1
|
Cunha J, Ventura FV, Charrueau C, Ribeiro AJ. Alternative routes for parenteral nucleic acid delivery and related hurdles: highlights in RNA delivery. Expert Opin Drug Deliv 2024; 21:1415-1439. [PMID: 39271564 DOI: 10.1080/17425247.2024.2405207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/15/2024]
Abstract
INTRODUCTION Nucleic acid-based therapies are promising advancements in medicine. They offer unparalleled efficacy in treating previously untreatable diseases through precise gene manipulation techniques. However, the challenge of achieving targeted delivery to specific cells remains a significant obstacle. AREAS COVERED This review thoroughly examines the physicochemical properties of nucleic acids, focusing on their interaction with carriers and exploring various delivery routes, including oral, pulmonary, ocular, and dermal routes. It also examines the nonviral vector delivery efficiency of nucleic acids, focusing on RNA, and provides regulatory landscapes. EXPERT OPINION The role of carriers in improving the effectiveness of nucleic acid-based therapies is emphasized. The discussion of published results covers regulatory frameworks, including insights into European Medicines Agency guidelines. It highlights cutting-edge biotechnological innovations and a quality-by-design approach that could facilitate clinical translation and smooth regulatory obstacles.
Collapse
Affiliation(s)
- Joana Cunha
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
| | - Fátima V Ventura
- Medicines Evaluation Department, National Authority of Medicines and Health Products (INFARMED), Lisbon, Portugal
- Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | | | - António José Ribeiro
- Faculty of Pharmacy, University of Coimbra, Azinhaga de Santa Comba, Coimbra, Portugal
- Group Genetics of Cognitive Dysfunction, i3s - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Deljavan Ghodrati A, Comoglu T. An overview on recent approaches for colonic drug delivery systems. Pharm Dev Technol 2024; 29:566-581. [PMID: 38813948 DOI: 10.1080/10837450.2024.2362353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Colon-targeted drug delivery systems have garnered significant interest as potential solutions for delivering various medications susceptible to acidic and catalytic degradation in the gastrointestinal (GI) tract or as a means of treating colonic diseases naturally with fewer overall side effects. The increasing demand for patient-friendly drug administration underscores the importance of colonic drug delivery, particularly through noninvasive methods like nanoparticulate drug delivery technologies. Such systems offer improved patient compliance, cost reduction, and therapeutic advantages. This study places particular emphasis on formulations and discusses recent advancements in various methods for designing colon-targeted drug delivery systems and their medicinal applications.
Collapse
Affiliation(s)
- Aylin Deljavan Ghodrati
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Tansel Comoglu
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| |
Collapse
|
3
|
Jin X, Xia X, Li J, Adu-Frimpong M, Wang X, Wang Q, Wu H, Yu Q, Ji H, Toreniyazov E, Cao X, Yu J, Xu X. Preparation, characterization, pharmacokinetics and ulcerative colitis treatment of hyperoside-loaded mixed micelles. Drug Deliv Transl Res 2024; 14:1370-1388. [PMID: 37957475 DOI: 10.1007/s13346-023-01470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
At present, ulcerative colitis (UC) has become a global disease due to its high incidence. Hyperoside (HYP) is a naturally occurring flavonoid compound with many pharmacological effects. This study aimed to develop HYP-loaded mixed micelles (HYP-M) to improve oral bioavailability of HYP and to evaluate its therapeutic effect on UC. The prepared HYP-M exhibited stable physical and chemical properties, smaller particle size (PS) (21.48 ± 1.37 nm), good polydispersity index (PDI = 0.178 ± 0.013), negative Zeta potential (ZP) (- 20.00 ± 0.48 mV) and high entrapment rate (EE) (89.59 ± 2.03%). In vitro release and in vivo pharmacokinetic results showed that HYP-M significantly increased the releasing rate of HYP, wherein its oral bioavailability was 4.15 times higher than that of free HYP. In addition, HYP-M was more effective in the treatment of UC than free HYP. In conclusion, HYP-M could serve as a novel approach to improve bioavailability and increase anti-UC activity of HYP.
