1
|
Lehner E, Trutschel ML, Menzel M, Jacobs J, Kunert J, Scheffler J, Binder WH, Schmelzer CEH, Plontke SK, Liebau A, Mäder K. Enhancing drug release from PEG-PLGA implants: The role of Hydrophilic Dexamethasone Phosphate in modulating release kinetics and degradation behavior. Eur J Pharm Sci 2025; 209:107067. [PMID: 40068768 DOI: 10.1016/j.ejps.2025.107067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/05/2025] [Accepted: 03/08/2025] [Indexed: 03/17/2025]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is a prominent biodegradable polymer used in biomedical applications, including drug delivery systems (DDS) and tissue engineering. PLGA's ability to control drug release is often hindered by nonlinear release profiles and slow initial drug release for hydrophobic drugs. This study investigates the incorporation of dexamethasone phosphate (DEXP) into polyethylene glycol-poly(lactic-co-glycolic acid) (PEG-PLGA) implants to enhance the initial release rate of dexamethasone (DEX). Implants were fabricated via hot-melt extrusion with varying DEX to DEXP ratios. X-ray diffraction (XRD) analysis confirmed that DEX remained crystalline in all formulations, whereas DEXP's crystallinity was detectable only in higher concentrations. Energy-dispersive X-ray spectroscopy (EDX) provided insights into the distribution of DEX and DEXP within the polymer matrix. Drug release studies revealed that PEG-PLGA implants accelerated initial drug release with increasing quantity of DEXP, though it also led to a shorter overall release duration. Despite these improvements, all implants exhibited a biphasic release profile. DEXP also influenced the characteristics of the polymer matrix, evidenced by increased swelling, water absorption, and mass loss. 1H NMR analysis revealed a faster decrease in glycolic acid monomers in DEXP-containing implants. These findings demonstrate that DEXP enhances early drug release of DEX-loaded PEG-PLGA implants prepared by hot-melt extrusion. However, balancing initial and sustained release profiles remains challenging.
Collapse
Affiliation(s)
- Eric Lehner
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40 06120 Halle (Saale), Germany; Halle Research Centre for Drug Therapy (HRCDT), Halle (Saale), Germany
| | - Marie-Luise Trutschel
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4 06120 Halle (Saale), Germany
| | - Matthias Menzel
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Straße 1 06120 Halle (Saale), Germany
| | - Jonas Jacobs
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 2 06120 Halle (Saale), Germany
| | - Julian Kunert
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4 06120 Halle (Saale), Germany
| | - Jonas Scheffler
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40 06120 Halle (Saale), Germany
| | - Wolfgang H Binder
- Institute of Chemistry, Martin Luther University Halle-Wittenberg, Von-Danckelmann-Platz 4 06120 Halle (Saale), Germany
| | - Christian E H Schmelzer
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4 06120 Halle (Saale), Germany; Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Straße 1 06120 Halle (Saale), Germany
| | - Stefan K Plontke
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40 06120 Halle (Saale), Germany; Halle Research Centre for Drug Therapy (HRCDT), Halle (Saale), Germany
| | - Arne Liebau
- Department of Otorhinolaryngology-Head and Neck Surgery, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40 06120 Halle (Saale), Germany
| | - Karsten Mäder
- Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Wolfgang-Langenbeck-Straße 4 06120 Halle (Saale), Germany; Halle Research Centre for Drug Therapy (HRCDT), Halle (Saale), Germany.
| |
Collapse
|
2
|
Zbyrad B, Zaborniak M, Kochmański Ł, Jasik K, Kluczyński J, Budzik G, Turek P. Evaluation of High-Temperature Sterilization Processes: Their Influence on the Mechanical Integrity of Additively Manufactured Polymeric Biomaterials. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1356. [PMID: 40141640 PMCID: PMC11943970 DOI: 10.3390/ma18061356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/21/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025]
Abstract
The continuous advancement of medical technologies and the increasing demand for high-performance medical devices have driven the search for innovative solutions in biomaterials engineering. However, ensuring the sterility of polymeric biomaterials while maintaining their mechanical integrity remains a significant challenge. This research examines how steam sterilization impacts the mechanical properties of four polymeric biomaterials frequently utilized in medical applications: MED610, PEEK, PET-G HT100, and RGD720. Samples were produced using additive manufacturing (AM), specifically Material Jetting (MJT) and Material Extrusion (MEX) processes, and exposed to steam sterilization at 121 °C and 134 °C. A comprehensive verification process was conducted to ensure the effectiveness of sterilization, including pre-sterilization cleaning, disinfection procedures, and the use of process indicators such as the Bowie-Dick test. Mechanical evaluation included bending tests and Rockwell hardness measurements to assess changes in structural integrity and mechanical strength after sterilization. The results revealed that, while some materials exhibited significant alterations in mechanical properties, others demonstrated high resistance to thermal and humidity exposure during sterilization. These findings provide critical insights into the selection and optimization of polymeric biomaterials for sterilizable medical applications, ensuring their durability and safety in clinical use.
