1
|
Sharma A, Cazade P, Khamar D, Hayden A, Thompson D, Hughes H. On the role of excipients in biopharmaceuticals manufacture: Modelling-guided formulation identifies the protective effect of arginine hydrochloride excipient on spray-dried Olipudase alfa recombinant protein. Int J Pharm 2024; 662:124466. [PMID: 39009288 DOI: 10.1016/j.ijpharm.2024.124466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Biopharmaceuticals are labile biomolecules that must be safeguarded to ensure the safety, quality, and efficacy of the product. Batch freeze-drying is an established means of manufacturing solid biopharmaceuticals but alternative technologies such as spray-drying may be more suitable for continuous manufacturing of inhalable biopharmaceuticals. Here we assessed the feasibility of spray-drying Olipudase alfa, a novel parenteral therapeutic enzyme, by evaluating some of its critical quality attributes (CQAs) in a range of excipients, namely, trehalose, arginine (Arg), and arginine hydrochloride (Arg-HCl) in the sucrose/methionine base formulation. The Arg-HCl excipient produced the best gain in CQAs of spray-dried Olipudase with a 63% reduction in reconstitution time and 83% reduction in the optical density of the solution. Molecular dynamics simulations revealed the atomic-scale mechanism of the protein-excipient interactions, substantiating the experimental results. The Arg-HCl effect was explained by the calculated thermal stability and structural order of the protein wherein Arg-HCl acted as a crowding agent to suppress protein aggregation and promote stabilization of Olipudase post-spray-drying. Therefore, by rational selection of appropriate excipients, our experimental and modelling dataset confirms spray-drying is a promising technology for the manufacture of Olipudase and demonstrates the potential to accelerate development of continuous manufacturing of parenteral biopharmaceuticals.
Collapse
Affiliation(s)
- Ashutosh Sharma
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), South East Technological University (SETU), Main Campus, Cork Road, Waterford X91K0EK, Ireland
| | - Pierre Cazade
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland
| | - Dikshitkumar Khamar
- Sanofi, Manufacturing Science, Analytics and Technology (MSAT), IDA Industrial Park Waterford, X91TP27, Ireland
| | - Ambrose Hayden
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), South East Technological University (SETU), Main Campus, Cork Road, Waterford X91K0EK, Ireland
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick V94 T9PX, Ireland.
| | - Helen Hughes
- Pharmaceutical and Molecular Biotechnology Research Centre (PMBRC), South East Technological University (SETU), Main Campus, Cork Road, Waterford X91K0EK, Ireland.
| |
Collapse
|
2
|
Barros CHN, Alfaro M, Costello C, Wang F, Sapre K, Rastogi S, Chiruvolu S, Connolly J, Topp EM. Effect of Atomic Layer Coating on the Stability of Solid Myoglobin Formulations. Mol Pharm 2023; 20:4086-4099. [PMID: 37466053 DOI: 10.1021/acs.molpharmaceut.3c00229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The effects of atomic layer (ALC) coating on physical properties and storage stability were examined in solid powders containing myoglobin, a model protein. Powders containing myoglobin and mannitol (1:1 w/w) were prepared by lyophilization or spray drying and subjected to aluminum oxide or silicon oxide ALC coating. Uncoated samples of these powders as well as coated and uncoated samples of myoglobin as received served as controls. After preparation (t0), samples were analyzed for moisture content, reconstitution time, myoglobin secondary structure, crystallinity, and protein aggregate content. Samples were stored for 3 months (t3) under controlled conditions (53% RH, 40 °C) in both open and closed vials and then analyzed as above. At t3, the recovery of soluble native (i.e., monomeric) protein depended on formulation, coating type, and drying method and was up to 2-fold greater in coated samples than in uncoated controls. Promisingly, some samples with high recovery also showed low soluble aggregate content (<10%) at t3 and low total monomer loss; the latter was correlated to sample moisture content. Overall, the results demonstrate that ALC coatings can stabilize solid protein formulations during storage, providing benefits over uncoated controls.