Collapse
Affiliation(s)
- Xingcheng Jin
- Department of Pharmacy, the Second Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Xiaoli Xia
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiaying Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Xiaowen Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Huaxiao Wu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd., Zhenjiang, China
| | - Elmurat Toreniyazov
- Institute of Agriculture and Agrotechnologies of Karakalpakstan, Nukus, Uzbekistan
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
4
|
Egorova A, Shtykalova S, Maretina M, Freund S, Selutin A, Shved N, Selkov S, Kiselev A. Serum-Resistant Ternary DNA Polyplexes for Suicide Gene Therapy of Uterine Leiomyoma. Int J Mol Sci 2023; 25:34. [PMID: 38203202 PMCID: PMC10778803 DOI: 10.3390/ijms25010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
Uterine leiomyoma (UL) is a prevalent benign tumor in women that frequently gives rise to a multitude of reproductive complications. The use of suicide gene therapy has been proposed as a highly promising method for treating UL. To achieve successful gene therapy, it is essential to develop carriers that can efficiently transport nucleic acids into targeted cells and tissues. The instability of polyplexes in blood and other biological fluids is a crucial factor to consider when using non-viral carriers. In this study, we present serum-resistant and cRGD-modified DNA complexes for targeted delivery genes to UL cells. Ternary polyplexes were formed by incorporating cystine-cross-linked polyglutamic acid modified with histidine residues. We employed two techniques in the production of cross-linked polyanionic coating: matrix polymerization and oxidative polycondensation. In this study, we investigated the physicochemical properties of ternary DNA complexes, including the size and zeta-potential of the nanoparticles. Additionally, we evaluated cellular uptake, toxicity levels, transfection efficiency and specificity in vitro. The study involved introducing the HSV-TK gene into primary UL cells as a form of suicide gene therapy modeling. We have effectively employed ternary peptide-based complexes for gene delivery into the UL organtypic model. By implementing in situ suicide gene therapy, the increase in apoptosis genes expression was detected, providing conclusive evidence of apoptosis occurring in the transfected UL tissues. The results of the study strongly suggest that the developed ternary polyplexes show potential as a valuable tool in the implementation of suicide gene therapy for UL.
Collapse
Affiliation(s)
- Anna Egorova
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (M.M.); (S.F.); (N.S.)
| | - Sofia Shtykalova
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (M.M.); (S.F.); (N.S.)
| | - Marianna Maretina
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (M.M.); (S.F.); (N.S.)
| | - Svetlana Freund
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (M.M.); (S.F.); (N.S.)
| | - Alexander Selutin
- Department of Immunology and Intercellular Interactions, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.S.); (S.S.)
| | - Natalia Shved
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (M.M.); (S.F.); (N.S.)
| | - Sergei Selkov
- Department of Immunology and Intercellular Interactions, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.S.); (S.S.)
| | - Anton Kiselev
- Department of Genomic Medicine Named after V.S. Baranov, D.O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya Line 3, 199034 Saint-Petersburg, Russia; (A.E.); (S.S.); (M.M.); (S.F.); (N.S.)
| |
Collapse
|
5
|
Won Lee J, Kyu Shim M, Kim H, Jang H, Lee Y, Hwa Kim S. RNAi therapies: Expanding applications for extrahepatic diseases and overcoming delivery challenges. Adv Drug Deliv Rev 2023; 201:115073. [PMID: 37657644 DOI: 10.1016/j.addr.2023.115073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/31/2023] [Accepted: 08/20/2023] [Indexed: 09/03/2023]
Abstract
The era of RNA medicine has become a reality with the success of messenger RNA (mRNA) vaccines against COVID-19 and the approval of several RNA interference (RNAi) agents in recent years. Particularly, therapeutics based on RNAi offer the promise of targeting intractable and previously undruggable disease genes. Recent advances have focused in developing delivery systems to enhance the poor cellular uptake and insufficient pharmacokinetic properties of RNAi therapeutics and thereby improve its efficacy and safety. However, such approach has been mainly achieved via lipid nanoparticles (LNPs) or chemical conjugation with N-Acetylgalactosamine (GalNAc), thus current RNAi therapy has been limited to liver diseases, most likely to encounter liver-targeting limitations. Hence, there is a huge unmet medical need for intense evolution of RNAi therapeutics delivery systems to target extrahepatic tissues and ultimately extend their indications for treating various intractable diseases. In this review, challenges of delivering RNAi therapeutics to tumors and major organs are discussed, as well as their transition to clinical trials. This review also highlights innovative and promising preclinical RNAi-based delivery platforms for the treatment of extrahepatic diseases.