Collapse
Affiliation(s)
- Barbara Zbyrad
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (B.Z.); (M.Z.); (Ł.K.); (G.B.); (P.T.)
| | - Małgorzata Zaborniak
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (B.Z.); (M.Z.); (Ł.K.); (G.B.); (P.T.)
| | - Łukasz Kochmański
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (B.Z.); (M.Z.); (Ł.K.); (G.B.); (P.T.)
| | - Katarzyna Jasik
- Institute of Robots & Machine Design, Faculty of Mechanical Engineering, Military University of Technology, Gen. S. Kaliskiego St., 00-908 Warsaw, Poland;
| | - Janusz Kluczyński
- Institute of Robots & Machine Design, Faculty of Mechanical Engineering, Military University of Technology, Gen. S. Kaliskiego St., 00-908 Warsaw, Poland;
| | - Grzegorz Budzik
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (B.Z.); (M.Z.); (Ł.K.); (G.B.); (P.T.)
| | - Paweł Turek
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, 35-959 Rzeszow, Poland; (B.Z.); (M.Z.); (Ł.K.); (G.B.); (P.T.)
| |
Collapse
|
3
|
Huanbutta K, Puri V, Sharma A, Singh I, Sriamornsak P, Sangnim T. Rise of implantable drugs: A chronicle of breakthroughs in drug delivery systems. Saudi Pharm J 2024; 32:102193. [PMID: 39564378 PMCID: PMC11570717 DOI: 10.1016/j.jsps.2024.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
In recent years, implantable drug delivery systems (IDDSs) have undergone significant advancements because they offer many advantages to patients and health care professionals. Miniaturization has reduced the size of these devices, making them less invasive and easier to implant. Remote control provides more precise medication delivery and dosage. Biodegradable implants are an additional advancement in implantable drug delivery systems that eliminate the need for surgical removal. Smart implants can monitor a patient's condition and adjust their drug doses. Long-acting implants also provide sustained drug delivery for months or even years, eliminating the need for regular medication dosing, and wireless power and data transmission technology enables the use of devices that are more comfortable and less invasive. These innovations have enhanced patient outcomes by enabling more precise administration, sustained drug delivery, and improved health care monitoring. With continued research and development, it is anticipated that IDDSs will become more effective and provide patients with improved health outcomes. This review categorizes and discusses the benefits and limitations of recent novel IDDSs for their potential therapeutic use.
Collapse
Affiliation(s)
- Kampanart Huanbutta
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, Punjab, India
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
4
|
Yang F, Stahnke R, Lawal K, Mahnen C, Duffy P, Xu S, Durig T. Development of poly (lactic-co-glycolic acid) (PLGA) based implants using hot melt extrusion (HME) for sustained release of drugs: The impacts of PLGA's material characteristics. Int J Pharm 2024; 663:124556. [PMID: 39122196 DOI: 10.1016/j.ijpharm.2024.124556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Hot melt extrusion (HME) processed Poly (lactic-co-glycolic acid) (PLGA) implant is one of the commercialized drug delivery products, which has solid, well-designed shape and rigid structures that afford efficient locoregional drug delivery on the spot of interest for months. In general, there are a variety of material, processing, and physiological factors that impact the degradation rates of PLGA-based implants and concurrent drug release kinetics. The objective of this study was to investigate the impacts of PLGA's material characteristics on PLGA degradation and subsequent drug release behavior from the implants. Three model drugs (Dexamethasone, Carbamazepine, and Metformin hydrochloride) with different water solubility and property were formulated with different grades of PLGAs possessing distinct co-polymer ratios, molecular weights, end groups, and levels of residual monomer (high/ViatelTM and low/ ViatelTM Ultrapure). Physicochemical characterizations revealed that the plasticity of PLGA was inversely proportional to its molecular weight; moreover, the residual monomer could impose a plasticizing effect on PLGA, which increased its thermal plasticity and enhanced its thermal processability. Although the morphology and microstructure of the implants were affected by many factors, such as processing parameters, polymer and drug particle size and distribution, polymer properties and polymer-drug interactions, implants prepared with ViatelTM PLGA showed a smoother surface and a stronger PLGA-drug intimacy than the implants with ViatelTM Ultrapure PLGA, due to the higher plasticity of the ViatelTM PLGA. Subsequently, the implants with ViatelTM PLGA exhibited less burst release than implants with ViatelTM Ultrapure PLGA, however, their onset and progress of the lag and substantial release phases were shorter and faster than the ViatelTM Ultrapure PLGA-based implants, owing to the residual monomer accelerated the water diffusion and autocatalyzed PLGA hydrolysis. Even though the drug release profiles were also influenced by other factors, such as composition, drug properties and polymer-drug interaction, all three cases revealed that the residual monomer accelerated the swelling and degradation of PLGA and impaired the implant's integrity, which could negatively affect the subsequent drug release behavior and performance of the implants. These results provided insights to formulators on rational PLGA implant design and polymer selection.