Collapse
Affiliation(s)
- Caio H N Barros
- National Institution for Bioprocessing Research and Training (NIBRT), Dublin A94 X099, Ireland
| | - Manuel Alfaro
- National Institution for Bioprocessing Research and Training (NIBRT), Dublin A94 X099, Ireland
| | - Cormac Costello
- National Institution for Bioprocessing Research and Training (NIBRT), Dublin A94 X099, Ireland
| | - Fei Wang
- Applied Materials, Inc., Santa Clara, California 58039, United States
| | - Kedar Sapre
- Applied Materials, Inc., Santa Clara, California 58039, United States
| | - Suneel Rastogi
- Applied Materials, Inc., Santa Clara, California 58039, United States
| | | | - James Connolly
- Applied Materials, Inc., Santa Clara, California 58039, United States
| | - Elizabeth M Topp
- National Institution for Bioprocessing Research and Training (NIBRT), Dublin A94 X099, Ireland
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Fiedler D, Fink E, Aigner I, Leitinger G, Keller W, Roblegg E, Khinast JG. A multi-step machine learning approach for accelerating QbD-based process development of protein spray drying. Int J Pharm 2023:123133. [PMID: 37315637 DOI: 10.1016/j.ijpharm.2023.123133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/16/2023]
Abstract
This study proposes a new material-efficient multi-step machine learning (ML) approach for the development of a design space (DS) for spray drying proteins. Typically, a DS is developed by performing a design of experiments (DoE) with the spray dryer and the protein of interest, followed by deriving the DoE models via multi-variate regression. This approach was followed as a benchmark to the ML approach. The more complex the process and required accuracy of the final model is, the more experiments are necessary. However, most biologics are expensive and thus experiments should be kept to a minimum. Therefore, the suitability of using a surrogate material and ML for the development of a DS was investigated. To this end, a DoE was performed with the surrogate and the data used for training the ML approach. The ML and DoE model predictions were compared to measurements of three protein-based validation runs. The suitability of using lactose as surrogate was investigated and advantages of the proposed approach were demonstrated. Limitations were identified at protein concentrations >35mg/ml and particle sizes of x50>6µm. Within the investigated DS protein secondary structure was preserved, and most process settings, resulted in yields >75% and residual moisture <10wt.%.
Collapse
Affiliation(s)
- Daniela Fiedler
- Graz University of Technology, Institute of Process and Particle Engineering, Inffeldgasse 13/III, 8010 Graz, Austria
| | - Elisabeth Fink
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/II, 8010 Graz, Austria
| | - Isabella Aigner
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/II, 8010 Graz, Austria
| | - Gerd Leitinger
- Medical University of Graz, Division of Cell Biology, Histology, and Embryology, Gottfried Schatz Research Center, Neue Stiftingtalstraße 6/II, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Walter Keller
- University of Graz, Institute of Molecular Biosciences, Department of Structural Biology, Humboldstraße 50/III, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Eva Roblegg
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/II, 8010 Graz, Austria; University of Graz, Institute of Pharmaceutical Sciences, Pharmaceutical Technology & Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| | - Johannes G Khinast
- Graz University of Technology, Institute of Process and Particle Engineering, Inffeldgasse 13/III, 8010 Graz, Austria; Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/II, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|
4
|
Mossadeq S, Shah R, Shah V, Bagul M. Formulation, Device, and Clinical Factors Influencing the Targeted Delivery of COVID-19 Vaccines to the Lungs. AAPS PharmSciTech 2022; 24:2. [PMID: 36416999 PMCID: PMC9684852 DOI: 10.1208/s12249-022-02455-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
The COVID-19 pandemic has proven to be an unprecedented health crisis in the human history with more than 5 million deaths worldwide caused to the SARS-CoV-2 and its variants ( https://www.who.int/emergencies/diseases/novel-coronavirus-2019 ). The currently authorized lipid nanoparticle (LNP)-encapsulated mRNA vaccines have been shown to have more than 90% vaccine efficacy at preventing COVID-19 illness (Baden et al. New England J Med 384(5):403-416, 2021; Thomas et al., 2021). In addition to vaccines, other small molecules belonging to the class of anti-viral and anti-inflammatory compounds have also been prescribed to reduce the viral proliferation and the associated cytokine storm. These anti-viral and anti-inflammatory compounds have also been shown to be effective in reducing COVID-19 exacerbations especially in reducing the host inflammatory response to SARS-CoV-2. However, all of the currently FDA-authorized vaccines for COVID-19 are meant for intramuscular injection directly into the systemic circulation. Also, most of the small molecules investigated for their anti-COVID-19 efficacy have also been explored using the intravenous route with a few of them explored for the inhalation route (Ramakrishnan et al. Lancet Respir Med 9:763-772, 2021; Horby et al. N Engl J Med 384(8):693-704, 2021). The fact that the SARS-CoV-2 enters the human body mainly via the nasal and airway route resulting in the lungs being the primary organs of infection as characterized by acute respiratory distress syndrome (ARDS)-mediated cytokine storm in the alveolar region has made the inhalation route gain significant attention for the purposes of targeting both vaccines and small molecules to the lungs (Mitchell et al., J Aerosol Med Pulm Drug Deliv 33(4):235-8, 2020). While there have been many studies reporting the safety and efficacy of targeting various therapeutics to the lungs to treat COVID-19, there is still a need to match the choice of inhalation formulation and the delivery device platform itself with the patient-related factors like breathing pattern and respiratory rate as seen in a clinical setting. In that perspective, this review aims to describe the various formulation and patient-related clinical factors that can play an important role in the judicious choice of the inhalation delivery platforms or devices for the development of inhaled COVID-19 vaccines.