Collapse
Affiliation(s)
- Jong Won Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Man Kyu Shim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyosuk Kim
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hochung Jang
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea
| | - Yuhan Lee
- Department of Anesthesiology, Perioperative, and Pain Medicine, Center for Accelerated Medical Innovation & Center for Nanomedicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Sun Hwa Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| |
Collapse
|
6
|
Klipp A, Burger M, Leroux JC. Get out or die trying: Peptide- and protein-based endosomal escape of RNA therapeutics. Adv Drug Deliv Rev 2023; 200:115047. [PMID: 37536508 DOI: 10.1016/j.addr.2023.115047] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
RNA therapeutics offer great potential to transform the biomedical landscape, encompassing the treatment of hereditary conditions and the development of better vaccines. However, the delivery of RNAs into the cell is hampered, among others, by poor endosomal escape. This major hurdle is often tackled using special lipids, polymers, or protein-based delivery vectors. In this review, we will focus on the most prominent peptide- and protein-based endosomal escape strategies with focus on RNA drugs. We discuss cell penetrating peptides, which are still incorporated into novel transfection systems today to promote endosomal escape. However, direct evidence for enhanced endosomal escape by the action of such peptides is missing and their transfection efficiency, even in permissive cell culture conditions, is rather low. Endosomal escape by the help of pore forming proteins or phospholipases, on the other hand, allowed to generate more efficient transfection systems. These are, however, often hampered by considerable toxicity and immunogenicity. We conclude that the perfect enhancer of endosomal escape has yet to be devised. To increase the chances of success, any new transfection system should be tested under relevant conditions and guided by assays that allow direct quantification of endosomal escape.
Collapse
Affiliation(s)
- Alexander Klipp
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| |
Collapse
|
7
|
Sinani G, Durgun ME, Cevher E, Özsoy Y. Polymeric-Micelle-Based Delivery Systems for Nucleic Acids. Pharmaceutics 2023; 15:2021. [PMID: 37631235 PMCID: PMC10457940 DOI: 10.3390/pharmaceutics15082021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/11/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Nucleic acids can modulate gene expression specifically. They are increasingly being utilized and show huge potential for the prevention or treatment of various diseases. However, the clinical translation of nucleic acids faces many challenges due to their rapid clearance after administration, low stability in physiological fluids and limited cellular uptake, which is associated with an inability to reach the intracellular target site and poor efficacy. For many years, tremendous efforts have been made to design appropriate delivery systems that enable the safe and effective delivery of nucleic acids at the target site to achieve high therapeutic outcomes. Among the different delivery platforms investigated, polymeric micelles have emerged as suitable delivery vehicles due to the versatility of their structures and the possibility to tailor their composition for overcoming extracellular and intracellular barriers, thus enhancing therapeutic efficacy. Many strategies, such as the addition of stimuli-sensitive groups or specific ligands, can be used to facilitate the delivery of various nucleic acids and improve targeting and accumulation at the site of action while protecting nucleic acids from degradation and promoting their cellular uptake. Furthermore, polymeric micelles can be used to deliver both chemotherapeutic drugs and nucleic acid therapeutics simultaneously to achieve synergistic combination treatment. This review focuses on the design approaches and current developments in polymeric micelles for the delivery of nucleic acids. The different preparation methods and characteristic features of polymeric micelles are covered. The current state of the art of polymeric micelles as carriers for nucleic acids is discussed while highlighting the delivery challenges of nucleic acids and how to overcome them and how to improve the safety and efficacy of nucleic acids after local or systemic administration.
Collapse
Affiliation(s)
- Genada Sinani
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Altinbas University, 34147 Istanbul, Türkiye;
| | - Meltem Ezgi Durgun
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34126 Istanbul, Türkiye; (M.E.D.); (E.C.)
| | - Erdal Cevher
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34126 Istanbul, Türkiye; (M.E.D.); (E.C.)
| | - Yıldız Özsoy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Istanbul University, 34126 Istanbul, Türkiye; (M.E.D.); (E.C.)