Collapse
Affiliation(s)
| | - Ryan Stahnke
- Ashland Specialty Ingredients, Wilmington, DE, USA
| | - Kamaru Lawal
- Ashland Specialty Ingredients, Wilmington, DE, USA
| | - Cory Mahnen
- Ashland Specialty Ingredients, Wilmington, DE, USA
| | | | - Shuyu Xu
- Ashland Specialty Ingredients, Wilmington, DE, USA
| | - Thomas Durig
- Ashland Specialty Ingredients, Wilmington, DE, USA
| |
Collapse
|
5
|
Doggwiler V, Lanz M, Lipps G, Imanidis G. Mechanistic Investigation of Enzyme Triggered Release from a Xyloglucan Matrix Tablet for Controlled Colonic Drug Delivery. J Pharm Sci 2024; 113:2524-2541. [PMID: 38796155 DOI: 10.1016/j.xphs.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
The objective of this study was to investigate the mechanisms underlying drug release from a controlled colonic release (CCR) tablet formulation based on a xyloglucan polysaccharide matrix and identify the factors that control the rate of release for the purpose of fundamentally substantiating the concept and demonstrating its robustness for colonic drug delivery. Previous work demonstrated in vitro limited release of 5-aminosalicylic acid (5-ASA) and caffeine from these tablets in small intestinal environment and significant acceleration of release by xyloglucanase, an enzyme of the colonic microbiome. Targeted colonic drug delivery was verified in an animal study in vivo. In the present work, interaction of the xyloglucan matrix tablets with aqueous dissolution media containing xyloglucanase was found to lead to the spontaneous formation of a hydrated highly viscous gummy layer at the surface of the matrix which had a reduced drug content compared to the underlying regions and persisted with a nearly constant thickness that was inversely correlated to the enzyme concentration throughout the duration of the release process. Enzymatic hydrolysis of xyloglucan was determined to take place at the surface of the matrix leading to matrix erosion and a relation for the rate of enzymatic reaction as a function of bulk enzyme concentration and the concentration of dissolved xyloglucan in the gummy layer was derived. A mathematical model was developed encompassing aqueous medium ingress, matrix metamorphosis due to xyloglucan dissolution and matrix swelling, enzymatic hydrolysis of the polysaccharide and concomitant drug release due to matrix erosion and simultaneous drug diffusion. The model was fitted to data of reducing sugar equivalents in the medium reflecting matrix erosion and released drug amount. Enzymatic reaction parameters and reasonable values of medium ingress velocity, xyloglucan dissolution rate constant and drug diffusion coefficient were deduced that provided an adequate approximation of the data. Erosion was shown to be the overwhelmingly dominant drug release mechanism while the role of diffusion marginally increased at low enzyme concentration and high drug solubility. Changing enzyme concentration had a rather weak effect on matrix erosion and drug release rate as demonstrated by model simulations supported by experimental data, while xyloglucan dissolution was slow and had a stronger effect on the rate of the process. Therefore, reproducible colonic drug delivery not critically influenced by inter- and intra-individual variation of microbial enzyme activity may be projected.