Collapse
Affiliation(s)
- Sayeed Mossadeq
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA.
| | - Rajen Shah
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA
| | - Viraj Shah
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA
| | - Milind Bagul
- Raptim Research Private Limited, 1378 Rt.206., STE 6/280, Skillman, NJ, 08558, USA
| |
Collapse
|
5
|
Deng Y, Wang X, Xu H, Liu C, Li R, Zhang Y, Qu C, Miao J. Optimization of κ-Selenocarrageenase Production by Pseudoalteromonas sp. Xi13 and Its Immobilization. Molecules 2022; 27:molecules27227716. [PMID: 36431814 PMCID: PMC9694495 DOI: 10.3390/molecules27227716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 11/12/2022] Open
Abstract
The bioenzymatic production of selenium oligosaccharides addresses the problems resulting from high molecular weight and poor water solubility of κ-selenocarrageenan, and lays foundation for its application as adjuvant drugs for cancer treatment and food additive. κ-selenocarrageenase extracted from Pseudoalteromonas sp. Xi13 can degrade κ-selenocarrageenan to selenium oligosaccharides. The maximum optimized κ-selenocarrageenase activity using Response Surface Methodology (RSM) was increased by 1.4 times, reaching 8.416 U/mL. To expand applications of the κ-selenocarrageenase in industry, the preparation conditions of it in either lyophilized or immobilized form were investigated. The activity recovery rate of the lyophilized enzyme was >70%, while that of the immobilized enzyme was 62.83%. However, the immobilized κ-selenocarrageenase exhibits good stability after being reused four times, with 58.28% of residual activity. The selenium content of κ-selenocarrageenan oligosaccharides degraded by the immobilized κ-selenocarrageenase was 47.06 µg/g, 8.3% higher than that degraded by the lyophilized enzyme. The results indicate that the immobilized κ-selenocarrageenase is suitable for industrial applications and has commercial potential.
Collapse
Affiliation(s)
- Yashan Deng
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Xixi Wang
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Hui Xu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Cui Liu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ran Li
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Yuanyuan Zhang
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory Base for Eco-Chemical Engineering in College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- Correspondence: (J.M.); (Y.Z.); Tel.: +86-532-88967430 (J.M.); +86-532-13153275509 (Y.Z.)
| | - Changfeng Qu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
| | - Jinlai Miao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China
- Marine Natural Products R&D Laboratory, Qingdao Key Laboratory, Qingdao 266061, China
- Correspondence: (J.M.); (Y.Z.); Tel.: +86-532-88967430 (J.M.); +86-532-13153275509 (Y.Z.)
| |
Collapse
|
6
|
Fiedler D, Alva C, Pinto JT, Spoerk M, Jeitler R, Roblegg E. In-vial printing and drying of biologics as a personalizable approach. Int J Pharm 2022; 623:121909. [PMID: 35697202 DOI: 10.1016/j.ijpharm.2022.121909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 10/18/2022]
Abstract
This study addressed the need for a flexible (personalizable) production of biologics, allowing their stabilization in the solid state and processing of small batch volumes. Therefore, inkjet printing into vials followed by a gentle vacuum drying step at ambient temperature was investigated by screening different formulations with a 22-full factorial design of experiments regarding printability. Human Serum Albumin (HSA) was used as a model protein in a wide range of concentrations (5 to 50 mg/ml), with (10 w/v%) and without the surfactant polysorbate 80 (PS80). PS80 was identified to positively affect the formulations by increasing the Ohnesorge number and stabilizing the printing process. The dispensed volumes with a target dose of 0.5 mg HSA were dried and analyzed concerning their residual moisture (RM) and protein aggregation. All investigated formulations showed an RM < 10 wt% and no significant induced protein aggregation as confirmed by Size Exclusion Chromatography (<2.5%) and Dynamic Light Scattering (Aggregation Index ≤ 2.5). Additionally, long-term printability and the available final dose after reconstitution were investigated for two optimized formulations. A promising formulation providing ∼93% of the targeted dose and a reconstitution time of 30 s was identified.
Collapse
Affiliation(s)
- Daniela Fiedler
- Graz University of Technology, Institute of Process and Particle Engineering, Inffeldgasse 13/III, 8010 Graz, Austria
| | - Carolina Alva
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/II, 8010 Graz, Austria
| | - Joana T Pinto
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/II, 8010 Graz, Austria
| | - Martin Spoerk
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/II, 8010 Graz, Austria
| | - Ramona Jeitler
- University of Graz, Institute of Pharmaceutical Sciences, Pharmaceutical Technology & Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria
| | - Eva Roblegg
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13/II, 8010 Graz, Austria; University of Graz, Institute of Pharmaceutical Sciences, Pharmaceutical Technology & Biopharmacy, Universitätsplatz 1, 8010 Graz, Austria; BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria.
| |
Collapse
|