| |
Collapse
|
8
|
Xiong M, Li Y, He H, Hao S, Fang P, Xu M, Chen Y, Chen Y, Yu S, Hu H. Cyclosporine A-loaded colon-targeted oral nanomicelles self-assembly by galactosylated carboxymethyl chitosan for efficient ulcerative colitis therapy. Eur J Pharm Biopharm 2023:S0939-6411(23)00163-7. [PMID: 37336365 DOI: 10.1016/j.ejpb.2023.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/31/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
An oral galactosylated carboxymethyl chitosan polymeric nanomicelles (Gal-N-CMCS NPs) embedded in chitosan-alginate hydrogel (CA-Gel) was developed to load cyclosporine A (CyA) as therapeutic agents against ulcerative colitis (UC). Galactose modified CMCS with macrophage targeting characteristic and CyA via a simple ultrasonication method to form Gal-N-CMCS/CyA NPs, and mixed CA-Gel to acquire the final formulation (Gal-N-CMCS/CyA Gel). The generated Gal-N-CMCS/CyA NPs displayed a desirable particle size (206.8 nm), negative surface charge (-19.5 mV), and high encapsulating efficiency (89.6%). The morphology and release profiles were also charactered by transmission electron microscope [1] and dialysis method, respectively. Strikingly, the mucus penetration of Gal-N-CMCS/CyA NPs exceeded 90% within 90 min. The Gal-N-CMCS NPs internalized by macrophages were 3.3-fold higher than CMCS-N NPs, thereby, enhancing the anti-inflammatory activities of NPs. Meanwhile, these NPs exhibited excellent biocompatibility, reduced the toxic effect of CyA, and targeting ability on inflammatory macrophages both in vitro and in vivo. Most importantly, in vivo studies revealed that CyA NPs could efficiently target the inflamed colon, remarkably alleviate inflammation, repair mucosal and reconstructed colonic epithelial barriers in UC mice induced by dextran sulfate sodium (DSS) via Toll-like receptor 4 -Nuclear factor kappa-B (TLR4-NF-κB) pathway. Our findings suggest that these high-performance and facilely fabricated Gal-N-CMCS/CyA NPs could be developed as a promising drug carrier for oral UC treatment.
Collapse
Affiliation(s)
- Mengting Xiong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyuan Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Haonan He
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Suqi Hao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Pengchao Fang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yan Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yujun Chen
- The First Affiliated Hospital of Guangxi Medical University, Guangxi 530000, China
| | - Shihui Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China.
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
9
|
Mishra RK, Ahmad A, Kanika, Kumar A, Vyawahare A, Sakla R, Nadeem A, Siddiqui N, Raza SS, Khan R. Caffeic Acid-Conjugated Budesonide-Loaded Nanomicelle Attenuates Inflammation in Experimental Colitis. Mol Pharm 2023; 20:172-182. [PMID: 36472567 DOI: 10.1021/acs.molpharmaceut.2c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ulcerative colitis is a multifactorial disease of the gastrointestinal tract which is caused due to chronic inflammation in the colon; it usually starts from the lower end of the colon and may spread to other portions of the large intestine, if left unmanaged. Budesonide (BUD) is a synthetically available second-generation corticosteroidal drug with potent local anti-inflammatory activity. The pharmacokinetic properties, such as extensive first-pass metabolism and quite limited bioavailability, reduce its therapeutic efficacy. To overcome the limitations, nanosized micelles were developed in this study by conjugating stearic acid with caffeic acid to make an amphiphilic compound. The aim of the present study was to evaluate the pharmacological potential of BUD-loaded micelles in a mouse model of dextran sulfate sodium-induced colitis. Micelles were formulated by the solvent evaporation method, and their physicochemical characterizations show their spherical shape under microscopic techniques like atomic force microscopy, transmission electron microscopy, and scanning electron microscopy. The in vitro release experiment shows sustained release behavior in physiological media. These micelles show cytocompatible behavior against hTERT-BJ cells up to 500 μg/mL dose, evidenced by more than 85% viable cells. BUD-loaded micelles successfully normalized the disease activity index and physical observation of colon length. The treatment with BUD-loaded micelles alleviates the colitis severity as analyzed in histopathology and efficiently, overcoming the disease severity via downregulation of various related cytokines (MPO, NO, and TNF-α) and inflammatory enzymes such as COX-2 and iNOS. Results of the study suggest that BUD-loaded nano-sized micelles effectively attenuate the disease conditions in colitis.