Collapse
Affiliation(s)
- Viviane Doggwiler
- School of Life Sciences, University of Applied Sciences Northwest Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland
| | - Michael Lanz
- School of Life Sciences, University of Applied Sciences Northwest Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Georg Lipps
- School of Life Sciences, University of Applied Sciences Northwest Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Georgios Imanidis
- School of Life Sciences, University of Applied Sciences Northwest Switzerland, Hofackerstrasse 30, 4132 Muttenz, Switzerland; Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
6
|
Tambe S, Jain D, Rawat R, Mali S, Pagano MA, Brunati AM, Amin P. MeltSerts technology (brinzolamide ocular inserts via hot-melt extrusion): QbD-steered development, molecular dynamics, in vitro, ex vivo and in vivo studies. Int J Pharm 2023; 648:123579. [PMID: 37931727 DOI: 10.1016/j.ijpharm.2023.123579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/31/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
The research work aimed to develop a robust sustained release biocompatible brinzolamide (BRZ)-loaded ocular inserts (MeltSerts) using hot-melt extrusion technology with enhanced solubility for glaucoma management. A 32 rotatable central composite design was employed for the optimization of the MeltSerts to achieve sustained release. The effect of two independent factors was examined: Metolose® SR 90SH-100000SR (HPMC, hydroxypropyl methyl cellulose) and Kolliphor® P 407 (Poloxamer 407, P407). The drug release (DR) of BRZ at 0.5 h and 8 h were adopted as dependent responses. The factorial analysis resulted in an optimum composition of 50.00 % w/w of HPMC and 15.00 % w/w of P407 which gave % DR of 9.11 at 0.5 h and 69.10 at 8 h. Furthermore, molecular dynamic simulations were performed to elucidate various interactions between BRZ, and other formulation components and it was observed that BRZ showed maximum interactions with HPC and HPMC with an occupancy of 92.82 and 52.87 %, respectively. Additionally, molecular docking studies were performed to understand the interactions between BRZ and mucoadhesive polymers with ocular mucin (MUC-1). The results indicated a docking score of only -5.368 for BRZ alone, whereas a significantly higher docking score was observed for the optimized Meltserts -6.977, suggesting enhanced retention time of the optimized MeltSerts. SEM images displayed irregular surfaces, while EDS analysis validated uniform BRZ distribution in the optimized formulation. The results of the ocular irritancy studies both ex vivo and in vivo demonstrated that MeltSerts are safe for ocular use. The results indicate that the developed MeltSerts Technology has the potential to manufacture ocular inserts with cost-effectiveness, one-step processability, and enhanced product quality. Nonetheless, it also offers a once-daily regimen, consequently decreasing the dosing frequency, preservative exposure, and ultimately better glaucoma management.
Collapse
Affiliation(s)
- Srushti Tambe
- Institute of Chemical Technology, Department of Pharmaceutical Sciences and Technology, Mumbai 400019, India
| | - Divya Jain
- Institute of Chemical Technology, Department of Pharmaceutical Sciences and Technology, Mumbai 400019, India
| | - Ravi Rawat
- School of Health Sciences and Technology, UPES, Dehradun 248007, India
| | - Suraj Mali
- Birla Institute of Technology, Department of Pharmaceutical Sciences & Technology, Mesra, Ranchi 835 215, India
| | | | - Anna Maria Brunati
- Department of Molecular Medicine, University of Padua, Padua 35121, Italy
| | - Purnima Amin
- Institute of Chemical Technology, Department of Pharmaceutical Sciences and Technology, Mumbai 400019, India.
| |
Collapse
|
7
|
Zhao Y, Li B, Zhang W, Zhang L, Zhao H, Wang S, Huang C. Recent Advances in Sustainable Antimicrobial Food Packaging: Insights into Release Mechanisms, Design Strategies, and Applications in the Food Industry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11806-11833. [PMID: 37467345 DOI: 10.1021/acs.jafc.3c02608] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
In response to the issues of foodborne microbial contamination and carbon neutrality goals, sustainable antimicrobial food packaging (SAFP) composed of renewable or biodegradable biopolymer matrices with ecofriendly antimicrobial agents has emerged. SAFP offers longer effectiveness, wider coverage, more controllability, and better environmental performance. Analyzing SAFP information, including the release profile of each antimicrobial agent for each food, the interaction of each biomass matrix with each food, the material size, form, and preparation methods, and its service quality in real foods, is crucial. While encouraging reports exist, a comprehensive review summarizing these developments is lacking. Therefore, this review critically examines recent release-antimicrobial mechanisms, kinetics models, preparation methods, and key regulatory parameters for SAFPs based on slow- or controlled-release theory. Furthermore, it discusses fundamental physicochemical characteristics, effective concentrations, advantages, release approaches, and antimicrobial and preservative effects of various materials in food simulants or actual food. Lastly, inadequacies and future trends are explored, providing practical references to regulate the movement of active substances in different media, reduce the reliance on petrochemical-based materials, and advance food packaging and preservation technologies.
