1
|
de Moura IA, Silva AJD, de Macêdo LS, de Melo KMTB, Leal LRS, Espinoza BCF, Invenção MDCV, de Pinho SS, de Freitas AC. Advances in the Functionalization of Vaccine Delivery Systems: Innovative Strategies and Translational Perspectives. Pharmaceutics 2025; 17:640. [PMID: 40430931 PMCID: PMC12115142 DOI: 10.3390/pharmaceutics17050640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 04/28/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
The development of effective vaccines requires a rational design that considers the interaction between antigens, their vectors, and the immune system in addition to the activation of pathways that induce a safe and specific immune response. The efficacy of a vaccine formulation depends on the nature of the antigen, the protection offered by the delivery system, the ability to potentiate the immune response, and the precise release of the immunogen. Carrier systems such as lipid nanoparticles, polymers, exosomes, and microorganisms can be functionalized by chemical, physical, or biological methods to generate selective and improved biodistribution profiles. These methods enhance interaction with target cells, thereby improving immunological efficacy. The conjugation of specific ligands or the modification of parameters such as shape, charge, and size of vectors can enhance the specificity, stability, and efficiency of antigen transport to cellular compartments, thereby facilitating a robust immune response. This study examines modifications in vaccine delivery systems, focusing on biomolecules and physicochemical changes that enhance antigen presentation. Additionally, we examine innovative methods, including microneedles, electroporation, and needle-free systems that show potential for enhancing the immune response.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Antonio Carlos de Freitas
- Laboratory of Molecular Studies and Experimental Therapy—LEMTE, Department of Genetics, Federal University of Pernambuco, Avenida da Engenharia S/N, Recife 50740-600, Pernambuco, Brazil; (I.A.d.M.); (A.J.D.S.); (L.S.d.M.); (K.M.T.B.d.M.); (L.R.S.L.); (B.C.F.E.); (M.d.C.V.I.); (S.S.d.P.)
| |
Collapse
|
2
|
Tengattini S, Bavaro T, Rinaldi F, Temporini C, Pollegioni L, Terreni M, Piubelli L. Novel tuberculosis vaccines based on TB10.4 and Ag85B: State-of-art and advocacy for good practices. Vaccine 2025; 53:126932. [PMID: 40031085 DOI: 10.1016/j.vaccine.2025.126932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 02/03/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Tuberculosis (TB) has plagued humanity in numerous devastating forms for centuries and remains a significant health challenge. Mycobacterium tuberculosis (Mtb), the bacterium responsible for TB, was the leading cause of death among infectious agents until the COVID-19 pandemic emerged. Immunization with the bacillus Calmette-Guérin (BCG) vaccine is one of the primary strategies to mitigate the risk of TB. Despite its widespread use, the current BCG vaccine has limited efficacy, particularly in adults. This review focuses on the rational design of vaccine candidates targeting the antigens TB10.4 and Ag85B. The review discusses the roles of TB10.4 and Ag85B in the virulence of Mtb and notes challenges in their production. Additionally, various protein conjugation strategies to enhance immunogenicity, including linking these antigens to glycans and adjuvants, are considered, as well as the most appropriate analytical methods for characterizing recombinant antigenic proteins and their conjugates. Finally, the associated challenges in developing a vaccine encompassing specific glycans and protein components were highlighted. We claim that using standardized procedures and detailed reporting in protein production and chemical modification can improve the reproducibility and rationalization of biological results. By adhering to these guidelines, the goal of developing an effective vaccine against TB will be best achieved.
Collapse
Affiliation(s)
- Sara Tengattini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Teodora Bavaro
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Francesca Rinaldi
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Caterina Temporini
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Loredano Pollegioni
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy
| | - Marco Terreni
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Luciano Piubelli
- Department of Biotechnology and Life Sciences, University of Insubria, Via Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
3
|
Yin W, Xu Z, Ma F, Deng B, Zhao Y, Zuo X, Wang H, Lu Y. Nano-adjuvant based on lipo-imiquimod self-assembly for enhanced foot-and-mouth disease virus vaccine immune responses via intradermal immunization. Mater Today Bio 2025; 31:101567. [PMID: 40040795 PMCID: PMC11876772 DOI: 10.1016/j.mtbio.2025.101567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 03/06/2025] Open
Abstract
Excellent adjuvants and proper immunization routes play pivotal roles in activating a robust immune response. Nano-adjuvants have the advantages of enhancing immunogenicity, targeting delivery, and improving stability to provide a new solution for vaccine delivery. In this work, we designed and synthesized a pro-immunostimulant of liposolubility imiquimod derivative IMQP, which was synthesized by reaction of palmitoyl chloride with parent imiquimod (IMQ). Using an inactivated foot-and-mouth disease virus (FMDV) as antigen, and the as-synthesized IMQP containing long carbon chain as nano-adjuvant, we formulated a self-assembled foot-and-mouth disease nano-vaccine (IMQP@FMDV) by re-precipitation method for intradermal (I.D.) immunity vaccination. Because of its small size (∼131.75 ± 41.70 nm) and fat-soluble, the as-fabricated lipid nanoparticles (LNPs) showed promising potential for efficient delivery of antigens to immune cells. Also, lysosomal escape was confirmed by co-localization dendritic cells (DCs). Our findings demonstrated that IMQP nano-adjuvant greatly promoted the expression and secretion of cytokines and chemokines with a balance Th1/Th2 immune response via the I.D. administration. Meanwhile, due to the slowly releasing of IMQ by the hydrolysis of IMQP, IMQP persistently stimulated antigen-presenting cells (APCs) maturation and promoted antigen presentation, and subsequently induced the activation of the related downstream NF-кB and MAPK pathways of the TLR7 signaling pathway, thereby stimulated a robust both humoral and cellular immune response.