Collapse
Affiliation(s)
- Rakesh Kumar Mishra
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab140306, India
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AlbertaT2N 4N1, Canada
| | - Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab140306, India
| | - Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab140306, India
| | - Akshay Vyawahare
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab140306, India
| | - Rahul Sakla
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab140306, India
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 2455, Riyadh11451, Saudi Arabia
| | - Nahid Siddiqui
- Amity Institute of Biotechnology, Amity University, Noida201301, India
| | - Syed Shadab Raza
- Laboratory for Stem Cell and Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College Hospital, Sarfarazganj, Lucknow226003, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab140306, India
| |
Collapse
|
10
|
Vambhurkar G, Amulya E, Sikder A, Shah S, Famta P, Khatri DK, Singh SB, Srivastava S. Nanomedicine based potentially transformative strategies for colon targeting of peptides: State-of-the-art. Colloids Surf B Biointerfaces 2022; 219:112816. [PMID: 36108367 DOI: 10.1016/j.colsurfb.2022.112816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/23/2022] [Accepted: 08/27/2022] [Indexed: 12/11/2022]
Abstract
Recently, peptides have attracted tremendous attention among researchers attributed to their high target specificity and efficacy compared to conventional therapeutics. The ease of self-administration and non-invasiveness confers oral as the most desirable route. However, numerous challenges associated with peptide delivery through the oral route like harsh gastrointestinal environment, enzymatic degradation, and absorption barriers hinder its clinical translation. Protease activity is more pronounced in the proximal segments of the gastrointestinal tract (GIT). Distal segments like the colon possess lower proteolytic activity, enhanced retention time, etc. which could facilitate easy absorption. However, traversing of the upper segments to reach the colon requires the circumvention of the pitfalls of the GIT. The advent of nanomedicine strategies could help in overcoming the said challenges associated with oral delivery, colon-specific targeting, and improving stability and bioavailability at the active site. Furthermore, the classification of peptides and various nanomedicine strategies for oral delivery of peptides to the colon has been conveyed. Regulatory hurdles and ways to accomplish clinical translation have been addressed.
Collapse
Affiliation(s)
- Ganesh Vambhurkar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Etikala Amulya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anupama Sikder
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Shah
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Paras Famta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
11
|
Sargazi S, Arshad R, Ghamari R, Rahdar A, Bakhshi A, Karkan SF, Ajalli N, Bilal M, Díez-Pascual AM. siRNA-based nanotherapeutics as emerging modalities for immune-mediated diseases: A preliminary review. Cell Biol Int 2022; 46:1320-1344. [PMID: 35830711 PMCID: PMC9543380 DOI: 10.1002/cbin.11841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 06/01/2022] [Accepted: 06/09/2022] [Indexed: 11/21/2022]
Abstract
Immune‐mediated diseases (IMDs) are chronic conditions that have an immune‐mediated etiology. Clinically, these diseases appear to be unrelated, but pathogenic pathways have been shown to connect them. While inflammation is a common occurrence in the body, it may either stimulate a favorable immune response to protect against harmful signals or cause illness by damaging cells and tissues. Nanomedicine has tremendous promise for regulating inflammation and treating IMIDs. Various nanoparticles coated with nanotherapeutics have been recently fabricated for effective targeted delivery to inflammatory tissues. RNA interference (RNAi) offers a tremendous genetic approach, particularly if traditional treatments are ineffective against IMDs. In cells, several signaling pathways can be suppressed by using RNAi, which blocks the expression of particular messenger RNAs. Using this molecular approach, the undesirable effects of anti‐inflammatory medications can be reduced. Still, there are many problems with using short‐interfering RNAs (siRNAs) to treat IMDs, including poor localization of the siRNAs in target tissues, unstable gene expression, and quick removal from the blood. Nanotherapeutics have been widely used in designing siRNA‐based carriers because of the restricted therapy options for IMIDs. In this review, we have discussed recent trends in the fabrication of siRNA nanodelivery systems, including lipid‐based siRNA nanocarriers, liposomes, and cationic lipids, stable nucleic acid‐lipid particles, polymeric‐based siRNA nanocarriers, polyethylenimine (PEI)‐based nanosystems, chitosan‐based nanoformulations, inorganic material‐based siRNA nanocarriers, and hybrid‐based delivery systems. We have also introduced novel siRNA‐based nanocarriers to control IMIDs, such as pulmonary inflammation, psoriasis, inflammatory bowel disease, ulcerative colitis, rheumatoid arthritis, etc. This study will pave the way for new avenues of research into the diagnosis and treatment of IMDs.
Collapse
Affiliation(s)
- Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University Islamabad, Islamabad, Pakistan
| | - Reza Ghamari
- Department of Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol, Iran
| | - Ali Bakhshi
- School of Physics, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Sonia Fathi Karkan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Medical Sciences Tabriz University of Medical Sciences, Tabriz, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Ana M Díez-Pascual
- Universidad de Alcalá, Facultad de Ciencias, Departamento de Quimica Analítica, Química Física e Ingeniería Química, Ctra. Madrid-Barcelona, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
12
|
Ibaraki H, Hatakeyama N, Takeda A, Arima N, Kanazawa T. Multifunctional peptide carrier-modified polymer micelle accelerates oral siRNA-delivery to the colon and improves gene silencing-mediated therapeutic effects in ulcerative colitis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|