Collapse
Affiliation(s)
- Yuan Zhao
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Bo Li
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Wenping Zhang
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, Chengdu 610081, China
| | - Lanyu Zhang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Hui Zhao
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Shuangfei Wang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| | - Chongxing Huang
- School of Light Industry & Food Engineering, Guangxi University, 100 Daxue Road, Nanning 530004, China
| |
Collapse
|
8
|
Poudel I, Annaji M, Zhang C, Panizzi PR, Arnold RD, Kaddoumi A, Amin RH, Lee S, Shamsaei N, Babu RJ. Gentamicin Eluting 3D-Printed Implants for Preventing Post-Surgical Infections in Bone Fractures. Mol Pharm 2023; 20:4236-4255. [PMID: 37455392 DOI: 10.1021/acs.molpharmaceut.3c00373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
A surgically implantable device is an inevitable treatment option for millions of people worldwide suffering from diseases arising from orthopedic injuries. A global paradigm shift is currently underway to tailor and personalize replacement or reconstructive joints. Additive manufacturing (AM) has provided dynamic outflow to the customized fabrication of orthopedic implants by enabling need-based design and surface modification possibilities. Surgical grade 316L Stainless Steel (316L SS) is promising with its cost, strength, composition, and corrosion resistance to fabricate 3D implants. This work investigates the possibilities of application of the laser powder bed fusion (L-PBF) technique to fabricate 3D-printed (3DP) implants, which are functionalized with a multilayered antimicrobial coating to treat potential complications arising due to postsurgical infections (PSIs). Postsurgical implant-associated infection is a primary reason for implantation failure and is complicated mainly by bacterial colonization and biofilm formation at the installation site. PLGA (poly-d,l-lactide-co-glycolide), a biodegradable polymer, was utilized to impart multiple layers of coating using the airbrush spray technique on 3DP implant surfaces loaded with gentamicin (GEN). Various PLGA-based polymers were tested to optimize the ideal lactic acid: glycolic acid ratio and molecular weight suited for our investigation. 3D-Printed PLGA-GEN substrates sustained the release of gentamicin from the surface for approximately 6 weeks. The 3DP surface modification with PLGA-GEN facilitated cell adhesion and proliferation compared to control surfaces. The cell viability studies showed that the implants were safe for application. The 3DP PLGA-GEN substrates showed good concentration-dependent antibacterial efficacy against the common PSI pathogen Staphylococcus aureus (S. aureus) and Staphylococcus epidermidis (S. epidermidis). The GEN-loaded substrates demonstrated antimicrobial longevity and showed significant biofilm growth inhibition compared to control. The substrates offered great versatility regarding the in vitro release rates, antimicrobial properties, and biocompatibility studies. These results radiate great potential in future human and veterinary clinical applications pertinent to complications arising from PSIs, focusing on personalized sustained antibiotic delivery.
Collapse
Affiliation(s)
- Ishwor Poudel
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Manjusha Annaji
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Chu Zhang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Peter R Panizzi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Robert D Arnold
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Amal Kaddoumi
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Rajesh H Amin
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| | - Seungjong Lee
- Department of Mechanical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama 36849, United States
- National Center for Additive Manufacturing Excellence (NCAME), Auburn University, Auburn, Alabama 36849, United States
| | - Nima Shamsaei
- Department of Mechanical Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, Alabama 36849, United States
- National Center for Additive Manufacturing Excellence (NCAME), Auburn University, Auburn, Alabama 36849, United States
| | - R Jayachandra Babu
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, Alabama 36849, United States
| |
Collapse
|
9
|
Chen Z, Chen H, Huang L, Duan B, Dai S, Cai W, Sun M, Jiang Z, Lu R, Jiang Y, Jiang X, Zheng H, Yao Q, Kim K, Lin G, Xie C, Chu M, Chen R, Kou L. ATB 0,+-targeted nanoparticles initiate autophagy suppression to overcome chemoresistance for enhanced colorectal cancer therapy. Int J Pharm 2023:123082. [PMID: 37244464 DOI: 10.1016/j.ijpharm.2023.123082] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/13/2023] [Accepted: 05/23/2023] [Indexed: 05/29/2023]
Abstract
Oxaliplatin (OXA) resistance remains the major obstacle to the successful chemotherapy of colorectal cancer (CRC). As a self-protection mechanism, autophagy may contribute to tumor drug resistance, therefore autophagy suppression could be regarded as a possible treatment option in chemotherapy. Cancer cells, especially drug-resistant tumor cells, increase their demand for specific amino acids by expanding exogenous supply and up-regulating de novo synthesis, to meet the needs for excessive proliferation. Therefore, it is possible to inhibit cancer cell proliferation through pharmacologically blocking the entry of amino acid into cancer cells. SLC6A14 (ATB0, +) is an essential amino acid transporter, that is often abnormally up-regulated in most cancer cells. Herein, in this study, we designed oxaliplatin/berbamine-coloaded, ATB0,+-targeted nanoparticles ((O+B)@Trp-NPs) to therapeutically target SLC6A14 (ATB0, +) and inhibit cancer proliferation. The (O+B)@Trp-NPs utilize the surface-modified tryptophan to achieve SLC6A14-targeted delivery of Berbamine (BBM), a compound that is found in a number of plants used in traditional Chinese medicine, which could suppress autolysosome formation though impairing autophagosome-lysosome fusion. We verified the feasibility of this strategy to overcome the OXA resistance during colorectal cancer treatment. The (O+B)@Trp-NPs significantly inhibited the proliferation and decreased the drug resistance of resistant colorectal cancer cells. In vivo, (O+B)@Trp-NPs greatly suppressed the tumor growth in tumor-bearing mice, which is consistent with the in vitro data. This research offers a unique and promising chemotherapeutic treatment for colorectal cancer.