Collapse
Affiliation(s)
- Wenzhu Yin
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Zeyu Xu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Bihua Deng
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, 225300, China
| | - Yanhong Zhao
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoxin Zuo
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haiyan Wang
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
4
|
Chen B, Huang R, Zeng W, Wang W, Min Y. Nanocodelivery of an NIR photothermal agent and an acid-responsive TLR7 agonist prodrug to enhance cancer photothermal immunotherapy and the abscopal effect. Biomaterials 2024; 305:122434. [PMID: 38141501 DOI: 10.1016/j.biomaterials.2023.122434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
The immunosuppressive tumor microenvironment (TME) greatly limits the actual outcome of immunotherapy. Therefore, it is urgent to develop appropriate strategies to reshape the TME and ultimately induce a strong immune response. Here, we developed a dual-functional liposome loaded with the photothermal agent IR808 near the infrared region (NIR) and Toll-like-receptor-7 (TLR7) agonist loxoribine prodrug (Lipo@IR808@Loxo) to achieve NIR light-triggered photothermal therapy (PTT) and the targeted delivery of immune adjuvants. Under NIR irradiation, Lipo@IR808@Loxo could greatly improve the efficiency of PTT to directly kill tumor cells and release tumor-associated antigens, which could work together with loaded loxoribine to relieve the immunosuppressive TME, effectively promoting the activation of antigen-presenting cells and subsequent antigen presentation. In this way, Lipo@IR808@Loxo could act as an in situ therapeutic cancer vaccine, eventually inducing a potent antitumor T-cell response. When further combined with immune checkpoint blockade, Lipo@IR808@Loxo-mediated photothermal immunotherapy could not only eliminate the primary tumors but also inhibit the growth of distant tumors, thus enhancing the abscopal effect.
Collapse
Affiliation(s)
- Bo Chen
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei, 230001, China
| | - Ruijie Huang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Zeng
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Wang
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei, 230001, China.
| | - Yuanzeng Min
- Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Department of Bio-X Interdisciplinary Science at Hefei National Laboratory (HFNL) for Physical Science at the Microscale, University of Science and Technology of China, Hefei, 230001, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China; Department of Endocrinology, The First Affiliated Hospital of USTC, Anhui Provincial Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China; CAS Key Lab of Soft Matter Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
5
|
Deng S, Shen S, Liu K, El-Ashram S, Alouffi A, Cenci-Goga BT, Ye G, Cao C, Luo T, Zhang H, Li W, Li S, Zhang W, Wu J, Chen C. Integrated bioinformatic analyses investigate macrophage-M1-related biomarkers and tuberculosis therapeutic drugs. Front Genet 2023; 14:1041892. [PMID: 36845395 PMCID: PMC9945105 DOI: 10.3389/fgene.2023.1041892] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
Tuberculosis (TB) is a common infectious disease linked to host genetics and the innate immune response. It is vital to investigate new molecular mechanisms and efficient biomarkers for Tuberculosis because the pathophysiology of the disease is still unclear, and there aren't any precise diagnostic tools. This study downloaded three blood datasets from the GEO database, two of which (GSE19435 and 83456) were used to build a weighted gene co-expression network for searching hub genes associated with macrophage M1 by the CIBERSORT and WGCNA algorithms. Furthermore, 994 differentially expressed genes (DEGs) were extracted from healthy and TB samples, four of which were associated with macrophage M1, naming RTP4, CXCL10, CD38, and IFI44. They were confirmed as upregulation in TB samples by external dataset validation (GSE34608) and quantitative real-time PCR analysis (qRT-PCR). CMap was used to predict potential therapeutic compounds for tuberculosis using 300 differentially expressed genes (150 downregulated and 150 upregulated genes), and six small molecules (RWJ-21757, phenamil, benzanthrone, TG-101348, metyrapone, and WT-161) with a higher confidence value were extracted. We used in-depth bioinformatics analysis to investigate significant macrophage M1-related genes and promising anti-Tuberculosis therapeutic compounds. However, more clinical trials were necessary to determine their effect on Tuberculosis.
Collapse
Affiliation(s)
- Siqi Deng
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases Cooperated by Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Shijie Shen
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases Cooperated by Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Keyu Liu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases Cooperated by Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Saeed El-Ashram
- Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | | | - Guomin Ye
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases Cooperated by Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Chengzhang Cao
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases Cooperated by Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Tingting Luo
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases Cooperated by Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Hui Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases Cooperated by Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Weimin Li
- Beijing Chest Hospital, Capital Medical University, Beijing, China
| | - Siyuan Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases Cooperated by Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Wanjiang Zhang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases Cooperated by Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China
| | - Jiangdong Wu
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases Cooperated by Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China,*Correspondence: Jiangdong Wu, ; Chuangfu Chen,
| | - Chuangfu Chen
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases Cooperated by Education Ministry with Xinjiang Province, Shihezi University, Shihezi, China,*Correspondence: Jiangdong Wu, ; Chuangfu Chen,
| |
Collapse
|