactive molecules to the vascular wall. The partnership of NP technology and epigenetics in AS is just beginning and promises to produce novel exciting candidate treatments. Here, we briefly discuss the most relevant recent advances in the two fields. We focus on AS and DNA methylation, as the DNA methylome of that condition is better understood in comparison with the rest of the cardiovascular disease field. In particular, we review the most recent advances in NP-based delivery systems and their use for DNA methylome modification in inflammation. We also address the promises of DNA methyltransferase inhibitors for prevention and therapy. Furthermore, we emphasize the unique challenges in designing therapies that target the cardiovascular epigenome. Lastly, we touch the issue of human exposure to industrial NPs and its impact on the epigenome as a reminder of the undesired effects that any NP-based therapy must avoid to be apt for secondary prevention of AS.
Collapse
|
7
|
Tan JYB, Yoon BK, Cho NJ, Lovrić J, Jug M, Jackman JA. Lipid Nanoparticle Technology for Delivering Biologically Active Fatty Acids and Monoglycerides. Int J Mol Sci 2021; 22:9664. [PMID: 34575831 PMCID: PMC8465605 DOI: 10.3390/ijms22189664] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/03/2021] [Accepted: 09/05/2021] [Indexed: 12/12/2022] Open
Abstract
There is enormous interest in utilizing biologically active fatty acids and monoglycerides to treat phospholipid membrane-related medical diseases, especially with the global health importance of membrane-enveloped viruses and bacteria. However, it is difficult to practically deliver lipophilic fatty acids and monoglycerides for therapeutic applications, which has led to the emergence of lipid nanoparticle platforms that support molecular encapsulation and functional presentation. Herein, we introduce various classes of lipid nanoparticle technology and critically examine the latest progress in utilizing lipid nanoparticles to deliver fatty acids and monoglycerides in order to treat medical diseases related to infectious pathogens, cancer, and inflammation. Particular emphasis is placed on understanding how nanoparticle structure is related to biological function in terms of mechanism, potency, selectivity, and targeting. We also discuss translational opportunities and regulatory needs for utilizing lipid nanoparticles to deliver fatty acids and monoglycerides, including unmet clinical opportunities.
Collapse
Affiliation(s)
- Jia Ying Brenda Tan
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Bo Kyeong Yoon
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 637553, Singapore;
| | - Jasmina Lovrić
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.L.); (M.J.)
| | - Mario Jug
- Department of Pharmaceutical Technology, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia; (J.L.); (M.J.)
| | - Joshua A. Jackman
- School of Chemical Engineering and Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon 16419, Korea; (J.Y.B.T.); (B.K.Y.)
| |
Collapse
|