Collapse
Affiliation(s)
- Zhiwei Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Wenzhou 325027, China; Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou 325000, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China; College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Korea
| | - Heyan Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Wenzhou 325027, China; Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou 325000, China
| | - Lihui Huang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou 325000, China
| | - Baiqun Duan
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou 325000, China
| | - Sheng Dai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Wenjing Cai
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Meng Sun
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Zhikai Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou 325000, China
| | - Ruijie Lu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou 325000, China
| | - Yiling Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou 325000, China
| | - Xinyu Jiang
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou 325000, China
| | - Hailun Zheng
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou 325000, China
| | - Qing Yao
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Kwonseop Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Chonnam National University, Gwangju 61186, Korea
| | - Guangyong Lin
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China.
| | - Congying Xie
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Wenzhou 325027, China; Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou 325000, China.
| | - Maoping Chu
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China.
| | - Ruijie Chen
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China
| | - Longfa Kou
- Wenzhou Municipal Key Laboratory of Pediatric Pharmacy, Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, Wenzhou 325027, China; Zhejiang Engineering Research Center for Innovation and Application of Intelligent Radiotherapy Technology, Wenzhou 325000, China; Wenzhou key Laboratory of basic science and translational research of radiation oncology, Wenzhou 325027, China; Zhejiang-Hong Kong Precision Theranostics of Thoracic Tumors Joint Laboratory, Wenzhou 325000, China.
| |
Collapse
|
10
|
Costello MA, Liu J, Chen B, Wang Y, Qin B, Xu X, Li Q, Lynd NA, Zhang F. Drug release mechanisms of high-drug-load, melt-extruded dexamethasone intravitreal implants. Eur J Pharm Biopharm 2023; 187:46-56. [PMID: 37037387 DOI: 10.1016/j.ejpb.2023.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/27/2023] [Accepted: 04/04/2023] [Indexed: 04/12/2023]
Abstract
Ozurdex is an FDA-approved sustained-release, biodegradable implant formulated to deliver the corticosteroid dexamethasone to the posterior segment of the eye for up to 6 months. Hot-melt extrusion is used to prepare the 0.46 mm × 6 mm, rod-shaped implant by embedding the drug in a matrix of poly(lactic-co-glycolic acid) (PLGA) in a 60:40 drug:polymer ratio by weight. In our previous work, the Ozurdex implant was carefully studied and reverse engineered to produce a compositionally and structurally equivalent implant for further analysis. In this work, the reverse-engineered implant is thoroughly characterized throughout the in vitro dissolution process to elucidate the mechanisms of controlled drug release. The implant exhibits a triphasic release profile in 37 °C normal saline with a small burst release (1-2 %), a one-week lag phase with limited release (less than10 %), and a final phase where the remainder of the dose is released over 3-4 weeks. The limited intermolecular interaction between dexamethasone and PLGA renders the breakdown of the polymer the dominating mechanism of controlled release. A close relationship between drug release and total implant mass loss was observed. Unique chemical and structural differences were seen between the core of the implant and the implant surface driven by diffusional limitations, autocatalytic hydrolysis, and osmotic effects.
Collapse
Affiliation(s)
- Mark A Costello
- University of Texas at Austin, College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Joseph Liu
- University of Texas at Austin, College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Beibei Chen
- University of Texas at Austin, College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA
| | - Yan Wang
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD, USA
| | - Bin Qin
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD, USA
| | - Xiaoming Xu
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Pharmaceutical Quality, Office of Testing and Research, Silver Spring, MD, USA
| | - Qi Li
- U.S. Food and Drug Administration, Center for Drug Evaluation and Research, Office of Generic Drugs, Office of Research and Standards, Silver Spring, MD, USA
| | - Nathaniel A Lynd
- University of Texas at Austin, McKetta Department of Chemical Engineering and Texas Materials Institute, Austin, TX, USA
| | - Feng Zhang
- University of Texas at Austin, College of Pharmacy, Department of Molecular Pharmaceutics and Drug Delivery, Austin, TX, USA.
| |
Collapse
|
11
|
Islam MS, Mitra S. Synthesis of Microwave Functionalized, Nanostructured Polylactic Co-Glycolic Acid ( nfPLGA) for Incorporation into Hydrophobic Dexamethasone to Enhance Dissolution. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:943. [PMID: 36903820 PMCID: PMC10005067 DOI: 10.3390/nano13050943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/25/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
The low solubility and slow dissolution of hydrophobic drugs is a major challenge for the pharmaceutical industry. In this paper, we present the synthesis of surface-functionalized poly(lactic-co-glycolic acid) (PLGA) nanoparticles for incorporation into corticosteroid dexamethasone to improve its in vitro dissolution profile. The PLGA crystals were mixed with a strong acid mixture, and their microwave-assisted reaction led to a high degree of oxidation. The resulting nanostructured, functionalized PLGA (nfPLGA), was quite water-dispersible compared to the original PLGA, which was non-dispersible. SEM-EDS analysis showed 53% surface oxygen concentration in the nfPLGA compared to the original PLGA, which had only 25%. The nfPLGA was incorporated into dexamethasone (DXM) crystals via antisolvent precipitation. Based on SEM, RAMAN, XRD, TGA and DSC measurements, the nfPLGA-incorporated composites retained their original crystal structures and polymorphs. The solubility of DXM after nfPLGA incorporation (DXM-nfPLGA) increased from 6.21 mg/L to as high as 87.1 mg/L and formed a relatively stable suspension with a zeta potential of -44.3 mV. Octanol-water partitioning also showed a similar trend as the logP reduced from 1.96 for pure DXM to 0.24 for DXM-nfPLGA. In vitro dissolution testing showed 14.0 times higher aqueous dissolution of DXM-nfPLGA compared to pure DXM. The time for 50% (T50) and 80% (T80) of gastro medium dissolution decreased significantly for the nfPLGA composites; T50 reduced from 57.0 to 18.0 min and T80 reduced from unachievable to 35.0 min. Overall, the PLGA, which is an FDA-approved, bioabsorbable polymer, can be used to enhance the dissolution of hydrophobic pharmaceuticals and this can lead to higher efficacy and lower required dosage.
Collapse
|
12
|
Picco CJ, Utomo E, McClean A, Domínguez-Robles J, Anjani QK, Volpe-Zanutto F, McKenna PE, Acheson JG, Malinova D, Donnelly RF, Larrañeta E. Development of 3D-printed subcutaneous implants using concentrated polymer/drug solutions. Int J Pharm 2023; 631:122477. [PMID: 36509226 DOI: 10.1016/j.ijpharm.2022.122477] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Implantable drug-eluting devices that provide therapeutic cover over an extended period of time following a single administration have potential to improve the treatment of chronic conditions. These devices eliminate the requirement for regular and frequent drug administration, thus reducing the pill burden experienced by patients. Furthermore, the use of modern technologies, such as 3D printing, during implant development and manufacture renders this approach well-suited for the production of highly tuneable devices that can deliver treatment regimens which are personalised for the individual. The objective of this work was to formulate subcutaneous implants loaded with a model hydrophobic compound, olanzapine (OLZ) using robocasting - a 3D-printing technique. The formulated cylindrical implants were prepared from blends composed of OLZ mixed with either poly(caprolactone) (PCL) or a combination of PCL and poly(ethylene)glycol (PEG). Implants were characterised using scanning electron microscopy (SEM), thermal analysis, infrared spectroscopy, and X-ray diffraction and the crystallinity of OLZ in the formulated devices was confirmed. In vitro release studies demonstrated that all the formulations were capable of maintaining sustained drug release over a period of 200 days, with the maximum percentage drug release observed to be c.a. 60 % in the same period.
Collapse
Affiliation(s)
- Camila J Picco
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Emilia Utomo
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Andrea McClean
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Peter E McKenna
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Jonathan G Acheson
- Nanotechnology and Integrated Bioengineering Centre (NIBEC), School of Engineering, Ulster University, United Kingdom
| | - Dessislava Malinova
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, United Kingdom
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
13
|
Bassand C, Benabed L, Charlon S, Verin J, Freitag J, Siepmann F, Soulestin J, Siepmann J. 3D printed PLGA implants: APF DDM vs. FDM. J Control Release 2023; 353:864-874. [PMID: 36464064 DOI: 10.1016/j.jconrel.2022.11.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
3D Printing offers a considerable potential for personalized medicines. This is especially true for customized biodegradable implants, matching the specific needs of each patient. Poly(lactic-co-glycolic acid) (PLGA) is frequently used as matrix former in biodegradable implants. However, yet relatively little is known on the technologies, which can be used for the 3D printing of PLGA implants. The aim of this study was to compare: (i) Arburg Plastic Freeforming Droplet Deposition Modeling (APF DDM), and (ii) Fused Deposition Modeling (FDM) to print mesh-shaped, ibuprofen-loaded PLGA implants. During APF DDM, individual drug-polymer droplets are deposited, fusing together to form filaments, which build up the implants. During FDM, continuous drug-polymer filaments are deposited to form the meshes. The implants were thoroughly characterized before and after exposure to phosphate buffer pH 7.4 using optical and scanning electron microscopy, GPC, DSC, drug release measurements and monitoring dynamic changes in the systems' dry & wet mass and pH of the bulk fluid. Interestingly, the mesh structures were significantly different, although the device design (composition & theoretical geometry) were the same. This could be explained by the fact that the deposition of individual droplets during APF DDM led to curved and rather thick filaments, resulting in a much lower mesh porosity. In contrast, FDM printing generated straight and thinner filaments: The open spaces between them were much larger and allowed convective mass transport during drug release. Consequently, most of the drug was already released after 4 d, when substantial PLGA set on. In the case of APF DDM printed implants, most of the drug was still entrapped at that time point and substantial polymer swelling transformed the meshes into more or less continuous PLGA gels. Hence, the diffusion pathways became much longer and ibuprofen release was controlled over 2 weeks.
Collapse
Affiliation(s)
- C Bassand
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - L Benabed
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - S Charlon
- IMT Lille Douai, École Nationale Supérieure Mines-Télécom Lille Douai, Materials & Processes Center, Cité Scientifique, Villeneuve d'Ascq Cedex, France
| | - J Verin
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Freitag
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - F Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France
| | - J Soulestin
- IMT Lille Douai, École Nationale Supérieure Mines-Télécom Lille Douai, Materials & Processes Center, Cité Scientifique, Villeneuve d'Ascq Cedex, France
| | - J Siepmann
- Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.
| |
Collapse
|
14
|
Bassand C, Benabed L, Freitag J, Verin J, Siepmann F, Siepmann J. How bulk fluid renewal can affect in vitro drug release from PLGA implants: Importance of the experimental set-up. Int J Pharm X 2022; 4:100131. [PMID: 36189458 PMCID: PMC9519472 DOI: 10.1016/j.ijpx.2022.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 09/16/2022] [Indexed: 11/08/2022] Open
Abstract
The aim of this study was to better understand the potential impact of partial vs. complete renewal of the bulk fluid during drug release measurements from poly (lactic-co-glycolic acid) (PLGA)-based implants. A “standard experimental set-up”, in which the implants were directly exposed to well agitated phosphate buffer pH 7.4 was used, as well as set-ups, in which the implants were embedded within agarose hydrogels (mimicking living tissue). The gels were exposed to well agitated phosphate buffer pH 7.4. Ibuprofen-loaded implants were prepared by hot melt extrusion. The systems were thoroughly characterized before and during drug release by optical and scanning electron microscopy, gravimetric analysis, pH and solubility measurements as well as gel permeation chromatography. The bulk fluid was either completely or partially replaced by fresh medium at each sampling time point. In all cases, sink conditions were provided in the agitated bulk fluids throughout the experiments. Interestingly, the agarose set-ups did not show any noteworthy impact of the bulk fluid sampling volume on the observed drug release patterns, whereas complete fluid renewal in the “standard set-up” led to accelerated drug release. This could be explained by the considerable fragility of the implants once substantial polymer swelling set on, transforming them into PLGA gels: Complete fluid renewal caused partial disintegration and damage of the highly swollen systems, decreasing the lengths of the diffusion pathways for the drug. The mechanical stress is very much reduced at low sampling volumes, or if the implants are embedded within agarose gels. Thus, great care must be taken when defining the conditions for in vitro drug release measurements from PLGA-based implants: Once substantial system swelling sets on, the devices become highly fragile.
Collapse
|